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Mathematicians began the study of representation theory
over a hundred years ago. Since then it has become a cen-
terpiece technique in fields such as algebra, topology, num-
ber theory, geometry, mathematical physics, quantum in-
formation theory, and complexity theory. A premise of
representation theory is that we can study groups and alge-
bras from how they act on vector spaces.

In this article we take this a step further; to study actions
of a group or algebra we study what commutes with the ac-
tion. The collection of all linear transformations that com-
mute with the action is called the commutant or the cen-
tralizer. The centralizer is itself an algebra which is called
the Schur–Weyl dual.

A reason why this has become such an important tech-
nique is that it can lead to beautiful connections between
seemingly different areas of mathematics. One example of
this is the discovery of the Jones polynomial. This polyno-
mial is a one variable invariant for oriented knots or links
[6, 7]. The polynomial was discovered while studying lin-
ear functionals of the Temperley–Lieb algebra, an exam-
ple of a centralizer algebra. Following this work, Jones re-
ceived his Fields Medal for discovering deep connections
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between representation theory, topology, and theoretical
physics [7].

In this article we will present how centralizer algebras
can be used to study the representation theory of the sym-
metric group. Although we know a lot about its represen-
tation theory, there are still open problems that are out of
reach such as the Kronecker problem and the restriction prob-
lem that we discuss below. Our approach to these prob-
lems has been to use centralizer algebras to develop com-
binatorial tools to study them.

All of the vector spaces in this article are over the com-
plex numbers ℂ, and 𝐺𝐿𝑛 will denote the general linear
group of invertible 𝑛 × 𝑛matrices with complex entries.
What is a representation? Representation theory is the art
of studying abstract algebraic objects, such as groups and
algebras, by understanding how they act on vector spaces.

When acting on a vector space, each element in the al-
gebra or group is represented by a linear transformation
(or more concretely, a matrix). The set of resulting lin-
ear transformations is a representation of the algebra or
group. Moreover, multiplying two elements in the algebra
or group corresponds to composition of the correspond-
ing linear transformations. It is common to refer to the
vector space together with the action as the representation,
or if the action is understood to just the vector space as the
representation.

In this article we are interested in the representation the-
ory of the symmetric group, 𝑆𝑘, the group of bijections
from the set {1, 2, … , 𝑘} to itself. There are many ways to
represent the elements of 𝑆𝑘, in this article we will think
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of them in cycle notation or as diagrams. For example,
(1, 3, 4)(5, 6) ∈ 𝑆6 corresponds to the diagram in Figure 1.

Figure 1. A diagram depicting the permutation
(1, 3, 4)(5, 6) ∈ 𝑆6.

We will use the following example of a representation
to illustrate the ideas introduced in this article. Consider

𝑆3 = {𝑒, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)},
where 𝑒 is the identity and the other elements are written
using cycle notation (with one-cycles omitted). The sym-
metric group 𝑆3 acts on the vector space ℂ3. If we choose
the basis of standard column vectors for ℂ3, {𝑒1, 𝑒2, 𝑒3},
then an element 𝜎 ∈ 𝑆3 acts by 𝜎 ⋅ 𝑒𝑖 = 𝑒𝜍(𝑖). As an ex-
ample, (1, 2) ⋅ 𝑒1 = 𝑒2, (1, 2) ⋅ 𝑒2 = 𝑒1, and (1, 2) ⋅ 𝑒3 = 𝑒3.
Then each 𝜎 ∈ 𝑆3 is represented by a permutation matrix:

𝑒 ↦ [
1 0 0
0 1 0
0 0 1

] , (1, 2) ↦ [
0 1 0
1 0 0
0 0 1

] ,

(2, 3) ↦ [
1 0 0
0 0 1
0 1 0

] , (1, 2, 3) ↦ [
0 0 1
1 0 0
0 1 0

] ,

(1, 3) ↦ [
0 0 1
0 1 0
1 0 0

] , (1, 3, 2) ↦ [
0 1 0
0 0 1
1 0 0

] .

We will refer to this representation as the permutation repre-
sentation of 𝑆3.

To define a representation, we need a vector space and
an action of the group or algebra on the vector space. An-
other way to think of a representation is as a group ho-
momorphism to the general linear group, 𝐺𝐿𝑛. For exam-
ple, the permutation representation of 𝑆3 is the homomor-
phism 𝜌 ∶ 𝑆3 → 𝐺𝐿3 shown above.

Each finite group or finite-dimensional algebra has an
infinite number of matrix representations, but we only
need a finite number of them to express all of the repre-
sentations. A common theme in mathematics is to iden-
tify the basic building blocks in the theory. For example,
in number theory the building blocks are the primes. Ap-
plying this idea to representation theory leads to the con-
cept of an irreducible representation, which is a representa-
tion that does not contain a subspace that is closed under
the action. For instance the permutation representation
mentioned above has a subspace 𝑊 = span{𝑒1 + 𝑒2 + 𝑒3}
which is closed under the action and hence the permuta-
tion representation is not irreducible. The subspace 𝑊 is
an irreducible representation of 𝑆3.

In this article, we will restrict our attention to semisim-
ple representations. Just as composite numbers can be
written using primes, semisimple representations can be
decomposed into direct sums of irreducible ones. Many
open problems in combinatorial representation theory ask
for algorithms for decomposing representations into irre-
ducible ones.
Representations of the symmetric group. A nontrivial
and beautiful fact is that the irreducible representations of
a finite group are in bijection with the conjugacy classes of
that group. In the case of the symmetric group, 𝑆𝑛, the con-
jugacy classes are determined by cycle type (the lengths of
the cycles in cycle notation). Since the cycle type is a par-
tition of 𝑛, then the irreducible representations are also
indexed by these.

Recall that a partition of 𝑛 is a weakly decreasing se-
quence 𝜆 = (𝜆1, 𝜆2, … , 𝜆ℓ) of nonnegative integers that add
up to 𝑛. We use |𝜆| for the sum 𝜆1 + 𝜆2 +⋯+ 𝜆ℓ. We will
think of a partition as a Young diagram, an array of boxes
with 𝜆𝑖 boxes in the 𝑖-th row that are left-justified. We will
use the English convention in which we write the boxes
corresponding to 𝜆1 in the top row, 𝜆2 in the second row,
and so on.

For instance, 𝑆3 has three irreducible representations,
which are indexed by partitions of 3,

(3) → , (2, 1) → ,

and (1, 1, 1) → .

Weuse𝕊𝜆 to denote the irreducible representation indexed
by 𝜆. One way to describe 𝕊𝜆 is by giving a basis and the
action of 𝑆𝑛 on this basis. Every representation of 𝑆𝑛 can
be written as a direct sum of irreducible ones. This fact
is known as Maschke’s theorem and is a property that is
true for representations of finite groups. For example, the
permutation representation of 𝑆3 is isomorphic (≅) to the
direct sum of two irreducible representations, namely

ℂ3 ≅ 𝕊(2,1) ⊕𝕊(3),

where 𝕊(2,1) ≅ span{𝑒3 − 𝑒1, 𝑒2 − 𝑒1} and 𝕊(3) ≅ span{𝑒1 +
𝑒2 + 𝑒3}.
Character tables. One of the downsides of thinking about
representations in terms of matrices is that the matrices de-
pend on the basis chosen for the vector space. Changing
basis produces an isomorphic representation. Fortunately,
for complex representations the representations are deter-
mined up to isomorphism by their character. The char-
acter of a representation 𝜌 ∶ 𝐺 → 𝐺𝐿𝑑 is the function
𝜒𝜌 ∶ 𝐺 → ℂ defined by

𝜒𝜌(𝑔) = 𝑡𝑟𝑎𝑐𝑒(𝜌(𝑔)), for every 𝑔 ∈ 𝐺.
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Recall that in linear algebra the trace of a matrix is the sum
of its diagonal entries. Using properties of the trace func-
tion, we can show that two conjugate elements have the
same trace and that isomorphic representations have the
same character. Therefore, the essence of the representa-
tion of a group can be stored in a vector with entries equal
to the trace at a representative of a conjugacy class.

For example, the permutation representation of 𝑆3 has
𝜒𝜌(𝑒) = 3,

𝜒𝜌((2, 1)) = 𝜒𝜌((1, 3)) = 𝜒𝜌((2, 3)) = 1,

𝜒𝜌((1, 2, 3)) = 𝜒𝜌((1, 3, 2)) = 0.
Therefore, we can think of its character as the vector 𝜒𝜌 =
⟨3, 1, 0⟩ with one value for each conjugacy class.

The irreducible complex characters of a finite group can
be stored compactly in a square matrix where each row
corresponds to an irreducible representation and each col-
umn corresponds to a conjugacy class, often indexed by a
conjugacy class representative. For instance, the character
table of 𝑆3 is given in Figure 2.

𝑒 (1, 2) (1, 2, 3)
𝜒(1,1,1) 1 −1 1
𝜒(2,1) 2 0 −1
𝜒(3) 1 1 1

Figure 2. The irreducible character table for the symmetric
group 𝑆3.

Writing a representation as a direct sum of irreducibles
is the same as writing a character as a vector sum of irre-
ducible characters. In our running example, the character
of the permutation representation is the sum of two irre-
ducible characters,

𝜒𝜌 = 𝜒(2,1) + 𝜒(3) = ⟨2, 0, −1⟩ + ⟨1, 1, 1⟩ = ⟨3, 1, 0⟩.

Characters contain all essential information about rep-
resentations; in fact, Frobenius developed the representa-
tion theory of finite groups completely in terms of their
characters.
The Kronecker product. The tensor product of two repre-
sentations for any group is also a representation. In the
special case of the symmetric group, given two irreducible
representations, 𝕊𝜆 and 𝕊𝜇 with 𝜆 and 𝜇 both partitions of
𝑛, 𝕊𝜆⊗𝕊𝜇 has underlying vector space the tensor product
of the vectors spaces for 𝕊𝜆 and 𝕊𝜇. If 𝑣 ⊗ 𝑤 ∈ 𝕊𝜆 ⊗ 𝕊𝜇,
then 𝜎 ∈ 𝑆𝑛 acts diagonally, i.e., 𝜎 ⋅ 𝑣 ⊗ 𝑤 = 𝜎 ⋅ 𝑣 ⊗ 𝜎 ⋅ 𝑤.

The character of 𝕊𝜆⊗𝕊𝜇, written 𝜒𝜆⊗𝜇, is the point-wise
product of the characters of 𝕊𝜆 and 𝕊𝜇, i.e., for 𝑔 ∈ 𝑆𝑛,

𝜒𝜆⊗𝜇(𝑔) = 𝜒𝜆(𝑔)𝜒𝜇(𝑔).

For example, using character vectors with 𝜆 = 𝜇 = (2, 1)
(see the character table for 𝑆3)

𝜒(2,1)⊗(2,1) = ⟨2, 0, −1⟩⟨2, 0, −1⟩ = ⟨4, 0, 1⟩.

An interesting challenge is to write a tensor product such
as𝜒(2,1)⊗(2,1) as a sumof irreducible characters. In this case,
by playing around with the character table in Figure 2, we
can see that

𝜒(2,1)⊗(2,1) = 𝜒(3) + 𝜒(2,1) + 𝜒(1,1,1).

In general, the coefficients of the irreducible characters,
𝑔(𝜆, 𝜇, 𝜈), are the nonnegative integers which describe the
number of times that the irreducible character 𝜒𝜈 occurs
in the decomposition of 𝜒𝜆⊗𝜇 when written as a sum of
irreducibles,

𝜒𝜆⊗𝜇 = ∑
𝜈
𝑔(𝜆, 𝜇, 𝜈)𝜒𝜈.

In combinatorial representation theory we are interested
in finding combinatorial algorithms to compute the coef-
ficients and tie them to enumerable set of objects. Then,
we use this set to deduce properties of the coefficients. The
following is a well-known open problem in this area:
The Kronecker problem. Find a set of objects depending
only on 𝜆, 𝜇, and 𝜈 with cardinality 𝑔(𝜆, 𝜇, 𝜈). We call this
a combinatorial interpretation.

This problem has motivated decades of research since
the early 1900s. Most recently this is due to deep connec-
tions with quantum information theory [3] and the cen-
tral role it plays within Geometric Complexity Theory [11].
This is an approach that seeks to settle the celebrated P
versus NP problem, one of the several Millennium Prize
Problems set by the Clay Mathematics Institute.
Why a combinatorial interpretation? Combinatorial in-
terpretations of the multiplicities often lead to the discov-
ery of new properties, a better understanding, and in some
cases to proofs of longstanding open problems. For exam-
ple, Knutson and Tao found a combinatorial model for the
multiplicities occurring in the tensor product of representa-
tions of the general linear group. They used their model to
prove the saturation property of these coefficients and this
led to a proof of Horn’s conjecture from 1962 character-
izing the spectrum of the sum of two Hermitian matrices
[9].
Stability of Kronecker coefficients. The Kronecker prod-
uct of symmetric group representations satisfies a stabil-
ity property first discovered by Murnaghan [2, 12]. Mur-
naghan observed that for sufficiently large 𝑛, the decom-
position of 𝜒(𝑛−|𝛼|,𝛼)⊗(𝑛−|𝛽|,𝛽) only depends on the parts
of 𝛼 and 𝛽 and not on 𝑛. For example, for 𝑛 ≥ 7, we
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always get the following decomposition when 𝛼 = (1) and
𝛽 = (2, 1):

𝜒(𝑛−1,1)⊗(𝑛−3,2,1) =𝜒(𝑛−2,1,1) + 𝜒(𝑛−3,1,1,1)

+ 𝜒(𝑛−2,2) + 2𝜒(𝑛−3,2,1)

+ 𝜒(𝑛−3,3) + 𝜒(𝑛−4,2,1,1)

+ 𝜒(𝑛−4,2,2) + 𝜒(𝑛−4,3,1).

In general, we get nonnegative integer coefficients, 𝑔𝛾𝛼,𝛽
that depend on three partitions 𝛼, 𝛽, and 𝛾. These coeffi-
cients are called reduced (or stable) Kronecker coefficients.
A duality between 𝑆𝑘 and 𝐺𝐿𝑛. In general, a representa-
tion of 𝐺𝐿𝑛 is a homomorphism, 𝜌 ∶ 𝐺𝐿𝑛 → 𝐺𝐿𝑑. How-
ever, the representation theory of 𝐺𝐿𝑛 can get pretty wild.
In algebraic combinatorics, we often restrict our attention
to polynomial representations. This means that the matri-
ces 𝜌(𝐴) have polynomial entries in the entries of the ma-
trix 𝐴 ∈ 𝐺𝐿𝑛. The irreducible polynomial representations
are indexed by partitions with at most 𝑛 parts. The poly-
nomial representations of 𝐺𝐿𝑛 were first studied by Issai
Schur in his 1901 thesis under the supervision of Frobe-
nius.

By fixing a basis of a three-dimensional vector space, an
example of a polynomial representation 𝜌 ∶ 𝐺𝐿2 → 𝐺𝐿3
is given by the following matrix:

𝜌 ([ 𝑎 𝑏
𝑐 𝑑 ]) = [

𝑎2 2𝑎𝑏 𝑏2
𝑎𝑐 𝑎𝑑 + 𝑏𝑐 𝑏𝑑
𝑐2 2𝑐𝑑 𝑑2

] .

In 1927, Schur reformulated his thesis results inwhat to-
day is known as the Schur–Weyl duality. This duality defines
a correspondence between irreducible representations of
the symmetric group 𝑆𝑘 and irreducible, homogeneous,
polynomial representations of 𝐺𝐿𝑛 of degree 𝑘. Letting
𝑉 = ℂ𝑛, 𝐺𝐿𝑛 acts diagonally on 𝑉⊗𝑘 (𝑘-fold tensor prod-
uct of 𝑉), that is, for 𝐴 ∈ 𝐺𝐿𝑛 and 𝑣1 ⊗⋯⊗ 𝑣𝑘 in 𝑉⊗𝑘,

𝐴 ⋅ (𝑣1 ⊗ 𝑣2 ⊗⋯⊗ 𝑣𝑘) = 𝐴𝑣1 ⊗𝐴𝑣2 ⊗⋯⊗𝐴𝑣𝑘.

Concretely, 𝐴𝑣𝑖 is the product of the matrix 𝐴 with the col-
umn vector 𝑣𝑖. The symmetric group 𝑆𝑘 also has a right
action of 𝑉⊗𝑘 by permuting the tensor factors. For exam-
ple, for 𝜎 = (1, 3, 4) ∈ 𝑆4, 𝑣𝑎 ⊗ 𝑣𝑏 ⊗ 𝑣𝑐 ⊗ 𝑣𝑑 ⋅ (1, 3, 4) =
𝑣𝑑 ⊗ 𝑣𝑏 ⊗ 𝑣𝑎 ⊗ 𝑣𝑐, where 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛, which can be
visualized in Figure 3.

𝑣𝑎 ⊗ 𝑣𝑏 ⊗ 𝑣𝑐 ⊗ 𝑣𝑑

𝑣𝑑 ⊗ 𝑣𝑏 ⊗ 𝑣𝑎 ⊗ 𝑣𝑐
Figure 3. Visualization of the right action of (1, 3, 4) in 𝑆4 on a
tensor in 𝑉⊗4.

The basic observation that Schur made is that the di-
agonal action of 𝐺𝐿𝑛 and the permutation action of 𝑆𝑘
commute. This implies there is a well-defined action of
the group 𝐺𝐿𝑛 × 𝑆𝑘 (direct product) on 𝑉⊗𝑘. When we
decompose 𝑉⊗𝑘 in terms of irreducible representations of
𝐺𝐿𝑛 × 𝑆𝑘 we get

𝑉⊗𝑘 ≅⨁
𝜆
𝕍𝜆 ⊗𝕊𝜆, (1)

where 𝕍𝜆 is an irreducible, homogeneous, polynomial rep-
resentation of 𝐺𝐿𝑛 and 𝜆 runs over all partitions of 𝑘 with
at most 𝑛 parts. This gives a correspondence between rep-
resentations of 𝑆𝑘 and polynomial representations of 𝐺𝐿𝑛.

Consider the case when 𝑘 = 3 and 𝑛 = 9. Com-
binatorics can help to visualize 𝑉⊗3 and how it decom-
poses following Equation (1). Figure 4 represents basis
elements of 𝑉⊗3 as (𝑖1, 𝑖2, 𝑖3) in three-dimensional space
with 1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 9 and organizes them so that the ir-
reducible 𝐺𝐿9 components are compact. The blue points
represent 𝕍(3)⊗𝕊(3), the red and the green points together
represent 𝕍(2,1) ⊗ 𝕊(2,1) and the yellow points represent
𝕍(1,1,1)⊗𝕊(1,1,1). The Robinson–Schensted algorithm [16]
gives a way of making this assignment in general.

Figure 4. A combinatorial view of the decomposition of 𝑉⊗3

into 𝐺𝐿9 representations.

Characters of𝐺𝐿𝑛. A polynomial in commuting variables
𝑥1, … , 𝑥𝑛 is symmetric if any permutation of the variables
leaves the polynomial invariant. For every polynomial rep-
resentation of 𝐺𝐿𝑛, there exists a symmetric polynomial
𝑓(𝑥1, … , 𝑥𝑛) such that if 𝐴 ∈ 𝐺𝐿𝑛 has eigenvalues 𝜃1, … , 𝜃𝑛,
then the character value at 𝐴 is 𝑓(𝜃1, … , 𝜃𝑛). In the previ-
ous section we saw that for every partition 𝜆 with at most
𝑛 parts, there exists an irreducible polynomial representa-
tion of 𝐺𝐿𝑛 which we refer to as 𝕍𝜆. Schur showed the
character corresponding to 𝕍𝜆 are obtained by evaluations
of a polynomial 𝑠𝜆(𝑥1, … , 𝑥𝑛) which is constructed combi-
natorially as follows:

1. In the boxes of the Young diagram of 𝜆 insert numbers
1, 2, … , 𝑛 so that the numbers increase weakly along
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each row from left to right and strictly from top to
bottom in each column. This is called a semistandard
Young tableau (SSYT for short).

For example, if 𝜆 = (2) then its Young diagram is
. If 𝑛 = 3, these are the possible tableaux:

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 .

2. For each tableau, 𝑇, in part (1), define a monomial
𝑥𝑇 = 𝑥𝑖11 𝑥

𝑖2
2 ⋯𝑥𝑖𝑛𝑛 , where 𝑖𝑗 is the number of times

that 𝑗 occurs in 𝑇. For example, the corresponding
monomials for the SSYT above are 𝑥21, 𝑥1𝑥2, 𝑥1𝑥3, 𝑥22,
𝑥2𝑥3, and 𝑥23, respectively.

3. The Schur polynomial 𝑠𝜆(𝑥1, … , 𝑥𝑛) is defined by sum-
ming all monomials possible:

𝑠𝜆(𝑥1, … , 𝑥𝑛) = ∑
𝑇
𝑥𝑇 ,

where the sum is over all SSYT constructed using 𝜆 and
1, 2, … 𝑛.

In the case of our running example, we get

𝑠(2)(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥22 + 𝑥2𝑥3 + 𝑥23.

The interested reader may check that the polynomial is
symmetric since permuting the indices 1, 2, and 3 in any
way gives the same polynomial. In addition onemay verify
by listing the tableaux of shape (1, 1) that

𝑠(1,1)(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3.

If 𝐴 ∈ 𝐺𝐿𝑛 has eigenvalues 𝜃1, … , 𝜃𝑛, then the charac-
ter value for the representation 𝕍𝜆 when acted on by 𝐴 is
obtained by substituting 𝑥𝑖 = 𝜃𝑖, for all 𝑖, in 𝑠𝜆(𝑥1, … , 𝑥𝑛).
The number 𝑠𝜆(𝜃1, … , 𝜃𝑛) is the trace of the matrix repre-
senting 𝐴 when 𝐴 acts on a basis of 𝕍𝜆. For example, if 𝐴
has eigenvalues 1, −1, and 2, then setting 𝑥1 = 1, 𝑥2 = −1,
and 𝑥3 = 2 in 𝑠(2)(𝑥1, 𝑥2, 𝑥3) gives the character of the
representation 𝕍(2) of 𝐺𝐿3 at the matrix 𝐴. In this case,
𝑠(2)(1, −1, 2) = 5 is the character value.
Restricting representations. Any polynomial representa-
tion of 𝐺𝐿𝑛 is a representation for any subgroup 𝐺 of 𝐺𝐿𝑛.
In particular, the symmetric group 𝑆𝑛, thought of as the
group of 𝑛×𝑛 permutation matrices, is a subgroup of 𝐺𝐿𝑛.
Therefore, for any 𝜆, 𝕍𝜆 is a representation of 𝑆𝑛. We write
Res𝑆𝑛𝕍𝜆 for this restricted representation. The following
is a well-known open problem, for more details and refer-
ences see [13].
The Restriction Problem: Given an irreducible polyno-
mial representation of 𝐺𝐿𝑛, 𝕍𝜆, give a combinatorial algo-
rithm to compute the coefficients, 𝑟𝜆,𝜇, that occur when
restricted to the symmetric group in the equation

𝑅𝑒𝑠𝑆𝑛𝕍𝜆 ≅⨁
𝜇
𝑟𝜆,𝜇𝕊𝜇.

We can obtain the character of the restricted representation
𝑅𝑒𝑠𝑆𝑛𝕍𝜆 by evaluating 𝑠𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) only at eigenvalues
of permutation matrices.

For example, if 𝑛 = 3 we can restrict 𝕍(2) with character

𝑠(2)(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥22 + 𝑥2𝑥3 + 𝑥23

to 𝑆3. To get the character, for each conjugacy class of 𝑆3
choose a representative and compute its eigenvalues. The
identity, 𝑒, has eigenvalues 1, 1, 1, a two-cycle has eigenval-
ues 1, 1, −1, and 1, 𝜉, 𝜉2 are the eigenvalues for a three-cycle,
where 𝜉 is a primitive third root of unity. Then evaluate,
𝑠(2)(1, 1, 1) = 6, 𝑠(2)(1, 1, −1) = 2, and 𝑠(2)(1, 𝜉, 𝜉2) = 0.
Thus, again using the character table in Figure 2, the char-
acter of Res𝑆3𝕍(2) is the vector ⟨6, 2, 0⟩ = 2 𝜒(3) + 2 𝜒(2,1).
We can see that 𝑟(2),(3) = 2 and 𝑟(2),(2,1) = 2.

Figure 5. A combinatorial view of the decomposition of 𝑉⊗3

into 𝐺𝐿9 representations by primary colors and then the
restriction of those into 𝑆9 representations by the different
shades of those regions.

A dual approach to restriction. Schur used the diagonal
action of 𝐺𝐿𝑛 on 𝑉⊗𝑘 = (ℂ𝑛)⊗𝑘 and computed its cen-
tralizer in order to study the polynomial representations
of 𝐺𝐿𝑛. As we said above, the commutant or centralizer
in this case is the symmetric group 𝑆𝑘, which can be visu-
alized in terms of diagrams as in Figure 1. Schur’s work
inspired others to use this techniques to study representa-
tions of subgroups 𝐺 of 𝐺𝐿𝑛 using centralizers. For exam-
ple, if 𝐺 is the orthogonal group, the centralizer algebra is
the Brauer algebra. The Temperley–Lieb algebra is a sub-
algebra of the Brauer algebra and itself a centralizer of the
quantum group of type A, 𝑈𝑞(𝔰𝔩2). The study of diagram
algebras, centralizer algebras, and connections with topol-
ogy and physics has become a subfield in combinatorial
representation theory.

A key centralizer algebra in our story arises when𝐺 = 𝑆𝑛
is realized as the subgroup of permutationmatrices in𝐺𝐿𝑛.
Jones [8] and Martin [10] (independently) computed the
centralizer algebra of the diagonal action of 𝑆𝑛. For 𝜎 ∈ 𝑆𝑛,
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the diagonal action is

𝜎 ⋅ (𝑣1 ⊗ 𝑣2 ⊗⋯⊗ 𝑣𝑘) = 𝜎𝑣1 ⊗ 𝜎𝑣2 ⊗⋯⊗ 𝜎𝑣𝑘,
where 𝜎𝑣𝑖 is the product of the permutation matrix 𝜎 with
the column vector 𝑣𝑖. For example, (1, 2) ⋅ 𝑣1 ⊗ 𝑣1 = 𝑣2 ⊗
𝑣2. Notice that this is different from the (right) action of
𝑆𝑘 on 𝑉⊗𝑘 that permutes tensor factors. Under the action
illustrated in Figure 3, (1, 2) would leave 𝑣1⊗𝑣1 invariant.
The algebra consisting of the linear transformations 𝐷 ∶
𝑉⊗𝑘 → 𝑉⊗𝑘 which commutes with this action is known as
the partition algebra, 𝑃𝑘(𝑛).

The partition algebra 𝑃𝑘(𝑛) has a linear basis that is in
bijection with set partitions of the set {1, … , 𝑘} ∪ {1, … , 𝑘}.
These set partitions can be visualized as graphs and hence
are often referred to as partition diagrams. We draw these
graphs by arranging the vertices in two rows: 1, … , 𝑘 ap-
pear from left to right in the top row; and 1, … , 𝑘 from left
to right in the bottom row. The connected components
in the graph correspond to the blocks of the set partition,
therefore many graphs can be used to represents the same
linear transformation in the partition algebra. An example
of a diagram in the partition algebra 𝑃5(𝑛) is given in Figure
6.

.

Figure 6. The partition algebra diagram corresponding to the
set partition {{1, 3}, {2, 1, 2}, {4}, {3, 4, 5, 5}}.

The product in 𝑃𝑘(𝑛) is completely described using dia-
grams. Given two set partitions, 𝑑 and 𝑑′, to compute their
product 𝑑𝑑′, we put the diagramof 𝑑 on top of the diagram
of 𝑑′. We count the number of connected components
that use only middle vertices; call this number 𝑚. Then
𝑑𝑑′ consists of the diagram consisting of the components
containing only top vertices of 𝑑 and bottom vertices of 𝑑′
in the concatenated graph, ignoring middle vertices, and
there is a coefficient of 𝑛𝑚 multiplied by the resulting dia-
gram. As an example consider 𝑑 = {{1, 2}, {1, 2}, {3}, {4, 3, 4}}
and 𝑑′ = {{1}, {2}, {3, 1}, {4, 2, 3, 4}}, then

𝑑𝑑′ = = 𝑛1 .

The partition algebra 𝑃𝑘(𝑛) is the ℂ-span of the partition
diagrams with this concatenation product. The algebra is
associative, has an identity {{1, 1}, {2, 2}, … , {𝑘, 𝑘}} and its di-
mension is the Bell number 𝐵(2𝑘).

When 𝑛 ≥ 2𝑘, the irreducible representations of 𝑃𝑘(𝑛)
are indexed by partitions of 𝑛, (𝑛− |𝜆|, 𝜆1, … , 𝜆ℓ), such that

𝜆1 +⋯+ 𝜆ℓ ≤ 𝑘. Jones [8] described the duality between
representations of the partition algebra, 𝑃𝑘(𝑛), and those
of the symmetric group 𝑆𝑛. He showed that the direct prod-
uct 𝑆𝑛 × 𝑃𝑘(𝑛) acts on 𝑉⊗𝑘 and this representation decom-
poses as follows

𝑉⊗𝑘 ≅⨁𝕊𝜆 ⊗ 𝕃𝜆, (2)

where 𝕃𝜆 is an irreducible representation of 𝑃𝑘(𝑛) and the
sum is over all partitions 𝜆 = (𝑛 − |𝜆|, 𝜆1, … , 𝜆ℓ) such that
𝜆1 + ⋯ + 𝜆ℓ ≤ 𝑘. In [1], the authors studied this duality
and connections to the Kronecker coefficients. In particu-
lar they showed that restricting representations of the par-
tition algebra gives an alternate way to study the Kronecker
coefficients.

In Figure 5 we have taken the decomposition of 𝑉⊗9

into𝐺𝐿9 irreducible representations shown in Figure 4 and
used finer shadings of colors to indicate how Equation (2)
is related to the restriction problem by breaking each of
the components further into 𝑆9 irreducibles.
The character of 𝑉⊗𝑘. The action on 𝑉⊗𝑘 is a polyno-
mial representation of 𝐺𝐿𝑛 × 𝑆𝑘. Its character at an ele-
ment (𝐴, 𝜎) ∈ 𝐺𝐿𝑛 × 𝑆𝑘 is the power symmetric polynomial,
𝑝𝜇(𝑥1, … , 𝑥𝑛) where 𝜇 is a partition representing the sizes
of the cycles of 𝜎 and 𝑥1, … , 𝑥𝑛 are the eigenvalues of 𝐴.

For a positive integer 𝑟, 𝑝𝑟 = 𝑥𝑟1 + … + 𝑥𝑟𝑛 and for a
partition 𝜇 = (𝜇1, … , 𝜇𝑙), 𝑝𝜇 = 𝑝𝜇1𝑝𝜇2 ⋯𝑝𝜇𝑙 .

From the isomorphism in (1) we obtain the following
equation of symmetric polynomials, known as the Frobe-
nius formula,

𝑝𝜇(𝑥1, … , 𝑥𝑛) = ∑
𝜆
𝑠𝜆(𝑥1, … , 𝑥𝑛)𝜒𝜆(𝜎𝜇) (3)

where 𝜒𝜆(𝜎𝜇) is the irreducible character of 𝑆𝑘 evaluated
at an element 𝜎𝜇 with cycle structure 𝜇. The sum runs over
all partitions 𝜆 of 𝑘 with at most 𝑛 parts.

The vector space 𝑉⊗𝑘 is also a representation of 𝑆𝑛 ×
𝑃𝑘(𝑛) and its character at an element (𝜎, 𝑑𝜇) ∈ 𝑆𝑛 × 𝑃𝑘(𝑛)
can be obtained from 𝑝𝜇(𝑥1, … , 𝑥𝑛), where 𝑥1, … , 𝑥𝑛 are the
eigenvalues of the permutation matrix 𝜎. We will not ex-
plicitly define 𝑑𝜇 here, but it is a generalized conjugacy
class representative in 𝑃𝑘(𝑛), for details see [4]. Hence
from the isomorphism in (2) we also have

𝑝𝜇(𝑥1, … , 𝑥𝑛) = ∑
𝜆
𝜒𝜆(𝜎)𝜒𝜆𝑃𝑘(𝑛)(𝑑𝜇), (4)

where 𝜒𝜆𝑃𝑘(𝑛)(𝑑𝜇) are irreducible characters of the partition
algebra. Since the left-hand side of (4) is a symmetric func-
tion, we conjectured that there should be symmetric func-
tions that evaluate the irreducible characters of the sym-
metric group. More precisely, there should exist polyno-
mials ̃𝑠𝜆 such that

𝑝𝜇(𝑥1, … , 𝑥𝑛) = ∑
𝜆

̃𝑠𝜆(𝑥1, … , 𝑥𝑛)𝜒𝜆𝑃𝑘(𝑛)(𝑑𝜇),
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where 𝑥1, … , 𝑥𝑛 are eigenvalues of the permutation matrix
𝜎.
Characters of symmetric groups as symmetric polynomi-
als. The Schur polynomials, {𝑠𝜆 ∣ 𝜆 a partition}, form a
basis for symmetric polynomials with the following prop-
erties:

(A) When we evaluate 𝑠𝜆 at the eigenvalues of 𝐴 ∈ 𝐺𝐿𝑛,
we get characters of irreducible polynomial represen-
tations of 𝐺𝐿𝑛.

(B) When we multiply two Schur polynomials the coeffi-
cients are the same as those which occur when we de-
compose tensor products of irreducible polynomial
representations of 𝐺𝐿𝑛.

In [13], we defined a new basis of symmetric polynomials
{ ̃𝑠𝜆 ∣ 𝜆 a partition} that connects the ideas mentioned in
this article through the following properties:

(1) For any partition 𝜆 and 𝑛 ≥ |𝜆| + 𝜆1, ̃𝑠 evaluates to the
irreducible characters of the symmetric group,

̃𝑠𝜆(𝑥1, … , 𝑥𝑛) = 𝜒(𝑛−|𝜆|,𝜆)(𝜎),

where 𝑥1, … , 𝑥𝑛 are the eigenvalues of the permutation
matrix 𝜎.

(2) Recall 𝑔𝜈𝜆,𝜇 are the reduced Kronecker coefficients
which occur as stable limits of Kronecker coefficients.
Then,

̃𝑠𝜆 ̃𝑠𝜇 = ∑
𝜈
𝑔𝜈𝜆,𝜇 ̃𝑠𝜈.

(3) If 𝑟𝜆,𝜇 are the restriction coefficients when a poly-
nomial representation 𝕍𝜆 of 𝐺𝐿𝑛 is restricted to 𝑆𝑛.
Then,

𝑠𝜆 = ∑
𝜇
𝑟𝜆,𝜇 ̃𝑠𝜇.

Observe that properties (1) and (2) of the polynomials
̃𝑠𝜆 are analogous to properties (A) and (B) of the Schur
polynomials. In addition, property (3) connects these two
bases.

For example, when 𝑛 = 3,

̃𝑠() = 1, ̃𝑠(1) = 𝑥1 + 𝑥2 + 𝑥3 − 1,

and

̃𝑠(1,1) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 − 𝑥1 − 𝑥2 − 𝑥3 + 1.

Asmentioned above, the eigenvalues of the identity matrix
are 1, 1, 1, the permutation matrix of a two-cycle has eigen-
values 1, 1, −1 and the permutation matrix of a three-cycle
has eigenvalues 1, 𝜉, 𝜉2, where 𝜉 is a primitive third root of
unity. The interested reader can evaluate these three poly-
nomials at the three sets of eigenvalues to recover the char-
acter table from Figure 2.

Figure 7. A diagram representing how the mathematical ideas
mentioned in this paper are related.

Conclusion and further reading. To make progress on
open problems related to the combinatorial representa-
tion theory of the symmetric group, we can study represen-
tations of 𝐺𝐿𝑛, diagram algebras, or symmetric functions.

A good resource to learn about the representation the-
ory of the symmetric group is [16]. Chapter 7 in [17] gives
a combinatorial introduction to symmetric functions. For
a nice survey on the representation theory of the partition
algebra see [5]. For details on the properties of the basis
{ ̃𝑠𝜆} see [13,14] and references therein. For progress on the
Kronecker coefficients related to the basis { ̃𝑠𝜆} see [15].
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