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1. Thoughts About John Coates

Barry Mazur
The broad span of John Coates’s mathematical work, in-
cluding his intellectual delights and his talent for inspir-
ing and mentoring generations of mathematicians, was a
gift to all of us. His energy and his generosity of thought,
his appreciation of ideas, and his friendship were evident
from the earliest days that I knew him. In 1969, he came to
Harvard as a Benjamin Peirce Assistant Professor. There, as
he wrote in his memorial to John Tate, the “very cramped
quarters,” its “physical smallness,” and “tiny coffee room
or corridors between the offices” offered him an environ-
ment that made it easy to interact with people. He was
introduced by Tate to aspects of mathematics that would
lead him to the area in which he would make some of his
later great contributions.

As Steve Lichtenbaum recounts (§2), John Coates had
started in the analytic number theoretic terrain of Kurt
Mahler, algebraic approximation, and 𝑝-adic Thue, Roth
and Baker methods, moving to the scheme theoretic ter-
rain of Grothendieck’s Langage des Schémas, before con-
necting with his true passion, the core of algebraic num-
ber theory and the construction of bridges between analysis
and arithmetic: the Birch and Swinnerton-Dyer conjecture,
and Iwasawa theory.
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Figure 1. John Coates.

The Coates–Wiles theo-
rem (1977) is such a bridge
and was a breakthrough
moment in our understand-
ing of the connection be-
tween purely arithmetic
concepts—such as whether
a CM elliptic curve 𝐸 de-
fined over the field of ra-
tional numbers has infin-
itelymany rational points—
and “corresponding” ana-
lytic concepts—such as
whether its L-function
𝐿(𝐸, 𝑠) vanishes at the value
𝑠 = 1. It follows from the
Birch and Swinnerton-Dyer

conjecture that if the first arithmetic event occurs, so does
the second analytic event; this is the Coates–Wiles theorem
(§3).

Iwasawa theory—a companion to the Birch and
Swinnerton-Dyer conjecture—is anchored in the structure
of cyclotomic fields (a subject that Serge Lang had called
“the backbone of number theory”). For any prime 𝑝 (say,
𝑝 > 2) Iwasawa theory starts with that “backbone,” the
𝑝-cyclotomic tower

𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑛 ⊂ ⋯ ⊂ 𝐿 ≔ ∪∞𝑛=1𝐾𝑛

of field extensions where 𝐾𝑛 is the field generated over ℚ
by the 𝑝𝑛-th roots of unity. The Galois group of that 𝑝-
cyclotomic tower (i.e., of the field extension 𝐿/𝐾) has an
easily described topological generator: namely, the auto-

morphism 𝐿 𝛾→ 𝐿 induced by the rule that sends any 𝑝𝑛-
th root of unity 𝜁 to 𝜁1+𝑝. Such a topological generator
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𝛾 plays the role in Iwasawa theory of a fundamental op-
erator: it operates naturally on various arithmetic struc-
tures defined over the base field 𝐾 when such a structure is
“base-changed” to the extension field 𝐿. The operator also
acts, for example, on the projective limit of the 𝑝-primary
parts of the ideal class groups of the rungs 𝐾𝑛 of the 𝑝-
cyclotomic tower—this projective limit producing a finite
dimensional vector space over the field of 𝑝-adic numbers,
with 𝛾 operating as a linear automorphism on it.

Iwasawa had thought of this structure—i.e., an opera-
tor acting on a vector space defined using concepts in one
branch of mathematics as having the (conjectured) prop-
erty that its characteristic polynomial ties in with an ob-
ject in another branch of mathematics—as metaphorically
linked to André Weil’s vision of the Frobenius operator (in
the absolute Galois group of a finite field) acting on (then-
conjectured, now-known) cohomology groups of varieties
over those finite fields with the property that the resulting
characteristic polynomials give the relevant L-functions—
or, going further back,—as metaphorically linked to what
is often referred to as the Hilbert–Polya dream: to express
the Riemann zeta-function as the characteristic series of a
Hermitian operator on some (perhaps: Hilbert) space.

The “main conjecture” of Kenkichi Iwasawa was that
the characteristic polynomial of this operator 𝛾 gives de-
tailed information about relevant classical (and 𝑝-adic) L-
functions. This connection between analytic number the-
ory (L-functions) and arithmetic has resonance with the
classical Dirichlet class number formula.

Iwasawa theory is now sometimes referred to as classical
Iwasawa theory for even more extensive companion theo-
ries are being evolved (e.g., in the context of automorphic
forms and even more recently in derived categories). John
was one of the great contributors to that evolution,

• from his interest in motivic 𝑝-adic 𝐿-functions—thus
studying—as did Ralph Greenberg—the arithmetic of
general algebraic varieties as one ascends the rungs of
a cyclotomic tower,

• to his shaping with collaborators the impressive beau-
tiful noncommutative version of Iwasawa theory—
where the role of a single operator is replaced by a
more general 𝑝-adic Lie group arising from a Galois
representation.

It was thrilling to hear John talk about his ideas about
the Birch and Swinnerton-Dyer conjecture, his vision of
Iwasawa theory, and about his joint work with Andrew
Wiles (§3). I had that opportunity especially when he was
based in Orsay (§4) and I was at the IHES, since the two
of us would jog around the bassin in Bures-sur-Yvette—this
is a reservoir, a catch-basin, for the overflow of water (usu-
ally dry). We would chat as we jogged. He would explain

his latest mathematical thought, we would talk about our
young children, and he would tell me about his other pas-
sion: Japanese and Chinese poetry and illuminating criti-
cal works about them.

What enormous influence he had in the development
of mathematics, and as a teacher; the list of his students
is incredibly impressive, both in terms of the great contri-
butions to mathematics that they made, but also in view
of the range of different interests (albeit within number
theory) that they have. This is truly a gift to all of us.

Barry Mazur

2. Coates at Harvard
(1969–1972)

Stephen Lichtenbaum
John Coates was born and raised on a farm in rural Aus-
tralia. His extraordinary talent was noticed early in his
life, and as a result he gained admittance to the Australian
National University in Canberra. There he was men-
tored by the famous analytic number theorist Kurt Mahler.
Coates wrote several papers directly inspired by his work
with Mahler, and impressed Mahler so much that he ar-
ranged for Coates to study at the prestigious École Nor-
male Supérieure in Paris. Led by Alexander Grothendieck
and Jean-Pierre Serre, Paris had a very good claim to be
the world center of modern abstract mathematics, espe-
cially in algebraic topology and algebraic geometry. But
although he had learned much mathematics at the ANU,
Coates had little background in subjects such as homolog-
ical algebra and the theory of schemes that would be as-
sumed known in Paris seminars. Nonetheless he volun-
teered, along with Olli Jussila, to take notes in a seminar
given by Grothendieck on “Crystals and the de Rham co-
homology of schemes”. These became part of a book enti-
tledDix exposés sur la cohomologie des schémas, with Coates’s
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chapter described as “notes by I. Coates and O. Jussila.” It
was quite remarkable that Coates was able to do this, and
he did not find it a very pleasant experience. In any case, af-
ter a year in Paris, Coates decided that he was in the wrong
place, and so he wrote to J. W. S. Cassels in Cambridge ask-
ing if he could be admitted to graduate study there, and
Cassels gladly assented.

At Cambridge, Coates worked with Alan Baker, who
would soon receive the Fields Medal. Under Baker’s guid-
ance, Coates wrote his doctoral thesis on “The effective
solution of some Diophantine equations.” He and Baker
then wrote a paper together entitled “Integral points on
curves of genus one” which appeared in Inventiones. Carl
Ludwig Siegel had proved that any elliptic curve over a
number field had only finitely many integral points, but
his proof was not effective. Coates and Baker succeeded
in giving a (rather enormous) bound for the size of the
solutions in terms of the coefficients of the curve.

After Coates received his PhD, he left Cambridge to take
up a three-year position as Benjamin Peirce Assistant Pro-
fessor at Harvard. There he came under the influence of
John Tate, and became part of the modern world of ab-
stract mathematics that he had found so difficult to enter
in Paris.

In the nineteenth century, Richard Dedekind had de-
fined a zeta-function 𝜁𝐹(𝑠) for any algebraic number field 𝐹,
which yields the Riemann zeta-function 𝜁(𝑠) when 𝐹 = ℚ.
The Dedekind zeta-function has many of the same proper-
ties as the Riemann zeta-function. For example, it can be
defined by a power series which converges for Re(𝑠) > 1
and then continued to a meromorphic function on the
entire plane which is analytic except for a simple pole at
𝑠 = 1, and satisfies a functional equation relating 𝜁𝐹(𝑠) to
𝜁𝐹(1 − 𝑠). It was known by work of Siegel that 𝜁𝐹(−1) is a
rational number which is nonzero if and only if 𝐹 is totally
real: we have 𝜁ℚ(−1) = −1/12. The zeta-function can also
be defined for varieties over finite fields, where it can be
completely described in terms of cohomology.

It is a very challenging, and so far completely un-
solved, problem to give such a description for Dedekind
zeta-functions, so any relation between Dedekind zeta-
functions and cohomology is extremely interesting. To-
gether with Bryan Birch of Oxford, Tate had made a co-
homological conjecture about the value of 𝜁𝐹(−1), where
𝐹 is a totally real number field. Let 𝒪𝐹 denote the ring of
integers in the number field 𝐹. The Birch–Tate conjecture
(slightly modernized) says that if 𝐹 is a totally real num-
ber field then the absolute value of the rational number
𝜁𝐹(−1) should be equal to |𝐾2(𝒪𝐹)|/𝑤2(𝐹), where 𝐾2(𝒪𝐹)
is a certain group arising fromalgebraic K-theory and𝑤2(𝐹)
is defined to be the number of roots of unity contained
in the compositum of all quadratic extensions of 𝐹. Tate

had shown that |𝐾2(ℤ)| = 2, and it is easy to see that
𝑤2(ℚ) = 24, so the Birch–Tate conjecture is true for 𝐹 = ℚ.

Projective nonsingular curves 𝑋 over finite fields are of-
ten thought of as the geometric analog of rings of integers
in algebraic number fields, and they also have their own
zeta-functions, and in fact it is possible to state the Birch–
Tate conjecture in such a way that it makes sense for this
situation as well. We understand the zeta-functions of va-
rieties over finite fields much better than we do the zeta-
functions of algebraic number fields, and Tate was able to
prove the Birch–Tate conjecture in that case.

Motivated by Tate’s proof, Coates started working on
the Birch–Tate conjecture in the original number field case.
He had been studying the notes which Kenkichi Iwasawa
had sent him for a course Iwasawa had given at the Insti-
tute for Advanced Study on 𝑝-adic L-functions. He then re-
alized that a very natural conjecture describing the 𝑝-adic
L-function as a characteristic polynomial could lead to a
version of the Birch–Tate conjecture where 𝐾2(𝒪𝐹) could
be described in terms of Galois cohomology. As it hap-
pens, I had been working on trying to understand 𝜁𝐹(−1),
and I had attended Iwasawa’s course on 𝑝-adic L-functions
at the Institute. When I wrote to Tate telling him that I had
a conjecture relating 𝜁𝐹(−1) to the orders of étale cohomol-
ogy groups, which are fancy versions of Galois cohomol-
ogy groups, he set to work trying to compare the two con-
jectures and to the work of Coates. Tate then succeeded
in describing 𝐾2(𝒪𝐹) in terms of Galois cohomology, and
so Coates’s work showed that the conjecture on 𝑝-adic L-
functions implied the Birch–Tate conjecture in the number
field case. Tate also suggested that Coates and I ought to
get to know each other, and so I invited Coates to give a
talk at Cornell.

John drove from Harvard to Ithaca, bringing his wife
Julie and his young son David with him. We each had al-
ready submitted a paper on 𝐾2 and 𝑝-adic L-functions to
the Annals, so it was too late to combine them as might
have been desirable, but we realized that our work on
special values of zeta-functions could be extended to L-
functions, and in addition our earlier results could be im-
proved. We then started to work together on these prob-
lems. In order to further this collaboration John invited
me to visit him at Harvard, and I was glad to do so. I also
brought my family, which at that time consisted of a wife
and three small children. When we arrived, John told us
that we should come to his apartment for a dinner which
Julie had prepared for us before going to the hospital to
have her second child. We were stunned.

Our collaboration eventually resulted in a third paper
appearing in the Annals, and in our families becoming
close. A few years later we spent a semester together at the
Institut des Hautes Études in Bures-sur-Yvette, and then we
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saw each other every summer. I was visiting the IHES and
John was living nearby because he had become a professor
at the University of Paris at Orsay. Eventually these sum-
mertime meetings sadly came to an end as John left to go
the Australian National University for one year and then
went on to accept a well-deserved chair at Cambridge.

Stephen
Lichtenbaum

3. Coates at Cambridge
(1975–1978)

Andrew Wiles
Moving to Europe as a graduate student from his native
Australia, and after a year spent in the Grothendieck semi-
nar in Paris, John went to Cambridge to study under Alan
Baker. This was his first brush with elliptic curves and to-
gether they proved a result bounding the size of integral
points on cubic equations. There is a finality to this result
which is very appealing, but already it was clear that the
questions about rational points were much more exciting.
There can be finitely many or there can be infinitely many.
How do you tell which and how do you find them when
they do exist?

After his thesis, John went to the US but returned to
Cambridge in 1975, the same year that I started my the-
sis under his supervision. John only spent two years at
Cambridge on this visit and it was part of a whirlwind
tour which saw him taking permanent positions in Stan-
ford (1972–75), Cambridge (1975–77), Canberra (1977–
78), and Paris (1978–86) within the space of a few years.
Nevertheless it was a very productive and exciting period
in terms of research. A few months after John’s arrival we
started working together on elliptic curves and John would
not leave this beloved topic for the rest of his career. I will
try here to explain the fascination.

Andrew Wiles is Regius Professor of Mathematics at Oxford University. His
email address is wiles@maths.ox.ac.uk.

Figure 2. Left to right: John Coates, Andrew Wiles, Ken Ribet,
Karl Rubin.

For our purposes we can view an elliptic curve (defined
over the rationals) as a cubic equation of the form

𝐸 = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵} ∪ {∞}, 𝐴, 𝐵 ∈ ℤ
with

Δ𝐸 ≔ 4𝐴3 + 27𝐵3 ≠ 0. (1)
The last condition ensures that the cubic is irreducible and
that the curve has genus 1. (If it does not hold then the
curve has genus 0 and the question of rational points had
been settled by the Greeks.) A point at∞ is included with
the curve to make it projective. Surprisingly perhaps, there
is then an abelian group structure on the curve which has
the property that the sum of any three points of the curve
which lie on a line is zero. This holds over any field, for
example over the rationals or over the complex numbers.
In 1922, Mordell proved that over the rationals, this group
(which we denote by 𝐸(ℚ)) is finitely generated. So as a
group,

𝐸(ℚ) ≃ ℤ𝑔 ⊕ 𝑇(𝐸), (2)
where 𝑇(𝐸) is a finite (abelian) group. The big questions
are (i) how dowe find 𝑔 and (ii) how dowe find generators
for the group of points?

The form an answer should probably take had been
given ten years earlier by Birch and Swinnerton-Dyer work-
ing in Cambridge just prior to the time that John was
at Cambridge as a graduate student. It involves the L-
function which we can define as follows. Let 𝑁𝑝 denote
the number of points on 𝐸(𝔽𝑝), in other words the num-
ber of solutions mod 𝑝 of the equation (1) including the
point at∞. Then set 𝑎𝑝 ≔ 1+𝑝−𝑁𝑝 and define an L-series
by

𝐿(𝐸, 𝑠) ≔ ∏
𝑝 ∤∆𝐸

(1 − 𝑎𝑝𝑝−𝑠 + 𝑝1−2𝑠)−1. (3)

Birch and Swinnerton-Dyer found heuristic reasons why

the products ∏𝑝<𝑁
𝑁𝑝

𝑝
should tend to ∞ (as 𝑁 → ∞) if
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and only if 𝐸(ℚ) is infinite, and then formulated the con-
jecture:

Conjecture.

𝐿(𝐸, 1) ≠ 0 ⇔ 𝐸(ℚ) is finite. (4)
Now 𝐿(𝐸, 𝑠) is not absolutely convergent at 𝑠 = 1 so

this does not make any obvious sense. To overcome this
we should also assume that 𝐿(𝐸, 𝑠) has an analytic contin-
uation. The more refined version of their conjecture then
gave the rank 𝑔 as the order of vanishing of 𝐿(𝐸, 𝑠) at 𝑠 = 1,
and moreover a precise formulation of the leading term in-
volved a regulator made from the generators of the group
of points.

Since the work ofMordell, much of the arithmetic study
of elliptic curves had made use of class field theory. The
first step is to use that the complex points of E are given by

𝐸(ℂ) ≃ ℂ/Λ, (5)
whereΛ is a lattice inℂ so isomorphic toℤ⊕ℤ. Then given
any point 𝑃 of 𝐸(ℚ)we can consider the point

1
2
𝑃. This will

be defined over the complex numbers but if we assume
that the 2-torsion points of 𝐸 (i.e., the points 𝑄 satisfying
2𝑄 = 0) are defined over ℚ then

1
2
𝑃 for any 𝑃 ∈ 𝐸(ℚ) will

be defined over a quadratic extension of ℚ. Such exten-
sions are well understood and Mordell could use this to
bound the number of generators. Now, in the nineteenth
century it had been realised that there were some special el-
liptic curves, the ones with complex multiplication, where
all the torsion points are defined over an abelian exten-
sion of an imaginary quadratic field. In the work of Kro-
necker and Weber, later completed by Fueter and Takagi,
all the abelian extensions of an imaginary quadratic field
were constructed explicitly in this way. As an example the
curves 𝑦2 = 𝑥3 + 𝐴𝑥 (for any 𝐴) have complex multiplica-
tion by ℤ[𝑖]. This is because there is an automorphism of
𝐸 given by 𝑥 ↦ −𝑥, 𝑦 ↦ 𝑖𝑦. The theory then gives an ex-
plicit construction of the abelian extensions of ℚ(𝑖) using
the torsion points of the elliptic curve.

The main result of our collaboration was the following,
which we proved in the summer of 1976.

Theorem 1 ([8, Theorem 1]). Suppose that 𝐸 is an elliptic
curve over the rationals with complex multiplication. Then

𝐿(𝐸, 1) ≠ 0 ⇒ 𝐸(ℚ) is finite. (6)
This was the first general result on the Birch and

Swinnerton-Dyer conjecture. The first thing to note is
that the hypothesis of complexmultiplication ensured that
𝐿(𝐸, 𝑠) has an analytic continuation by a theorem of Deur-
ing. This theorem is now known without the hypothesis
of complex multiplication but the reverse direction of (6)
is still unknown.

The approach we took to proving this theorem was the
reverse of the nineteenth-century programme in that we
would use their explicit class field theory to study the el-
liptic curve. Let us assume that we are in the case of
𝑦2 = 𝑥3 +𝐴𝑥 for simplicity. Let 𝐾 = ℚ(𝑖) and pick a prime
that splits in 𝐾, 𝑝 = 𝜋𝜋. Let 𝐸𝜋 = {𝑄 ∈ 𝐸(ℂ) ∶ 𝜋𝑄 = 0}
be the 𝜋-torsion points. Then by the theory of complex
multiplication 𝐸𝜋 is defined over an abelian extension of
𝐾 which we write 𝐾0 = 𝐾(𝐸𝜋). Suppose that 𝑃 is a point of
infinite order in 𝐸(ℚ) and consider the point

1
𝜋
𝑃 ∈ 𝐸(ℂ).

This point lies in an abelian extension of 𝐾0 and as always
class field theory describes such abelian extensions of 𝐾0
in terms of data coming from the field 𝐾0 itself.

Now we need to see how 𝐿(𝐸, 1) is related to all this.
In the case of complex multiplication there is a canonical
period on the elliptic curve denotedΩwhich has the prop-
erty that 𝐿(𝐸, 1)/Ω is rational. It turned out that we could
relate this value to the explicit construction of units in the
ring of integers of the field𝐾(𝐸𝜋). Using this and class field
theory we showed that

𝐿(𝐸, 1)
Ω ≢ 0 mod 𝑝 ⇒ 𝐺𝑎𝑙(𝐾0/𝐾) is unramified. (7)

We suspected that the conclusion was false for most 𝜋 but
we could not prove it. However we realised after a while
that using Iwasawa theory, a similar claim with 𝜋𝑛 would
also be true and in this case we could prove that the exten-
sion would be ramified for sufficiently large 𝑛. So given

the existence of 𝑃 we found that
𝐿(𝐸,1)
Ω

≡ 0 mod 𝑝 for in-
finitely many 𝑝, and hence was zero. This contradicts the
hypothesis, so there was no point 𝑃 of infinite order.

The influence of Iwasawa theory in the proof sketched
above is only apparent at the end, but in fact it moti-
vated the whole approach. John had used the Iwasawa
theory of cyclotomic fields prominently with Lichtenbaum
in his previous work on zeta values and Euler characteris-
tics. From then on it would guide his approach to elliptic
curves.

The idea in Iwasawa theory is to study not just 𝐾0 =
𝐾(𝐸𝜋) but also the whole tower of fields 𝐾∞ = ∪∞𝑛=1𝐾𝑛,
where𝐾𝑛 = 𝐾(𝐸𝜋𝑛+1). Let𝑀𝑛 denote themaximal 𝑝-power
abelian extension of 𝐾𝑛 which is unramified outside the
prime above 𝜋 (𝜋 turns out to be totally ramified in 𝐾𝑛 so
this prime is unique), and set 𝑀∞ = ∪∞𝑛=1𝑀𝑛. Then set

𝑋∞ = 𝐺𝑎𝑙(𝑀∞/𝐾∞). (8)
There is an action of 𝐺𝑎𝑙(𝐾∞/𝐾) on this given by 𝜎 ∶ 𝑥 →
𝜎𝑥𝜎−1. Now 𝐺𝑎𝑙(𝐾∞/𝐾) decomposes as

𝐺𝑎𝑙(𝐾∞/𝐾) ≃ 𝐺𝑎𝑙(𝐾∞/𝐾0) × 𝐺𝑎𝑙(𝐾0/𝐾). (9)
We write Γ = 𝐺𝑎𝑙(𝐾∞/𝐾0) ≃ ℤ𝑝 and Δ = 𝐺𝑎𝑙(𝐾0/𝐾) ≃
(ℤ/(𝑝−1)ℤ). Then we decompose 𝑋∞ into eigenspaces for
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the tame action of Δ
𝑋∞ = ⊕𝑋(𝜒)

∞ , (10)
where 𝜒 ∶ Δ → ℤ∗𝑝 runs through the characters of Δ. Then

each 𝑋(𝜒)
∞ is a Γ-module. Now such Γ-modules can be de-

scribed in a more familiar way as ℤ𝑝[[𝑇]]-modules where
the action of 𝛾 is the same as that of 1 + 𝑇. Using results
on the units in the fields 𝐾𝑛 it can be shown that there is a
homomorphism

𝑋(𝜒)
∞ → ⊕𝑟

𝑖=1ℤ𝑝[[𝑇]]/(𝑓𝑖,𝜒) (11)
with finite kernel and cokernel. We set (𝑓𝜒) = (∏𝑓𝑖,𝜒)
and call this the characteristic power series of 𝑋(𝜒)

∞ . It is an
invariant of the module.

At first encounter, this construction may seem artificial
but it was suggested by Weil (in the cyclotomic case) and
taken up by Iwasawa as an analog of a construction in the
function field case of a module where the characteristic
polynomial was related to the zeta function. So what cor-
responds to the zeta function in our case? This question
is most interesting when 𝜒 = 𝜅0 is the character giving the
action on 𝐸𝜋, i.e., where

𝜅0𝑄 = 𝜁𝑄 for 𝑄 ∈ 𝐸𝜋, 𝜁 ∈ 𝜇𝑝−1 ⊆ ℤ∗𝑝. (12)
(Here 𝜁 ≡ 𝑎 mod 𝑝 for some 𝑎 ∈ ℤ and 𝜁𝑄 = 𝑎𝑄.) Similarly
let 𝑢 = 𝜅(𝛾) ∈ ℤ∗𝑝, where 𝜅 gives the action of Γ on 𝐸𝜋∞ .
In this case the main conjecture (now a theorem due to
Rubin) predicted

(𝑓𝜒(𝑇)) = (𝐺𝜒(𝑇)), (13)
where

𝐺𝜒(𝑢𝑘−1) = Ω1−𝑘
𝑝 𝜇𝑘(1 −

𝜓(𝜋)𝑘
𝑝 )𝐿(𝑘, 𝜓

𝑘
), (14)

where Ω𝑝 ∈ ℂ𝑝 is a 𝑝-adic period, 𝜓 is the Grossencharak-
ter associated to 𝐸, and

𝜇𝑘 = 12(−1)𝑘−1(𝑘 − 1)! (Ω/𝑓)−𝑘,
𝑓 being a generator of the conductor of 𝜓. For our pur-
poses 𝜓 is multiplicative on prime ideals of ℤ[𝑖] and sat-
isfies 𝜓(𝜆) = 𝜆 for some choice of generator 𝜆 in a prime
ideal (𝜆). One checks that 𝐿(𝑠, 𝜓) = 𝐿(𝑠, 𝐸). The function
on the right in (13) is called a 𝑝-adic L-function.

Although we were unable to prove the conjecture, we
proved a related result that constructed the 𝑝-adic L-
function from elliptic units. Let 𝑈𝑛 denote the local units
of the field 𝐾𝑛 at the prime above 𝜋. We considered the el-
liptic units 𝜉𝑛 as a subgroup of 𝑈𝑛 and let 𝜉𝑛 be the 𝑝-adic
closure in 𝑈𝑛. We set

𝑌 (𝜒)
∞ = (lim←−− 𝑈𝑛)(𝜒)/(lim←−− 𝜉𝑛)(𝜒). (15)

Then we proved the following theorem.

Theorem 3 ([9]).

𝑌 (𝜅0)∞ ≃ ℤ𝑝[[𝑇]]/(𝐺𝜅0(𝑇)). (16)

Now 𝑍(𝜒)∞ and 𝑌 (𝜒)
∞ have enough in common that we

could give a slightly different proof of Theorem 1 using
just one prime (see also [3]). But perhaps the more impor-
tant part was the proof which involved attaching a canon-
ical power series to elements of lim←−− 𝑈𝑛 and then applying
logarithmic derivatives. This was motivated by an explicit
reciprocity law of Iwasawa. These power series were stud-
ied and generalised by Coleman and became important in
the study of local fields.

The study of Iwasawa theory and in particular of 𝑝-adic
L-functions of this kindwere themain focus of John’s work
for many years after this. While elliptic curves were always
his main interest he also tried to develop a theory of 𝑝-adic
L-functions for motives (e.g., [2]) and studied particular
cases such as the symmetric square of an elliptic curve (see
[5]).

The study of 𝑝-adic L-functions in the context of el-
liptic curves had already begun with work of Mazur and
Swinnerton-Dyer a few years before this, and 𝑝-adic ver-
sions of the Birch and Swinnerton-Dyer conjecture were
formulated. It was hoped that these might be more
tractable than the original complex version. However, the
most important advances in the following decades were
the work of Gross and Zagier on the analytic side and Koly-
vagin on the algebraic side. This seemed to definitively
move the focus of work on the conjecture to the study of
modular forms, since that was the context of the seminal
work of Gross and Zagier. Surprisingly, no one has been
able to extend Theorem 1 even to the case of abelian sur-
faces with complexmultiplication. On the other hand, the
jury is still out on whether the 𝑝-adic versions are easier or
harder than the original complex ones and whether the
further study of the former will help in the study of the
latter.

Andrew Wiles
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4. Coates in Paris (1978–1986)

Leila Schneps
When John Coates came to Paris in 1978, it was not his
first stay; as mentioned in the previous sections, he had
already spent a year there as a graduate student, attending
the famous SGA seminar of Alexander Grothendieck and
trying to get started on a thesis before renouncing the idea
due to a radical difference in style. Grothendieck speaks of
Coates in his memoirs with a certain mea culpa:

. . . it happened that after a few weeks or months [he]
found that my style didn’t suit [him]. Actually, it seems
to me now that it was a case of a mental block, which
I too quickly interpreted as a sign of unsuitability for
mathematical work. Today I would be much more pru-
dent in making such a prediction. I had no hesitation
in telling [him] about my impression, and advising
[him] not to continue in a career which did not ap-
pear to me to correspond to [his] natural abilities. But
I learned later that I was completely wrong—this young
researcher went on to become well-known thanks to his
work in very difficult subjects at the frontier of algebraic
geometry and number theory.

As was said earlier, Coates left Paris in 1966 for Cambridge
where he completed his PhD with Alan Baker, followed
by stints at Harvard (§2), then Stanford, then Cambridge
again (§3), then Canberra. But in 1978, Georges Poitou
of the École Normale Supérieur (ENS) in Paris organized a
job offer for him at the University of Paris in Orsay. Poitou
was gearing up to become director of the ENS, and with
this aim in mind he wanted to wind down his activities of
directing research, and thought that Coates would be just
the person to fill the ensuing gap in Paris number theory.

Orsay is a small town located very near the IHES where
Grothendieck’s seminar had taken place in the 1960s, and
the university there was and still is one of the most pres-
tigious of the Paris math departments. Poitou’s offer was
interesting enough to make Coates decide once again to
uproot himself. Naturally, the first thing he wanted to
do when he came was to gather a group of graduate stu-
dents to study questions arising from his recent work on
the Birch and Swinnerton-Dyer conjecture withWiles (§3),
centered around 𝑝-adic 𝐿 functions and Iwasawa theory.
To start with, Rod Yager, a student of Coates from Australia,
came to join him in Paris, and Poitou sent him three of his
own students who had completed their third cycle theses

Leila Schneps is director of research at Sorbonne University. Her email address
is leila.schneps@imj-prg.fr.

and were about to embark on their thèse d’état1. In the
spring of 1979, Coates taught a course in Orsay on ellip-
tic curves with complex multiplication, to spread the word
and to recruit more students. After that, he continued to
teach research-level courses on recent work each year, gen-
erally gaining a further new graduate student or two each
time.

The topics that John Coates gave his students mainly
concerned generalizations of the recent results provenwith
Wiles in the case where 𝐸 is an elliptic curve defined over a
quadratic imaginary field 𝐾 with complex multiplication
by the ring of integers 𝒪𝐾 (see §3). The more general sit-
uations he considered in Paris were firstly the case of CM
elliptic curves defined over a finite extension 𝐹 of 𝐾, and
secondly the 2-variable 𝑝-adic 𝐿-functions, first defined by

Katz in the case 𝐹 = 𝐾, interpolating the values 𝐿(𝑘, 𝜓
𝑘+𝑗

)
instead of just 𝐿(𝑘, 𝜓

𝑘
). In each case, he proposed (a) show-

ing that the values to be interpolated were algebraic, (b)
constructing the 𝑝-adic 𝐿-function that interpolated them,
(c) using it to state generalized versions of a number of
conjectures, above all the “main conjecture” first given in
his work with Wiles (see (13) of §3), and then various
consequences of the main conjecture, considered as sep-
arate conjectures in their own right, (d) giving numerical
evidence for the conjectures, and (e) proving any parts
that could be proven directly. He viewed his advisees also
as collaborators in this research program, and distributed
problems among them in a purposeful and coherent way.

In the very first years of his stay in Paris, he worked with
Catherine Goldstein on the case where 𝐸 is defined over a
finite extension 𝐹 of 𝐾, and 𝑝 a prime that splits as 𝑝 = 𝜋𝜋
in 𝐾 ([4]). They constructed the 𝑝-adic 𝐿-function 𝐺𝜋(𝑇)
such that 𝐺𝜋(𝑢𝑠 − 1) interpolates the values 𝐿(𝑘, 𝜓

𝑘
) for

𝑘 ≡ 1 mod 𝑝 − 1 (suitably corrected for algebraicity as
usual), formulated the main conjecture in that situation,
and drew several consequences, for example:

A) if 𝐸(𝐹) contains a point of infinite order then 𝐿(𝑠, 𝜓)
vanishes at 𝑠 = 1,

B) if the subgroup X𝜋 of elements of the Tate–
Shafarevitch group annihilated by a power of 𝜋 con-
tains a nontrivial divisible subgroup (so in particular
is not finite), then 𝐿(𝑠, 𝜓) vanishes at 𝑠 = 1,

C) under certain hypotheses on 𝜋, if 𝐿(𝑠, 𝜓) vanishes at
𝑠 = 1, then either 𝐸(𝐹) contains a point of infinite
order or X𝜋 contains a specific divisible subgroup,
namely a copy of 𝐾𝜋/𝒪𝜋.

1At that time, the French system had two theses following the master’s: the third
cycle thesis that was expected to take about two years and produce a student’s
first original publication, and the thèse d’état that gave confirmed researchers
the right to have students of their own.
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Figure 3. Left to right: John Coates, Kazuya Kato, Sujatha,
Otmar Venjakob, Takako Fukaya.

In Dominique Bernardi, John was delighted to find a
student who was also one of the rare mathematicians in
France at that time who could handle a computer (back
when most students still wrote up their work by hand and
slipped it under their adviser’s door. . . ), and he grouped
Dominique and Catherine together with a visiting for-
mer student of Bryan Birch’s to work on numerical veri-
fications of the conjectures for elliptic curves of the form
𝑦2 = 𝑥3 − 𝐷𝑥 ([1]). A former student of Coates at Stan-
ford, Nicole Arthaud, gave a proof of consequence A) in
the special case where 𝐹 is an abelian extension of 𝐾 and 𝐸
is defined over 𝐾 but has a point of infinite order defined
over 𝐹. A particularly striking contribution was made by
John’s student Bernadette Perrin-Riou, who defined a 𝑝-
adic height on 𝐸(𝐹) and a 𝑝-adic pairing (𝑝-adic versions
of the canonical height and the Néron–Tate pairing), and
under certain hypotheses proved that the zero of 𝐿𝜋(𝑠, 𝐸) at
𝑠 = 1 has multiplicity greater than or equal to the rank of
𝐸(𝐹) over 𝒪𝐾 , and that equality holds if and only if the
𝜋-primary component of the Tate–Shafarevitch group is
finite and the pairing is nondegenerate ([12]). To Pierre
Colmez, John proposed an algebraicity conjecture for

special values of 𝐿-functions associated to Hecke charac-
ters not necessarily the Grossencharakter, in the case of a
CM curve 𝐸 defined over 𝐹 ([10]).

He also had several students working on the 2-variable
𝑝-adic 𝐿-functions first defined by Katz in the case where
𝐸 is defined over 𝐾. Rod Yager constructed an Iwasawa
module associated to the elliptic curve whose character-
istic power series was related to Katz’s power series, stat-
ing and proving a 2-variable analog of Theorem 3 of §3
([16]). Jacques Tilouine proved that if the normalized spe-
cial value of the 2-variable 𝐿-function is ≢ 0 mod 𝑝, then
the rank of the Mordell–Weil group is zero over the maxi-
mal 𝐙2𝑝-extension of 𝐾 ([14]). Later, Coates had me work
together with Pierre Colmez on constructing the 2-variable
𝑝-adic 𝐿-function when 𝐸 is defined over a finite extension
𝐹 of 𝐾 ([11]).

As time passed, Coates’s style in choosing research top-
ics changed. Being constantly in touch with researchers
around the world and up-to-date on all the most recent re-
sults, he began to draw inspiration from interesting ideas
that came his way – a conjecture stated in a lecture, or a
preprint that landed on his desk. When Pierre Colmez
first came to him in 1982 to do a master’s thesis, he
asked him to give a complete proof of Zagier’s part of the
yet-unpublished Gross–Zagier theorem based on a set of
lecture notes he had taken. At the same time, he gave
Bernadette Perrin-Riou the ambitious project of develop-
ing a 𝑝-adic analog of the Gross–Zagier theorem, which
she did successfully in the case of an elliptic curve defined
over the rationals with CM by a quadratic field 𝐾 (under
the condition that the discriminant of 𝐾 is prime to the
conductor 𝑁 of the curve, and that all primes dividing 𝑁
split in 𝐾), giving a striking formula valid for primes 𝑝
where 𝐸 has good ordinary reduction relating the first de-
rivative of the 𝑝-adic L-function of 𝐸 to the 𝑝-adic height
of the Heegner point for 𝐾. As for me, when I arrived in
the fall of 1983—his very last graduate student in Paris, as
it turned out—John immediately handed me a preprint by
Warren Sinnott, a former student of his at Stanford, giv-
ing a new proof of the Ferrero–Washington theorem, and
asked if I could adapt the new argument to find a proof
that the 𝜇-invariant (the infimum of the 𝑝-adic valuations
of the coefficients) of the 𝑝-adic 𝐿-function attached to a
CM curve 𝐸 defined over 𝐾 was equal to zero ([13]). By
that time, research in the whole subject was accelerating
rapidly all over the world, and would lead in a few more
years to the proof of the main conjecture by Karl Rubin
([9]).

Ken Ribet describes John as having a mission “to el-
evate young mathematicians around him—to promote
their work and to invisibly improve it in various ways. He
became an editor of Inventiones very early on in his career
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(in the late 1970s, I think) and would devote hours on end
to rewriting and improving manuscripts that he wanted to
publish but that he thought needed polishing. This was
well before the era of laptops or even word processors;
everything that he did was handwritten with a fountain
pen.” Certainly, John had a real flair for picking out top-
ics that were simultaneously cutting-edge and approach-
able by students, and virtually all of our work ended up as
published articles, to the quality of whose writing up he
devoted particular attention.

When I first met him (in December 1982) to talk about
pursuing my graduate studies in Paris, he was affable and
welcoming, as he was to every student whowanted to work
with him, but he warned me—perhaps from the memory
of his own first unsuccessful experience there—that for for-
eigners, “while Paris was one huge math seminar, there
was no actual campus and no student life, and it was easy
to feel lost.” Of course he was quite right, and of course I
paid no attention—who would have? I came to Paris and
plunged immediately into an intense and exciting period,
filled with a perfect stream of new ideas and research re-
sults, lectures and courses on new papers, and summer
conferences in Luminy in the South of France, where we
would go hiking among the seaside cliffs and climb down
to swim in the turquoise-blue calanques. There was also a
constant, lively flux of short- and long-term visitors such as
Norbert Schappacher, Gudrun Brattström, Peter Schneider,
Leslie Federer, Nelson Stephens, Ralph Greenberg, Dick
Gross, Barry Mazur, Andrew Wiles, Ken Ribet, John Tate,
and many other younger and older researchers who came
to give courses and lectures and sometimes to collaborate
with his students—all people whose daily language spoke
of elliptic curves, complex multiplication, Iwasawa theory,
𝑝-adic 𝐿-functions, Leopoldt transforms, Heegner points,
Selmer groups and so on, while I was still struggling with
French.

When John left Paris in 1986 to return to Cambridge,
our tight-knit group scattered, and those who had not
yet defended a thèse d’état or even completed their third
cycle thesis were compelled to find substitute advisers
(Michel Raynaud, Guy Henniart, and Jean-Marc Fontaine
all stepped up to the plate). But the subject he had started
continued to flower. By launching the arithmetic of ellip-
tic curves and Iwasawa theory in Paris, John Coates left an
unforgettable mark.

Leila Schneps

5. Iwasawa Theory in a
Noncommutative Setting

Mahesh Kakde and Sujatha
5.1. Genesis of noncommutative Iwasawa theory. In the
early 1990s, John Coates started exploring the formulation
of the main conjecture of noncommutative Iwasawa the-
ory. To systematically study the Iwasawa theory of elliptic
curves and 𝑝-descent, it is natural to consider the exten-
sion of a number field obtained by adjoining all 𝑝-power
torsion points of an elliptic curve. The algebraic study of
such extensions was first taken up in the doctoral thesis of
Michael Harris.

In the mid 1990s, John visited Ohio State University,
where Sujatha was doing a postdoc. Their meeting led to
John’s visiting the Tata Institute of Fundamental Research
(TIFR), where he gave some lectures on Iwasawa theory;
following the TIFR tradition, these were subsequently ex-
panded in a TIFR Lecture Series books entitled Galois Co-
homology of Elliptic Curves. The meeting with Sujatha gave
rise to a fruitful collaboration lasting several years.

By the time that Mahesh became a graduate student of
John’s at Cambridge in the early 2000s, he had developed
an interest in the extension of Iwasawa theory to a noncom-
mutative version, in which the main objects connected to
the main conjecture needed to be defined.

For simplicity of exposition, we will only consider an
elliptic curve 𝐸 defined over the rational numbers ℚ. Fur-
thermore, we fix a prime number 𝑝 ≥ 5. Assume that 𝐸
has good ordinary reduction at 𝑝. When 𝐸 has complex
multiplication by an order in an imaginary quadratic field
𝐾, we have already seen that the field generated by all 𝑝-
power torsion points of 𝐸 is an abelian extension of 𝐾. On
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the other hand, in the case when 𝐸 does not have complex
multiplication, a celebrated theorem of Serre says that the
extension of ℚ generated by all 𝑝-power torsion points of
𝐸 is a Galois extension of ℚ with Galois group given by an
open subgroup of 𝐺𝐿2(ℤ𝑝).

Following the work of Venjakob on a good definition
of pseudo-null modules over Auslander regular rings [15],
Coates, Schneider, and Sujatha proved a structure theorem
for finitely generated torsion modules over the Iwasawa al-
gebra of a compact, 𝑝-valued, 𝑝-adic Lie group, much along
the lines of the classical result [7]. However, it is unclear
if this result can be used to define a characteristic element
or even a characteristic ideal.

An important consequence of the main conjecture in
classical Iwasawa theory is the formula for an Euler charac-
teristic in terms of values of 𝑝-adic 𝐿-functions. The study
of Euler characteristics of Selmer groups of elliptic curves
without complexmultiplicationwas undertaken by Coates
with his graduate student Susan Howson. A noncommu-
tative main conjecture would relate the Euler characteris-
tic 𝜒(𝐺, 𝑆𝑒𝑙(𝐸/ℚ)) with special values of the 𝐿-function of
𝐸, which would yield the 𝑝-adic Birch and Swinnerton-
Dyer conjecture. Coates and Sujatha defined this refined
𝐺-Euler characteristic which was used to study the conse-
quences of a noncommutative main conjecture.

The extension ℚ∞ = ℚ(𝐸[𝑝∞]) contains the cyclotomic
ℤ𝑝-extension ℚcyc of ℚ. Set 𝐻 = 𝐺𝑎𝑙(ℚ∞/ℚcyc) and Γ =
𝐺𝑎𝑙(ℚcyc/ℚ) ≃ 𝐺/𝐻. One of the major results of Coates in
the joint work with Schneider and Sujatha [6] is the defini-
tion of the “Akashi series” (named after the Akashi chapter
in The Tale of Genji, a favorite of John’s). Let 𝑀 be a Λ(𝐺)-
module that is finitely generated over Λ(𝐻). It is known
that the homology groups

𝐻𝑖(𝐻,𝑀) (𝑖 ≥ 0)

are finitely generated torsion Λ(Γ)-modules and are 0 for
𝑖 ≫ 0. Let 𝑔𝑖(𝑀) be a characteristic element of 𝐻𝑖(𝐻,𝑀).
The Akashi series for 𝑀 is defined by

𝑓(𝑀) =∏
𝑖≥0

𝑔𝑖(𝑀)(−1)𝑖 .

These insights directly led to the definition of characteristic
elements for an interesting class of modules over Λ(𝐺) in
the habilitation thesis of Venkajob.

Venkajob observed that the right category to work with
is𝔐𝐻(𝐺), the category of finitely generated Λ(𝐺)-modules
𝑋 such that 𝑋/𝑋(𝑝) is a finitely generated Λ(𝐻)-module.
This category was first defined in the paper of Coates–
Schneider–Sujatha.

The 𝔐𝐻(𝐺) conjecture of Coates and Sujatha says that
the Pontryagin dual of the Selmer group of 𝐸 over
ℚ(𝐸[𝑝∞]) is in the category 𝔐𝐻(𝐺).

For simplicity, we make the additional assumption that
𝐺 has no 𝑝-torsion. This ensures that all finitely generated
Λ(𝐺)-modules have a finite projective resolution. Then
we can define a characteristic element for every module in
𝔐𝐻(𝐺). It is an element in a certain 𝐾1-group.

The main conjecture for 𝐸 can now be formulated as
follows: There is a unique element ℒ(𝐸) such that

(i) ℒ(𝐸) is a characteristic element of the Pontryagin dual
of the Selmer group of 𝐸.

(ii) at every Artin representation of 𝐺, the element ℒ(𝐸)
interpolates the value at 𝑠 = 1 of the 𝐿-function of 𝐸
twisted by the representation (appropriately normal-
ized).

The insight of relating noncommutative Iwasawa the-
ory to commutative Iwasawa theory turns out to be useful
in tackling all known cases of the noncommutative main
conjecture. This study was initiated by Kato. Calculations
of 𝐾1-groups imply that a necessary condition for the exis-
tence of a noncommutative 𝑝-adic 𝐿-function is a congru-
ence between commutative 𝑝-adic 𝐿-functions over exten-
sions corresponding to abelian sub-quotients of 𝐺. These
congruences are between 𝑝-adic 𝐿-functions over different
number fields and seem very different from earlier congru-
ences between 𝐿-functions (for example Kummer congru-
ences).

John placed a great deal of faith in these two predictions
coming from noncommutative Iwasawa theory—the con-
gruences between 𝑝-adic 𝐿-functions and the 𝔐𝐻(𝐺) con-
jecture. Both of these remain wide open. What progress is
made on these conjectures and what role they play in the
arithmetic of elliptic curves, only time will tell.

Mahesh Kakde Sujatha
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