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a Skew Brace?
Leandro Vendramin

A skew brace is a fascinating mathematical structure that
involves a pair of compatible groups sharing the same un-
derlying set. The notion of skew braces was inspired by a
class of rings introduced by Jacobson in 1945, which we
will discuss in more detail later. As algebraic structures,
skew braces exhibit similarities to both groups and rings.

What makes skew braces particularly interesting is their
ability to serve as an algebraic framework for exploring
combinatorial solutions to the Yang–Baxter equation. By
delving into the world of skew braces, we can uncover new
insights and approaches to understanding this fundamen-
tal equation.

Let us begin by understanding what we mean by com-
binatorial solutions to the Yang–Baxter equation.

We are interested in pairs (𝑋, 𝑟), where 𝑋 is just a set and
𝑟∶ 𝑋 ×𝑋 → 𝑋 ×𝑋 is a bijective map that satisfies a specific
equation in 𝑋 × 𝑋 × 𝑋 , called the Yang–Baxter equation:

(𝑟 × id)(id ×𝑟)(𝑟 × id) = (id×𝑟)(𝑟 × id)(id ×𝑟).
This equation may look a bit abstract, but there is a nice

way to think about it:

Figure 1. The Yang–Baxter (or braid) equation.
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The arrangements of strings, representing the Yang–
Baxter equation, should be read from top to bottom, with
the crossing symbolizing the application of the map 𝑟 and
the straight line representing the identity mapping. The
picture itself is self-explanatory.

Because of this braiding-like behavior, the equation is
also known as the braid equation.

The identity map on 𝑋 × 𝑋 satisfies the Yang–Baxter
equation. However, without additional assumptions, the
task of finding solutions becomes highly unpredictable.
Therefore, we will focus on solutions that meet specific ex-
tra assumptions. Given the combinatorial nature of the
problem and our intention to utilize group theory, it is
compelling to investigate the following intriguing class of
solutions. We say that a solution (𝑋, 𝑟), where

𝑟(𝑥, 𝑦) = (𝜎𝑥(𝑦), 𝜏𝑦(𝑥)),
is nondegenerate if the maps 𝜎𝑥 ∶ 𝑋 → 𝑋 and 𝜏𝑦 ∶ 𝑋 → 𝑋
are bijective, for all 𝑥, 𝑦 ∈ 𝑋 .

With the nondegeneracy assumption, exploring solu-
tions to the Yang–Baxter equation becomes even more in-
triguing as we can now leverage groups that inherently act
on our solutions. This opens up new avenues for investi-
gation. By incorporating group actions, we gain a richer
understanding of the equation’s behavior and its connec-
tions to various mathematical structures.

We can find many examples of solutions:

(a) If 𝜎∶ 𝑋 → 𝑋 and 𝜏∶ 𝑋 → 𝑋 are commuting bijections,
then 𝑟(𝑥, 𝑦) = (𝜎(𝑦), 𝜏(𝑥)) is a solution. In particular,
the flip map 𝑟(𝑥, 𝑦) = (𝑦, 𝑥) is a solution.

(b) If 𝑋 is a group, then 𝑟(𝑥, 𝑦) = (𝑦, 𝑦−1𝑥𝑦) is a solution.

Definition 1. A skew brace is a triple (𝐴, +, ∘), where (𝐴, +)
and (𝐴, ∘) are (not necessarily abelian) groups and

𝑎 ∘ (𝑏 + 𝑐) = 𝑎 ∘ 𝑏 − 𝑎 + 𝑎 ∘ 𝑐
holds for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. The groups (𝐴, +) and (𝐴, ∘) are re-
spectively the additive and multiplicative group of the skew
brace 𝐴.
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In one of the groups, we embrace the use of additive
notation, even when our group is not necessarily assumed
to be abelian.

Radical rings have their roots in Jacobson’s work. Sub-
sequently, Rump unearthed an algebraic structure encom-
passing Jacobson radical rings as examples and coined the
term braces. This structure proposed by Rump was further
expanded upon in [3], leading to what we currently know
as skew braces.

Many familiar mathematical objects have skew brace
structures. For example, groups trivially produce skew
braces.

Example 2. If 𝐺 is a group, the operations 𝑥+ 𝑦 = 𝑥𝑦 and
𝑥 ∘ 𝑦 = 𝑥𝑦 define a skew brace structure on 𝐺.

Now let us explore Jacobson radical rings. Imagine we
have a ring 𝑅. In this ring, we can define a new operation—
called the Jacobson circle operation—that takes two elements,
let us say 𝑥 and 𝑦, and maps them to

𝑥 ∘ 𝑦 = 𝑥 + 𝑥𝑦 + 𝑦.
What is surprising is that this operation is always associa-
tive with the zero of the ring being its neutral element.
When (𝑅, ∘) is a group, we say that 𝑅 is a radical ring. For
instance, nilpotent rings, such as rings of strictly upper tri-
angular matrices, are Jacobson radical rings.

Example 3. The subset

{ 2𝑥
2𝑦 + 1 ∶ 𝑥, 𝑦 ∈ ℤ}

of the rational numbers is a radical ring with the usual ad-
dition of rational numbers and circle operation

𝑢 ∘ 𝑣 = 𝑢 + 𝑢𝑣 + 𝑣.
Inverses of elements with respect to the circle operation are
given by

( 2𝑥
2𝑦 + 1)

′
= −2𝑥
2(𝑥 + 𝑦) + 1 .

Now, here is the exciting part discovered by Rump: Ja-
cobson radical rings are also examples of skew braces.
When considering a radical ring, the combination of its
addition with the Jacobson circle operation transforms the
ring into a skew brace.

It is time to unveil the fascinating connection between
skew braces and solutions to the Yang–Baxter equation.

Theorem 4. Let 𝐴 be a skew brace. Then (𝐴, 𝑟𝐴), where
𝑟𝐴 ∶ 𝐴 × 𝐴 → 𝐴 × 𝐴,
𝑟𝐴(𝑥, 𝑦) = (−𝑥 + 𝑥 ∘ 𝑦, (−𝑥 + 𝑥 ∘ 𝑦)′ ∘ 𝑥 ∘ 𝑦),

where 𝑧′ denotes the inverse of the element 𝑧 with respect to
the circle operation, is a solution to the Yang–Baxter equation.
Moreover, 𝑟2𝐴 = id𝐴×𝐴 if and only if (𝐴, +) is abelian.

The reader is encouraged to explore the solutions ob-
tained by applying Theorem 4 to the skew braces described
in Examples 2 and 3.

For a solution (𝑋, 𝑟), we define the structure group of
(𝑋, 𝑟) as the group 𝐺(𝑋, 𝑟) with generators 𝑋 and relations

𝑥𝑦 = 𝑢𝑣
whenever 𝑟(𝑥, 𝑦) = (𝑢, 𝑣).

In the upcoming example, we will express permutations
as products of disjoint cycles. For instance, the symbol
(123) denotes the bijectivemapping from {1, 2, 3} to {1, 2, 3},
where 1 is mapped to 2, 2 is mapped to 3, and 3 is mapped
to 1.
Example 5. Let 𝑋 = {1, 2, 3, 4} and

𝑟(𝑥, 𝑦) = (𝜎𝑥(𝑦), 𝜏𝑦(𝑥)),
where

𝜎1 = (12), 𝜎2 = (1324), 𝜎3 = (34), 𝜎4 = (1423),
𝜏1 = (14), 𝜏2 = (1243), 𝜏3 = (23), 𝜏4 = (1342).

Then (𝑋, 𝑟) is a solution. The group 𝐺(𝑋, 𝑟) has generators
𝑥1, 𝑥2, 𝑥3, 𝑥4 and relations

𝑥21 = 𝑥2𝑥4, 𝑥1𝑥3 = 𝑥3𝑥1, 𝑥1𝑥4 = 𝑥4𝑥3,
𝑥2𝑥1 = 𝑥3𝑥2, 𝑥22 = 𝑥24, 𝑥23 = 𝑥4𝑥2.

This group admits the following faithful linear representa-
tion:

𝑥1 ↦ (
0 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

) , 𝑥2 ↦ (
0 0 0 1 0
0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

) ,

𝑥3 ↦ (
1 0 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1

) , 𝑥4 ↦ (
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
0 0 0 0 1

) .

Each matrix’s first principal 4×4 block contains a permuta-
tion matrix. For instance, in the matrix associated with 𝑥1,
the block contains the permutation matrix corresponding
to the permutation 𝜎1.

The linear representation we observed in the previous
example was first found by Etingof, Schedler, and Soloviev
and can be now explained by the theory of skew braces.

Theorem 6. Let (𝑋, 𝑟) be a solution. Then there exists a unique
skew brace structure over 𝐺(𝑋, 𝑟) such that 𝑟𝐺(𝑋,𝑟) satisfies

𝑟𝐺(𝑋,𝑟)(𝜄 × 𝜄) = (𝜄 × 𝜄)𝑟,
where 𝜄∶ 𝑋 → 𝐺(𝑋, 𝑟) is the canonical map. If 𝑟2 = id𝑋×𝑋 ,
then the additive group of 𝐺(𝑋, 𝑟) is abelian and the map 𝜄 is
injective.

The previous theorem reveals a profound connection
between solutions and skew braces. It uncovers a hidden
bridge that connects the world of combinatorial properties
of solutions to the algebraic properties of skew braces and
vice versa.
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Example 7. Let us revisit Example 5. The map from 𝑋 to
ℤ4,

1 ↦
⎛
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎠

, 2 ↦
⎛
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎠

, 3 ↦
⎛
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎠

, 4 ↦
⎛
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎠

,

can be extended to a bijection between 𝐺(𝑋, 𝑟) and ℤ4.
This bijection is a 1-cocycle,1 with the action of 𝐺(𝑋, 𝑟) on
ℤ4 induced by the permutations 𝜎1, 𝜎2, 𝜎3, 𝜎4. The additive
group structure of 𝐺(𝑋, 𝑟) is isomorphic to that of ℤ4.

It is remarkable how seemingly different realms of
mathematics are intertwined, providing us with new op-
portunities to explore the intricate relationship between
combinatorial and algebraic concepts.

Skew braces offer an appealing framework to explore
various mathematical problems that may not initially
seem connected to the solutions of the Yang–Baxter equa-
tion. Examples are the links between skew braces and Lie
theory or Hopf–Galois structures. It is amazing how these
apparently unrelated concepts can come together and in-
spire new insights in mathematics.
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[1] Ferran Cedó, Eric Jespers, and Jan Okniński, Braces
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