
A THEOREM ON POLYNOMIAL IDENTITIES

J. LEVITZKI

1. Introduction. In a recent paper Kaplansky [4]1 has emphasized

the importance of rings which satisfy a polynomial identity (in short:

Pi-rings) and proved a number of interesting theorems concerning

such rings. In the present note some further properties of Pi-rings

are derived. In the following, a Pi-ring is said to be of degree d if d

is the degree of a "minimal equation" (that is, a polynomial identity

of minimal degree). In ascribing the term radial to the sum of all

nilpotent ideals (notation: N(S) = radical of S) we may express our

main result as follows: The nilpotent elements of a Pi-ring2 are of

bounded index modulo the radical. More precisely: The nilpotent

elements of the quotient-ring S/N(S) satisfy the identity x[d/2]=0.

This is proved in §3 (Theorem 1), where also some immediate conse-

quences of this theorem are listed. Extensive use is made of Kaplan-

sky's Lemma 2 [4] which is restated in §2 of the present paper (Lemma

3) in a slightly generalized form.

In §4 we discuss in some detail an application to PI-nil-rings (in

short: NPI-rings). Our result in this section is connected with the

following construction due to Baer [l]: By means of the trans-

finite induction he defines the rth radical N,(S) as follows: (1)

N1(S)=N(S). (2) If r-H-l, then Nr(S) is uniquely determined by

the relations Nr(S)^Nt(S), Nr(S)/Nt(S) = N[S/Nt(S)]. (3) If r is a
limit-ordinal, then Nr(S) = Ut<rNi(S). There exists a smallest ordinal

X such that NX(S) =Nx+1(S). The ideal 7YX(5) will be called the ulti-
mate radical3 of S and denoted by U(S). For this ideal N[S/U(S)]

= 0, and if for an ideal A the relation N(S/A) = 0 holds, then

•42 U(S). Since also the ideal N*(S), defined as the sum of all semi-

nilpotent ideals, has the property N[S/N*(S)]=0 (see [5]), it fol-

lows that N*(S)Q.U(S), that is, the ultimate radical is semi-nilpotent.

A ring T which coincides with its ultimate radical will be called an

Z,-ring. The smallest ordinal X for which N\(T) = N\+i(T) will be

called the length of T (notation: X = X(P) = length of T). It is an

immediate consequence of the definition that each L-ring is semi-

nilpotent, and hence a nil-ring.

Presented to the Society, February 26, 1949; received by the editors January 4,

1949.
1 Numbers in brackets refer to the bibliography at the end of the paper.

s As to the domain of coefficients of the polynomial identities, compare §2.

3 This ideal was termed by Baer the lower radical. For the purpose of the present

note the term ultimate radical seems the more appropriate.
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It has been proved by Kaplansky [4] that an NPI-ring is semi-

nilpotent. In section 4 it is shown that an NPI-ring is an Z-ring.

It should be pointed out in this connection that whereas it is un-

known whether or not nil-rings exist which are not semi-nilpotent, it

can be deduced from an example due to Baer (see [l, §2]) that a semi-

nilpotent ring need not be an Z-ring.4 We further prove that the

length X(S) of an NPI-ring S is finite, and that the degree d(S)

is an upper bound for X(5). More precisely: If 5^0, then X(5)

^log ^(5)/log 2. (If S = 0 then \ = d = 1.) An immediate consequence

of Theorem 1 is: If 5 is an NPI-ring, then the quotient-ring S/N(S)

is of bounded index. Moreover, the identity xlin] = 0 holds in

S/N(S).

2. Preliminary remarks. In the case of algebras the coefficients of

the polynomial identities are chosen from the underlying field. In

order to include this case in our deliberations, we assume that the

coefficients a, ß, y, ■ ■ ■ of our polynomials belong to a domain D of

operators having the following properties:

I. The domain D is a subset of the ring E of endomorphisms of the

additive group defined by the given ring S.

II. For aG/J; Si, s2CS, we have a(sis2) = (asi)s2 = si(as2).

III. If olElD, then either aS = 0 (that is, a is the null-endomor-

phism) or a is an automorphism. In the latter case we assume that

also or1 belongs to D.

IV. The domain contains the endomorphisms 0, +1, and if a£Z>,

then also —

Each ring possesses an operator domain with properties I-IV, for

example, the set of the 3 numbers 0, +1.

A sub-ring A of 5 is called /^-admissible, if for each a we have

Lemma 1. If adS, then Sa, aS, and SaS are D-admissible.

Proof. Fora(Sa) = (aS)aC.Sa;a(aS) = a(otS) CZaS;ct(SaS) = (aS)aS

ClSaS.

Lemma 2. If A is a D-admissible sub-ring of S and Oj^aED, then

<xA =A.

Proof. For we have aA c.4 =a(a~1A)C.aA.

The polynomials which are considered in this paper are elements

of the free algebra E(xi, x2, ■ ■ • , xn) generated (compare [4]) by the

4 This shows incidentally that the ring constructed by Baer furnishes an example

of a nil-ring for which no polynomial identity can be found.
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indeterminates x\, • • • , xn over the ring of endomorphisms E, but

we restrict our attention only to such polynomials whose coefficients

belong to D and whose constant coefficient is 0. If the polynomial

identity

(1) f(xu x2, ■ ■ ■ , xn) = 0

is not linear in one of the indeterminates, say xi, one performs

(see [4, Lemma 2]) the transformation g{u, t, x2, • • • , xn)

=f(u+t, x2, ■ • • , x„)—f(u, Xi, ■ ■ • , xn)—f(t, x2, ■ ■ ■ , xn). One ob-

tains the identity g(u, t, xit • • • , xn) =0 which has a lower degree in

u as well as in / than the degree of (1) in x\. The general degree of g

is not higher than that of/, and if the coefficients of / belong to D,

then this holds also for the coefficients of g. If, finally, an inde-

terminate, say xi, does not appear in at least one monomial with

a nonzero coefficient, and if h(xi, ■ • ■ , xn) is the sum of all such

monomials, then evidently h(xi, • • • , x„) =0 holds in 5. As a conse-

quence of these remarks we have the following lemma.

Lemma 3. // S is a Pi-ring of degree d, then S satisfies a polynomial

identity of the form

(2) /(*!, Xi, ■ ■ ■ , xd) =  £ «(»>*»! ••*äs=0
«> en

where II is a set of permutations (i) of the d numbers 1, 2, • • • , d

and a«) £

3. The main theorem. We assume in this section that the ring 5

has an operator domain D satisfying conditions I-IV of §2 and that

the coefficients of all polynomial identities belong to this domain.

Theorem 1. If S is a Pi-ring of degree d and N(S) the radical of S,

then for each nilpotent element a of S we have

(3) aw £ N(S).

Proof. This is true for a£A7(5). Now suppose that a£A7(5), and

denote by n the index of a modulo N(S), that is,

(4) a" £ N(S), £ N(S).

The theorem will be proved if we show that n < [d/2]. To this end con-

sider the following 2n+l sub-rings of S

(5)
Au^ = a"-'-+1Sai-\     j = 1, 2, • • • , n + 1,

^s,- = a»->+1Sa', j m1, 2, • • • , »,
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and form the products

(6) Bi = Ax-Am ■ ■ ■ Ait    i - 1, 2, • • • , 2» + 1.

It follows that

Bv-t = (a»Sy>-*a>-\   j = 1, 2, •••,»+ 1,

732J- = (a"5)2'a'-, / = 1, 2, • • • , n.

From (5) we deduce that ^4,^4(Cj5an+15 for j>(. Hence if for any

integer r such that r ^2«+l one denotes by (ii, • • • , iT) a permuta-

tion of the integers 1, 2, • • • , r, we have

(8)        AhAh ■ ■ ■ Air C Sa*+lS if (h ■ ■ ■ ir) * (1, • • • , r)

or in other words

(9)
for a* G -4*, * = 1, • • ■ , >" and (iu ■ • ■ , ir)     (1, • ■ • , r).

We turn now to the given polynomial identity which according to

Lemma 3 we may write in the form

(10) ßxix2 ■ • ■ xd = £ ß(i)xfl ■ ■ ■ xa, ß 0,

where the permutations (i) of the set II' are all different from the

identical permutation. Suppose now that [d/2]; then we have

n^(d —1/2) or d^2n+l. Hence we may substitute in (9) the integer

d for r, thus obtaining

(11) ahah • for (4 • • • *<*) ̂ (L • • ■ , d).

Since /3(<)5oB+15C5'an+15 (Lemma 1) we obtain in view of6 (10)

(12) ßaia2 ■ ■ ■ ad G San+1S

or ßAi ■ ■ • Ad=ßBC.San+lS. By formulas (7) we now have

ßBd = pXo-S)2«-1«!«-1 C if <* = 2? - 1,

ßBd = /3(a"^)2«a« Q 5a"+15 if «T= 2j.

Right multiplication of the first relation in (13) by an~'^1SanS, and

' A slight simplification of the argument is possible by operating in the quotient-

ring S/San+1S. We have then zero on the right side of formulas (8), (9), and (11)—(14).

Passage to this quotient-ring is permissible since the ideal San+1S is admissible. This

ensures the survival of the polynomial identity and, in view of postulate III, also of

its degree; each nonzero endomorphism of 5 becomes a nonzero endomorphism of

S/Sa"+1S.
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of the second by an-"S, yields in both cases in view of ß(anS) = anS

(Lemmas 1 and 2)

Now we assumed in (4) that an+1EN(S), which implies that the ideal

San+1S is nilpotent. For some integer t we have therefore (anS)'(2?+1)

= 0, which implies that anCN(S), contradicting (4). We were led

to this contradiction by assuming that »iS 1/2/2]. Hence n< [d/2],

q.e.d.

Consequences. (1) Let 5 denote a Pi-ring of degree d, and T a D-

homomorphic image of 5. If N(T) = 0, then the nilpotent elements of

T are of bounded index. Moreover, these elements satisfy the identity

x[di2)=o Indeed, the polynomial identity satisfied by 5 as well as its

degree are inherited by T, and our assertion is therefore a direct con-

sequence of Theorem 1.

(2) If 5 is the ring of n by n matrices over a commutative or a

noncommutative field F, and if d is the degree of a polynomial

identity satisfied by 5, then nik [d/2]. Indeed, this is a consequence

of N(S)=0 and of the fact that S contains nilpotent elements of

index » —1. This implies Kaplansky's Lemma 5 [4] which he applies

in the proof of his Theorem 1 which states that each Pi-primitive

algebra in the sense of Jacobson [3] is finite-dimensional over its

center. As to the problem raised by Kaplansky concerning an explicit

upper bound for the order of the algebra over its center, our ex-

ponent [d/2] yields a rather sharp estimate. By using Kaplansky's

Lemma 3 [4] we have the following consequence.

(3) If k2 is the order of a simple algebra over its center, and d is the

degree of a polynomial identity, then we have

(4) In case d= 1 the situation is trivial (5 = 0). Also the case d = 2,

which is a slight generalization of the commutative case, yields

nothing new. We have here [<Z/2] = 1, that is, all nilpotent elements

belong to N(S), and if 5 is an algebra of finite order, then S/N(S) is

in view of (3) a direct sum of commutative fields.

(5) In case d = 3 we have [c?/2] = l, that is, again all nilpotent

elements of 5 belong to N(S). It is of interest to note that just as in

the commutative case we have also here the coincidence of all radical-

like ideals which have been hitherto defined by using various types

of nillity. If 5 is an algebra of finite order it follows in view of (3)

that S/N(S) is the direct sum of commutative fields, a fact which

was also mentioned by Kaplansky.

(14) (anS)2"+1 C San+1S.

(15) k2 ^ [d/2]2.
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(6) In case d = i or d = 5 we have [d/2] = 2. If 5 is a division

algebra which satisfies a polynomial identity of degree 4 or 5, it fol-

lows in view of (3) that 5 is either a commutative field or a general-

ized quaternion algebra. This was previously proved by Hall [2,

Theorem 6.2] for the case of a specific polynomial identity of degree

5. Compare also [4].

(7) A direct simple proof of statement (2) may be deduced as fol-

lows: Consider the m2 matrices c,y, i,j=l, satisfying the rela-

tions

10    if jfVf,
CijCjk — \

\Cik    if   J = J .

Put c2,-i = c,-,-, ati = Cn+i and form the product a&z ■ • • ar for each

positive integer r<2n. Suppose that d(S)<2n and write the

polynomial identity in the form (10). By substituting a, for

i = 1, ■ ■ ■ , d, one obtains zero on the right side of (10) and something

not equal to 0 on the left. This contradiction is a consequence of

d<2n. Hence d^2n, q.e.d.

4. Polynomial identities and /.-rings. Also in this section we

assume that all polynomial identities considered have their coeffi-

cients in a domain D as defined in §2.

Theorem 2. If S is an NPI-ring of degree d, and Nr(S) is the rth

radical of S, then the ring S/NT(S) satisfies the identity

(16) = 0.

Proof. For r=l this is an immediate consequence of Theorem 1.

For r>l this follows from /Vr(S)2/Vi(S).

Theorem 3. If S is an NPI-ring and SDO, then also N(S)D0.e

Proof. If d is the degree of S, then for each x<E.S we have by

Theorem 1 the relation xt<i/2IGA7(5). From 5^0 it follows that

d^2. In case 2^<2^3, we have [d/2] = l, that is, xGN(S) or

S = N(S), and the theorem is proved. We consider now the case d ^4

and suppose that N(S) =0. It follows then that the identity xldn] =0

whose degree is smaller than d holds in S, which is a contradiction.

Hence ^(5)^0, q.e.d.

Theorem 4. Each NPI-ring is an L-ring.

Proof. By Theorem 2 the quotient-ring S/N(S) satisfies an iden-

6 This theorem is in some respect a generalization of the fact that for each com-

mutative nil-ring we have N(S) =S.
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tity of the form x" = 0. Since U(S)^DN(S), this identity is satisfied

also in S/U(S). In view of U[S/U(S)]=0 we have also N[S/U(S}]

= 0 and hence it follows by Theorem 3 that S/U(S) =0, or 5= U(S),
q.e.d.

Corollary. Denote by 5 an arbitrary Pi-ring. If U(S) is the ulti-

mate radical and U'(S) is the upper radical (see Baer [l]), then:

(1) U(S) = U'(S) and (2) the quotient-ring S/U(S) has no one-sided

nil-ideals other than zero.

Indeed, since £7(5) is Z?-admissible (see [l]) the polynomial

identity, and in view of postulate III in §2 also its degree are in-

herited by U'(S)/U(S). Since N[U'(S)/U(S)] =0 (compare [l]) it
follows by Theorem 3 that U'(S)/U(S) = 0, or U'(S) = U(S). To

prove the second part of the above statement, suppose that R is a

right (left) nil-ideal in 5. By Theorem 4 it follows that R is an Z,-ring,

and hence semi-nilpotent. We have therefore RC1U*(S), where

U*(S) is the sum of all semi-nilpotent ideals of 5. Since U*(S) C U'(S)

= U(S), we have RQ (7(5), which implies the second part of our state-

ment.

Theorem 5. Let 5 be an NPI-ring of degree da, Nr(S) the rth radical

of 5, and dr the degree of the quotient-ring Sr-=S/Nr(S). Then:

(1) Ifdr>i then dr+1^dr/2.

(2) The ring 5, which by Theorem 4 is an L-ring, has finite length.

(3) 7/X=X(5) denotes the length of S, then

(17) X g log da/log 2 for d0 > 1. If d0 = 1, then X = 1.

Proof. (1) For r = 0 this is an immediate consequence of Theorem

1. Now assume r>0. We know (for example, by Theorem 2) that 5r

satisfies a polynomial identity. If dr is the degree of 5r, then by

Theorem 2 the ring Sr/N(Sr) satisfies the identity

(18) xK/2] = 0.

By definition N(ST) = Nr+1(S) / NT(S) and therefore Sr/N(Sr)

= [S/Nr(S)]/[NT+1(S)/NT(S)]^S/Nr+1(S)=Sr+1. This isomorphism

implies that identity (18) is satisfied by 5r+i. If now dT+i is the degree

of 5r+i, we have therefore dr+i^ [dr/2] Sdr/2, q.e.d.

(2) Suppose that dr> 1 for each finite r; then by (1) we would ob-

tain an infinite sequence di>d2> • • • , a contradiction. Hence there

exists a finite index j so that dj=t. This means that the ring S/Nj(S)

satisfies an identity of degree 1, and hence S/Nj(S) =0, or S = Nj(S).

By the definition of length we have therefore \ Sj, q.e.d.
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(3) If do = 1, then 0 = 5 = iVi(5), or X = 1 in which case (3) is proved.

If do> 1 and X= 1, then (3) is also true. Now suppose that X> 1, then

evidently dr>l for r^X —1 (otherwise we would have 5 = iVr(5) for

some r which is smaller than X, contradicting the definition of length).

This implies in view of (1) that d\^do/2x or 2x^do/d\, that is,

X log 2^log d0 — log d\^\og do, q.e.d.

Corollary. The length of an NPI-ring is smaller than the degree of

the identity. Eguality holds only in the trivial case 5 = 0.
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