
ON THE DECOMPOSITION OF ORTHOGONALITIES
INTO SYMMETRIES

peter scherk

1. Let % be a field of characteristic 2, and let 9?„ denote

the space of all column vectors over 5 with n components. In the

following, Greek letters denote elements of while small italics

[j^m, n, r, s] stand for vectors in 3t„, and w-rowed squared matrices

over % are denoted by capital letters. A prime indicates transposition.

Let G be a fixed regular symmetric matrix. Thus

G = G', \G\*0.

Two vectors a and b are called perpendicular if a'Gb = 0. Two sub-

spaces yt* and 9f** are perpendicular if x'Gy = 0 for all xC9i*, yC9t**-

Obviously, these relations are symmetric. The vectors perpendicular

to a given vector respectively to a given wz-space form an (n — 1)-

space, respectively in — ra)-space.

We call the matrix T orthogonal if it leaves the expression x'Gy un-

changed for all x and y. This condition is equivalent to

(1) T'GT = G.

If in addition

rank (T - I) m 1,

r is called a symmetry (cf. Lemma 2; 7 = unit matrix).

Cartan proved that every orthogonality can be decomposed into a

product of n or less than n symmetries. A proof of his theorem can be

found in Dieudonne's book.1

The purpose of this note is to show that the minimum number of

symmetries into which an orthogonality T can be decomposed is in

general equal to

m = rank (T - I).

An exception occurs if and only if G{T — I) is skew-symmetric. In

that case, this minimum number is equal to w-f-2. For a detailed

description of this case cf. the last part of this note.

2. Lemma 1. The following three sets of properties of a matrix A are

equivalent:
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(a) rank (A-I) = l, A2 = I;

(b) 1 is an (n-l)-fold, —la simple eigenvalue of A;

(c) There are two vectors a and b suck that

(2) A = 1+ ab'

and

(3) b'a = - 2.

Proof. Obviously

rank (A - I) = I

(4) f is an (n — l)-fold eigenvalue of A
X

(2) holds for suitable a ^ 0, b ^ 0.

(a) —>(b): The first part of (b) implies that A has exactly one other

eigenvalue a, and this eigenvalue is simple. From Ax=ax it follows

by means of (a) that

x = Ix = A2x = A ■ ax = a-Ax = a2x.

Since X5*0 and a 5^1, a= —1.

(b) —>(c): From our assumptions, there exists an xr^O so that

0 = (A + I)x = (27 + ab')x = 2x + b'xa.

Thus a and x are linearly dependent. We may choose x = a and

obtain (2+6'a)a = 0 and therefore (3).

(c) ->(a): From (3)

,42 = (7 + ab') (I + aö') = I + 2aö' + a(6'a)p' = 7 + 2aö' - 2ao'= I.

We call the vector a isotropic if a'Ga=0.

Lemma 2. The following three sets of properties of a matrix A are

equivalent:

(a) A is orthogonal, rank (A — I) = 1;

(b) There exists a non-isotropic vector a such that

laa'G
(5) A = I- -— ;

aGa

(c) A maps some non-isotropic vector a on —a and every vector per-

pendicular to a on itself.

Proof. We first observe that (5) is equivalent to the combined

three statements (2), (3), and
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(6) Ga and b are linearly dependent.

(a)—»(b): By means of (4) we obtain (2). Thus, A being orthogonal,

we have

0 = A'GA - G = (I + ba')G{I + ab') - G

or

(7) 0 = b ■ a'G{I + ab') + Ga ■ V.

This formula implies (6). Substituting Ga=\b into (7), we obtain

0 = \bb'(I + ab') + \bb' = 2Mb' + \b(b'a)b'

hence

X(2 + b'a)-bb' =:.0.

G being regular, X^O. Thus (3) is also satisfied.

(c)—+(b): The assumptions (b) of Lemma 1 hold. This implies (2)

and (3). From (2), Ax=x is equivalent to b'x = 0, and from our as-

sumptions, it is also equivalent to a'Gx—0. Thus (6) also holds.

Obviously, (a) and (c) follow from (b).

We had denned symmetries as matrices possessing the properties

(a). Thus Lemma 2 gives us two alternate definitions. From Lemma 1,

we obtain the following

Corollary. If A is a symmetry, then

(8) A1 = /.

Lemma 3.

(9) rank {AB - I) g rank (A - I) + rank (B - I).

Proof. Put

r = rank (A — I),      s = rank (B — I).

The vectors x with Ax =x, respectively Bx=x, form an (w — r)-space,

respectively (n— s)-space. If x lies in the intersection of these two

subspaces, then ABx=Ax = x. Thus this intersection lies in the eigen-

space of AB belonging to the eigenvalue 1. The dimension of this

eigenspace is therefore greater than or equal to that of this inter-

section. Hence it is greater than or equal to n— r — s. This implies (9).

If we apply (9) repeatedly to a product T of m symmetries, we get

rank (T - I) ^ m.

Thus we obtain the following
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Corollary. An orthogonality T cannot be the product of less than

rank (T—I) symmetries.

3. Lemma 4. Let

(10) rank S > 1,

(11) 5 + S' 0.

Then, there exists a vector b such that

(12) b'Sb 0

and

(13) S + S' (Sb■ b'S + S'b■ b'S').
b'Sb

Proof. We have

(14) x'(S + S')x = x'Sx + x'S'x = x'Sx + (x'Sx)' = 2x'Sx.

Thus, on account of (11), there are vectors b satisfying (12). We may

assume that at least one vector öi exists that is a solution of both (12)

and

(15) S + S' = —(Sb-b'S + S'bb'S').
b'Sb

Put

(16) c = Sbu      d = S'h,      a = b{Sh.

Then from (12)

(17) c^O,      d?*0,      a = b{c = bid 9* 0,

and from (15)

1
(18) S + S' = — (cd' + de').

a

Thus, (14) and (18) imply

1 1
x'Sx = — x'iS + S')x = — c'xd'x.

2 a

In particular, the quadric

O =- x'Sx = 0

is identical with the pair of [not necessarily different] (w —l)-spaces
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c'x=0 and d'x = 0.

Now let b be any solution of both (12) and (15). Then Sb and S'b are

different from zero, and comparing (15) with (18), we see that either

Sb is a multiple of c and S'b is one of d, or Sb is a multiple of d, while

S'b is one of c.

We first consider the case that a solution 62 of (12) and (15) exists

such that Sb2 is not a multiple of c. Then S62 is a multiple of d, and

the vectors c and d are linearly independent. Replacing ö2 by a suit-

able multiple, we may assume

(19) Sb2 = d,     S% = ßc,      ß^ 0.

Substituting b = b2 into (15), we obtain

ß
S + S' =-(de' + cd'),

b{Sb2

and therefore, on account of (18),

62'S62 = aß.

Thus (19) implies

(20) bid = aß,      b2c = a.

The vectors

S(h + b2) = c + d

are multiples neither of c nor of d [cf. (16) and (19)]. Hence the two

vectors bi + b2 cannot solve the system (12), (15). Now, from (16),

(17), (19), (20)

(h + b2)'S(h + 62) - (0l - b2)'S(h - b2)

= 2(b{Sb2 + biSh) = 2(6/ d + 62'c) = 2(a + a) = 4a ^ 0.

Hence, at least one of the two vectors 6i + 62 satisfies (12). As it can-

not satisfy (15), it is a solution of both (12) and (13).

Suppose now that every solution b of (12) and (15) is mapped by

S on a multiple of c. The set of all vectors x for which Sx is a multiple

of c form a subspace 9tc of $Jt„. From (10), die is a proper subspace of

9t„. Hence its dimension is not greater than « — 1. It suffices to show

that there are vectors in 9in that belong neither to 9?c nor to the

quadric Q.

We had 6i C3£c — O- Since O was a pair of (n — l)-spaces, there exists

a vector 62CQ —9?c- Thus, the straight line

(21) 6 = (1 - X)6i + X62



486 peter scherk [August

lies neither in 9tc nor in Q. Hence it has exactly one point in common

with 9tc and at most two points with the pair Q of (re —l)-spaces.

Altogether, the straight line (21) meets the union 5RC+>Q in not more

than three points. If is not the prime field 5j3 of three elements, this

line contains more than three points. In particular, it contains points

outside of $»„+0.

If 55 = 53, then an (re — l)-space contains 3n_1 points. Since 9?c has a

dimension not greater than re —1 and since $Jfc and Q have the origin

in common, the set 3Jc+0 contains less than 3.3n~l points, thus

fewer points than the whole 9J„. Hence, there are points outside of

9?c + 0.2

Lemma 5. Suppose Tis orthogonal, G(T—T) is not skew-symmetric,

and

m = rank (T — I) > 1.

Then there exists an orthogonality U such that

(a) T is the product of U by a symmetry,

(b) rank (U-I)=m-\,

(c) G(U—I) is not skew-symmetric.

Proof. Put

To = T — I,     S = GT0.

We rewrite the orthogonality definition (1) in terms of To and S:

T'GT - G = (To + I)'G(To + /) - G = 0

or

(22) TlGTo + S + S' = 0.

G being regular, we have

rank S = rank To = ret > 1.

Thus S satisfies the assumptions of Lemma 4, and there is a vector b

such that

(23) b'Sb 0

and

! The proof of Lemma 4 can be simplified considerably if the case 3 = 5i is ex-

cluded. If 3 is the real field, this lemma is trivial. The matrix Sb ■ b'S+S'b ■ b'S,

—b'Sb(S+S') depends continuously on b. If it vanishes outside of the quadric

O identically, then it will also vanish on O. Hence Sb b'S+S'b-b'S' =0 for all bQ O.

Therefore, O would be contained in the pair of at most («—2)-dimensional subspaces

56 = 0 and S'b =0, which is impossible.
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1
(24) 5 + S' 9*-(Sb • b'S + S'b■ b'S').

b'Sb

Let 9t„_m be the eigenspace belonging to the eigenvalue 1 of T.

From the regularity of G and of T=T0+I

(25) x C9t—«-* T0x = 0<-ySx = 0<->S'x = 0 [cf. (22)].

In particular, from (23),

(26) b Ct 9f„_m.

Define

(27) a = T^.

Then, from (25),

(28) a'Gx = b'S'x = 0 for all x C fön-™.

Furthermore, (27), (22), and (14) yield

a'Ga = b'TiGTob = - b'(S + S')b = - Ib'Sb.

Thus, from (27) and (23)

(29) a'Ga = - Ib'Sb = - Ib'Ga * 0.

We now put

laa'G
(30) A = I-,      U = AT.

a'Ga

Thus, A is a symmetrv [cf. Lemma 2]; and with A and T, U is an

orthogonality. From (8)

T = A2T = AU.

We now verify that U also has the required properties (b) and (c).

If xC9fn-m, then on account of (28)

la'Gx
Ux — ATx — Ax = x-a = x.

a'Ga

Furthermore, we obtain from (30), (27), and (29)

/        2aa'G\ la'Gb
(T - A)b = ( To -\-H = H-a = a - a = 0,

\        a'Ga / a'Ga

hence

Ub = ATb = A2b = b.
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Thus the eigenspace of U belonging to the eigenvalue 1 contains

both dtn-m and b. As ouZ9t„_m [cf. (26)], its dimension is not less than

n — m + 1, that is,

rank (U - I) g m - 1.

Thus our assertion (b) follows by applying Lemma 3 to T = AU.

It remains to be shown that G{U—I) is not skew-symmetric. We

have

/ 2aa'G\
U - T = AT - I = [I-) (r0 + I) - I

\       a'Ga /

T0bb'ToG(To + I) T0bb'S
= T0 - 2-= To-

-2b'Sb b'Sb

[cf. (27), (29), and (22)]. Thus

Sbb'S
G(U - I) = S-,

b'Sb

and (c) follows from (24).

Theorem 1. Suppose T is orthogonal and G'T—I) is not skew-sym-

metric. Then T can be written as a product of m = rank (T — I) sym-

metries, but not of less than m.

Proof. For m = 0 and m = 1 our statement is trivial [cf. Lemma 2 ].

Suppose it is proved up to m — 1 2:1. From the corollary of Lemma 3,

T cannot be a product of fewer than m symmetries. Thus, our

theorem follows from Lemma 5 and our induction assumption.

4. From now on we assume not only that T is orthogonal but also

that G(T—I) is skew-symmetric. Put T0=T — I, m=rank To. Being

the rank of the skew-symmetric matrix GT0, m is even. As the case

m = 0 is trivial, we may assume w = 2.

From our assumptions

(31) GTo + TiG = 0.

Hence

T'GT -G= (T0' + I)G(T0 + I) - G = T£GT0 + GTQ + TiG = 0

implies

(32) TiGTo = 0.

We obtain from (31) and (32) GTo2+TB'GT0 = GTo2 = 0. Since G is
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regular, it follows that

(33) To = 0.

Our definition of m implies that T0 maps the whole space 3t„ on

an w-space 3tm, and the set of the vectors x with Tox=0 forms an

(n — m)-space Sn\,-m- From (33)

(34) <Rm C 8k_.

therefore

» - m  or  m Sa «/2.

If xC9Jm, yC$Rn-m, then x = T0z for some z, and TBy = 0. From (31)

z'Gy = z'TiGy = ~ z'GToy = 0.

So, the two spaces SRm and Sftn-m are perpendicular. Since the vectors

perpendicular to 3J„_m form an »w-space containing 9im, this m-space

is equal to $Rm. Hence, a vector is perpendicular to $RB-i» if and only if

it lies in $Rm. We obtain from (34) that $Rm is perpendicular to itself.

In particular, every vector in 3Jm is isotropic.

Let

laa'G
(35) A = I - —

be an arbitrary symmetry. Thus a may be any non-isotropic vector.

Since it cannot lie in dtm, it is not perpendicular to 9t„-m, and the

(« — l)-space 9?n-i perpendicular to a does not contain 9t„_m. The

intersection

(36) 9J„_m_l = SRn-l'SRn-m

of these two spaces is therefore an (n — m — l)-space.

Let U=AT. We first show that 9J„_m_i is the eigenspace of U be-

longing to the eigenvalue 1. This implies in particular that

(37) rank (U - I) = m + 1.

If xCdtn-m-u then from (36) and (35) Ux=ATx = Ax = x.

Conversely, suppose  Ux = x. Then Tx = AiTx=AUx = Ax and

hence

2a'Gx
(38) r0*= (r-/)* = (4 -/)*==<*,

a Go
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From (38) and (32)

'2a'Gx\2/2a'Gx\2
s'TIGTox = (-) a'Ga = 0.

\ a'Ga )

Since a'Ga^O, this implies a'Gx=0 or xCSRn-i- Going back to (38),

we obtain Tax =0 or xCSRn-m- Thus xC9?«_m_i. This proves the above

statement.

Since m is even,

rank G(U - I) = rank (U - I) = m + 1

is odd. Hence, G(U—I) cannot be skew-symmetric.

From Theorem 1, U is a product of m + l symmetries. Hence

T = AU can be written as a product of m+2 symmetries. Suppose

we have expressed T as a product of k symmetries. Then we may put

T = AU where 1 is a symmetry (35) and U is the product of k — 1

symmetries. Since U=AT, we arrive again at (37). From the corol-

lary to Lemma 3,

ü-Ut»+l,   that is,   k^m + 2.

So we have the following theorem.

Theorem 2. Suppose T is orthogonal and G(T—I) is skew-sym-

metric. Let

m = rank (T — 7).

Then

(39) m = 0 (mod 2)   and   m ^ «/2,

awd F cow be decomposed into a product of wi + 2 öwi wo/ /ewer than

w + 2 symmetries.

In order to find these transformations Tt^I, we choose a basis

whose wi>0 first vectors span 9?m. If m<n/2, the next n — 2m vectors

of this basis shall lie in 9tn-m- Since

xfGy = y'Gx = 0 for all * C 9tm, y C 91«-«.,

G has in these coordinates the form

1 0    0 G{

(40) G =    0   G2 *

,Gi    * *

Here Gi and G2 are regular square matrices; Gi is w-rowed, G2 is

» /0   Gi'\ n
if m < — )G = l ) if w = —

2 \Gx    */ 2
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(re — 2w)-rowed and symmetric. We have

T0x C 9tm for all x C 9tn and T0y = 0 for all y C

Hence

<0

-C Tl)
\0 0/

where Fi is an m-rowed squared matrix. Its regularity follows from

rank TQ = m. We obtain

GTt -C ")■
Thus (32) and (33) are satisfied. Finally, GT0 is skew-symmetric if

and only if the same holds true of G\Ti. This leads to the following

construction:

Choose » = 4 arbitrarily, m>0 according to (39) and then Gaccord-

ing to (40). Then

cr1^/0   d T2\

-C    o )
where T2 may be any m-rowed regular skew-symmetric matrix.

If we take, for example, » = 4, m = 2,

we may put

G =

0 0

0 0

1 0

0 1

01

1

0 0

0 0

and   Fn =

0 0 0 1

0 0-10

0 0 0 0

0 0 0 0

University of Saskatchewan

3 Professor Coxeter has made the following comment on the last example: "A

space with two space-like and two time-like dimensions admits a transformation

leaving a whole plane invariant although it is not merely a rotation. The explanation

is, of course, that this invariant plane is isotropic."


