ON THE DECOMPOSITION OF ORTHOGONALITIES INTO SYMMETRIES

PETER SCHERK

1. Let \mathfrak{F} be a field of characteristic $\neq 2$, and let \Re_{n} denote the space of all column vectors over \mathfrak{F} with n components. In the following, Greek letters denote elements of \mathfrak{F}, while small italics [$\neq m, n, r, s$] stand for vectors in \Re_{n}, and n-rowed squared matrices over \mathfrak{F} are denoted by capital letters. A prime indicates transposition.

Let G be a fixed regular symmetric matrix. Thus

$$
G=G^{\prime}, \quad|G| \neq 0 .
$$

Two vectors a and b are called perpendicular if $a^{\prime} G b=0$. Two subspaces \Re^{*} and $\Re^{* *}$ are perpendicular if $x^{\prime} G y=0$ for all $x \subset \Re^{*}, y \subset \Re^{* *}$. Obviously, these relations are symmetric. The vectors perpendicular to a given vector respectively to a given m-space form an ($n-1$)space, respectively ($n-m$)-space.

We call the matrix T orthogonal if it leaves the expression $x^{\prime} G y$ unchanged for all x and y. This condition is equivalent to

$$
\begin{equation*}
T^{\prime} G T=G . \tag{1}
\end{equation*}
$$

If in addition

$$
\operatorname{rank}(T-I)=1,
$$

T is called a symmetry (cf. Lemma $2 ; I=$ unit matrix).
Cartan proved that every orthogonality can be decomposed into a product of n or less than n symmetries. A proof of his theorem can be found in Dieudonné's book. ${ }^{1}$

The purpose of this note is to show that the minimum number of symmetries into which an orthogonality T can be decomposed is in general equal to

$$
m=\operatorname{rank}(T-I) .
$$

An exception occurs if and only if $G(T-I)$ is skew-symmetric. In that case, this minimum number is equal to $m+2$. For a detailed description of this case cf. the last part of this note.
2. Lemma 1. The following three sets of properties of a matrix A are equivalent:

[^0](a) $\operatorname{rank}(A-I)=1, A^{2}=I$;
(b) 1 is an ($n-1$)-fold, -1 a simple eigenvalue of A;
(c) There are two vectors a and b such that
\[

$$
\begin{equation*}
A=I+a b^{\prime} \tag{2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
b^{\prime} a=-2 \tag{3}
\end{equation*}
$$

Proof. Obviously

$$
\begin{align*}
& \operatorname{rank}(A-I)=1 \tag{4}\\
& \hat{f} \text { is an }(n-1) \text {-fold eigenvalue of } A \\
& \uparrow \\
& (2) \text { holds for suitable } a \neq 0, b \neq 0 .
\end{align*}
$$

(a) \rightarrow (b): The first part of (b) implies that A has exactly one other eigenvalue α, and this eigenvalue is simple. From $A x=\alpha x$ it follows by means of (a) that

$$
x=I x=A^{2} x=A \cdot \alpha x=\alpha \cdot A x=\alpha^{2} x
$$

Since $x \neq 0$ and $\alpha \neq 1, \alpha=-1$.
(b) \rightarrow (c): From our assumptions, there exists an $x \neq 0$ so that

$$
0=(A+I) x=\left(2 I+a b^{\prime}\right) x=2 x+b^{\prime} x \cdot a
$$

Thus a and x are linearly dependent. We may choose $x=a$ and obtain ($\left.2+b^{\prime} a\right) a=0$ and therefore (3).
(c) \rightarrow (a): From (3)
$A^{2}=\left(I+a b^{\prime}\right)\left(I+a b^{\prime}\right)=I+2 a b^{\prime}+a\left(b^{\prime} a\right) b^{\prime}=I+2 a b^{\prime}-2 a b^{\prime}=I$.
We call the vector a isotropic if $a^{\prime} G a=0$.
Lemma 2. The following three sets of properties of a matrix A are equivalent:
(a) A is orthogonal, rank $(A-I)=1$;
(b) There exists a non-isotropic vector a such that

$$
\begin{equation*}
A=I-\frac{2 a a^{\prime} G}{a^{\prime} G a} \tag{5}
\end{equation*}
$$

(c) A maps some non-isotropic vector a on -a and every vector perpendicular to a on itself.

Proof. We first observe that (5) is equivalent to the combined three statements (2), (3), and
(a) \rightarrow (b) : By means of (4) we obtain (2). Thus, A being orthogonal, we have

$$
0=A^{\prime} G A-G=\left(I+b a^{\prime}\right) G\left(I+a b^{\prime}\right)-G
$$

or

$$
\begin{equation*}
0=b \cdot a^{\prime} G\left(I+a b^{\prime}\right)+G a \cdot b^{\prime} . \tag{7}
\end{equation*}
$$

This formula implies (6). Substituting $G a=\lambda b$ into (7), we obtain

$$
0=\lambda b b^{\prime}\left(I+a b^{\prime}\right)+\lambda b b^{\prime}=2 \lambda b b^{\prime}+\lambda b\left(b^{\prime} a\right) b^{\prime}
$$

hence

$$
\lambda\left(2+b^{\prime} a\right) \cdot b b^{\prime}={ }^{\mathrm{r}} 0 .
$$

G being regular, $\lambda \neq 0$. Thus (3) is also satisfied.
(c) \rightarrow (b): The assumptions (b) of Lemma 1 hold. This implies (2) and (3). From (2), $A x=x$ is equivalent to $b^{\prime} x=0$, and from our assumptions, it is also equivalent to $a^{\prime} G x=0$. Thus (6) also holds.

Obviously, (a) and (c) follow from (b).
We had defined symmetries as matrices possessing the properties (a). Thus Lemma 2 gives us two alternate definitions. From Lemma 1, we obtain the following

Corollary. If A is a symmetry, then

$$
\begin{equation*}
A^{2}=I \tag{8}
\end{equation*}
$$

Lemma 3.

$$
\begin{equation*}
\operatorname{rank}(A B-I) \leqq \operatorname{rank}(A-I)+\operatorname{rank}(B-I) \tag{9}
\end{equation*}
$$

Proof. Put

$$
r=\operatorname{rank}(A-I), \quad s=\operatorname{rank}(B-I)
$$

The vectors x with $A x=x$, respectively $B x=x$, form an ($n-r$)-space, respectively $(n-s)$-space. If x lies in the intersection of these two subspaces, then $A B x=A x=x$. Thus this intersection lies in the eigenspace of $A B$ belonging to the eigenvalue 1 . The dimension of this eigenspace is therefore greater than or equal to that of this intersection. Hence it is greater than or equal to $n-r-s$. This implies (9).

If we apply (9) repeatedly to a product T of m symmetries, we get

$$
\operatorname{rank}(T-I) \leqq m
$$

Thus we obtain the following

Corollary. An orthogonality T cannot be the product of less than rank ($T-I$) symmetries.
3. Lemma 4. Let

$$
\begin{align*}
& \operatorname{rank} S>1 \tag{10}\\
& S+S^{\prime} \neq 0 \tag{11}
\end{align*}
$$

Then, there exists a vector b such that

$$
\begin{equation*}
b^{\prime} S b \neq 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
S+S^{\prime} \neq \frac{1}{b^{\prime} S b}\left(S b \cdot b^{\prime} S+S^{\prime} b \cdot b^{\prime} S^{\prime}\right) \tag{13}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
x^{\prime}\left(S+S^{\prime}\right) x=x^{\prime} S x+x^{\prime} S^{\prime} x=x^{\prime} S x+\left(x^{\prime} S x\right)^{\prime}=2 x^{\prime} S x . \tag{14}
\end{equation*}
$$

Thus, on account of (11), there are vectors b satisfying (12). We may assume that at least one vector b_{1} exists that is a solution of both (12) and

$$
\begin{equation*}
S+S^{\prime}=\frac{1}{b^{\prime} S b}\left(S b \cdot b^{\prime} S+S^{\prime} b \cdot b^{\prime} S^{\prime}\right) \tag{15}
\end{equation*}
$$

Put

$$
\begin{equation*}
c=S b_{1}, \quad d=S^{\prime} b_{1}, \quad \alpha=b_{1}^{\prime} S b_{1} \tag{16}
\end{equation*}
$$

Then from (12)

$$
\begin{equation*}
c \neq 0, \quad d \neq 0, \quad \alpha=b_{1}^{\prime} c=b_{1}^{\prime} d \neq 0 \tag{17}
\end{equation*}
$$

and from (15)

$$
\begin{equation*}
S+S^{\prime}=\frac{1}{\alpha}\left(c d^{\prime}+d c^{\prime}\right) \tag{18}
\end{equation*}
$$

Thus, (14) and (18) imply

$$
x^{\prime} S x=\frac{1}{2} x^{\prime}\left(S+S^{\prime}\right) x=\frac{1}{\alpha} c^{\prime} x \cdot d^{\prime} x
$$

In particular, the quadric

$$
\mathfrak{Q} \equiv x^{\prime} S x=0
$$

is identical with the pair of [not necessarily different] ($n-1$)-spaces
$c^{\prime} x=0$ and $d^{\prime} x=0$.
Now let b be any solution of both (12) and (15). Then $S b$ and $S^{\prime} b$ are different from zero, and comparing (15) with (18), we see that either $S b$ is a multiple of c and $S^{\prime} b$ is one of d, or $S b$ is a multiple of d, while $S^{\prime} b$ is one of c.

We first consider the case that a solution b_{2} of (12) and (15) exists such that $S b_{2}$ is not a multiple of c. Then $S b_{2}$ is a multiple of d, and the vectors c and d are linearly independent. Replacing b_{2} by a suitable multiple, we may assume

$$
\begin{equation*}
S b_{2}=d, \quad S^{\prime} b_{2}=\beta c, \quad \beta \neq 0 . \tag{19}
\end{equation*}
$$

Substituting $b=b_{2}$ into (15), we obtain

$$
S+S^{\prime}=\frac{\beta}{b_{2}^{\prime} S b_{2}}\left(d c^{\prime}+c d^{\prime}\right),
$$

and therefore, on account of (18),

$$
b_{2}^{\prime} S b_{2}=\alpha \beta
$$

Thus (19) implies

$$
\begin{equation*}
b_{2}^{\prime} d=\alpha \beta, \quad b_{2}^{\prime} c=\alpha \tag{20}
\end{equation*}
$$

The vectors

$$
S\left(b_{1} \pm b_{2}\right)=c \pm d
$$

are multiples neither of c nor of d [cf. (16) and (19)]. Hence the two vectors $b_{1} \pm b_{2}$ cannot solve the system (12), (15). Now, from (16), (17), (19), (20)

$$
\begin{aligned}
& \left(b_{1}+b_{2}\right)^{\prime} S\left(b_{1}+b_{2}\right)-\left(b_{1}-b_{2}\right)^{\prime} S\left(b_{1}-b_{2}\right) \\
& \quad=2\left(b_{1}^{\prime} S b_{2}+b_{2}^{\prime} S b_{1}\right)=2\left(b_{1}^{\prime} d+b_{2}^{\prime} c\right)=2(\alpha+\alpha)=4 \alpha \neq 0
\end{aligned}
$$

Hence, at least one of the two vectors $b_{1} \pm b_{2}$ satisfies (12). As it cannot satisfy (15), it is a solution of both (12) and (13).

Suppose now that every solution b of (12) and (15) is mapped by S on a multiple of c. The set of all vectors x for which $S x$ is a multiple of c form a subspace \Re_{c} of \Re_{n}. From (10), \Re_{c} is a proper subspace of \Re_{n}. Hence its dimension is not greater than $n-1$. It suffices to show that there are vectors in \Re_{n} that belong neither to \Re_{c} nor to the quadric \mathfrak{O}.

We had $b_{1} \subset \Re_{c}-\mathfrak{Q}$. Since \mathfrak{Q} was a pair of $(n-1)$-spaces, there exists a vector $b_{2} \subset \mathfrak{Q}-\mathfrak{R}_{c}$. Thus, the straight line

$$
\begin{equation*}
b=(1-\lambda) b_{1}+\lambda b_{2} \tag{21}
\end{equation*}
$$

lies neither in \mathfrak{R}_{c} nor in $\mathfrak{\Omega}$. Hence it has exactly one point in common with \Re_{c} and at most two points with the pair \mathfrak{Q} of ($n-1$)-spaces. Altogether, the straight line (21) meets the union $\Re_{c}+\mathfrak{Q}$ in not more than three points. If \mathfrak{F} is not the prime field \mathfrak{F}_{3} of three elements, this line contains more than three points. In particular, it contains points outside of $\Re_{c}+\mathfrak{Q}$.

If $\mathfrak{F}=\mathfrak{F}_{3}$, then an ($n-1$)-space contains 3^{n-1} points. Since \Re_{c} has a dimension not greater than $n-1$ and since \Re_{c} and \mathfrak{Q} have the origin in common, the set $\Re_{c}+\mathfrak{Q}$ contains less than 3.3^{n-1} points, thus fewer points than the whole \Re_{n}. Hence, there are points outside of $\mathfrak{R}_{c}+\mathfrak{Q} .{ }^{2}$

Lemma 5. Suppose T is orthogonal, $G(T-I)$ is not skew-symmetric, and

$$
m=\operatorname{rank}(T-I)>1
$$

Then there exists an orthogonality U such that
(a) T is the product of U by a symmetry,
(b) $\operatorname{rank}(U-I)=m-1$,
(c) $G(U-I)$ is not skew-symmetric.

Proof. Put

$$
T_{0}=T-I, \quad S=G T_{0}
$$

We rewrite the orthogonality definition (1) in terms of T_{0} and S :

$$
T^{\prime} G T-G=\left(T_{0}+I\right)^{\prime} G\left(T_{0}+I\right)-G=0
$$

or

$$
\begin{equation*}
T_{0}^{\prime} G T_{0}+S+S^{\prime}=0 \tag{22}
\end{equation*}
$$

G being regular, we have

$$
\operatorname{rank} S=\operatorname{rank} T_{0}=m>1
$$

Thus S satisfies the assumptions of Lemma 4, and there is a vector b such that

$$
\begin{equation*}
b^{\prime} S b \neq 0 \tag{23}
\end{equation*}
$$

and

[^1]\[

$$
\begin{equation*}
S+S^{\prime} \neq \frac{1}{b^{\prime} S b}\left(S b \cdot b^{\prime} S+S^{\prime} b \cdot b^{\prime} S^{\prime}\right) . \tag{24}
\end{equation*}
$$

\]

Let \Re_{n-m} be the eigenspace belonging to the eigenvalue 1 of T. From the regularity of G and of $T=T_{0}+I$

$$
\begin{equation*}
x \subset \Re_{n-m} \leftrightarrow T_{0} x=0 \leftrightarrow S x=0 \leftrightarrow S^{\prime} x=0 \quad[c f . \text { (22) }] . \tag{25}
\end{equation*}
$$

In particular, from (23),

$$
\begin{equation*}
b \nsubseteq \Re_{n-m} . \tag{26}
\end{equation*}
$$

Define

$$
\begin{equation*}
a=T_{0} b . \tag{27}
\end{equation*}
$$

Then, from (25),

$$
\begin{equation*}
a^{\prime} G x=b^{\prime} S^{\prime} x=0 \quad \text { for all } x \subset \Re_{n-m} . \tag{28}
\end{equation*}
$$

Furthermore, (27), (22), and (14) yield

$$
a^{\prime} G a=b^{\prime} T_{0}^{\prime} G T_{0} b=-b^{\prime}\left(S+S^{\prime}\right) b=-2 b^{\prime} S b .
$$

Thus, from (27) and (23)

$$
\begin{equation*}
a^{\prime} G a=-2 b^{\prime} S b=-2 b^{\prime} G a \neq 0 . \tag{29}
\end{equation*}
$$

We now put

$$
\begin{equation*}
A=I-\frac{2 a a^{\prime} G}{a^{\prime} G a}, \quad U=A T \tag{30}
\end{equation*}
$$

Thus, A is a symmetrv [cf. Lemma 2]; and with A and T, U is an orthogonality. From (8)

$$
T=A^{2} T=A U .
$$

We now verify that U also has the required properties (b) and (c). If $x \subset \Re_{n-m}$, then on account of (28)

$$
U x=A T x=A x=x-\frac{2 a^{\prime} G x}{a^{\prime} G a} \cdot a=x .
$$

Furthermore, we obtain from (30), (27), and (29)

$$
(T-A) b=\left(T_{0}+\frac{2 a a^{\prime} G}{a^{\prime} G a}\right) b=a+\frac{2 a^{\prime} G b}{a^{\prime} G a} a=a-a=0,
$$

hence

$$
U b=A T b=A^{2} b=b
$$

Thus the eigenspace of U belonging to the eigenvalue 1 contains both \Re_{n-m} and b. As $b \nsubseteq \Re_{n-m}$ [cf. (26)], its dimension is not less than $n-m+1$, that is,

$$
\operatorname{rank}(U-I) \leqq m-1
$$

Thus our assertion (b) follows by applying Lemma 3 to $T=A U$.
It remains to be shown that $G(U-I)$ is not skew-symmetric. We have

$$
\begin{aligned}
U-T & =A T-I=\left(I-\frac{2 a a^{\prime} G}{a^{\prime} G a}\right)\left(T_{0}+I\right)-I \\
& =T_{0}-2 \frac{T_{0} b b^{\prime} T_{0}^{\prime} G\left(T_{0}+I\right)}{-2 b^{\prime} S b}=T_{0}-\frac{T_{0} b b^{\prime} S}{b^{\prime} S b}
\end{aligned}
$$

[cf. (27), (29), and (22)]. Thus

$$
G(U-I)=S-\frac{S b b^{\prime} S}{b^{\prime} S b}
$$

and (c) follows from (24).
Theorem 1. Suppose T is orthogonal and $G(T-I)$ is not skew-symmetric. Then T can be written as a product of $m=r a n k$ ($T-I$) symmetries, but not of less than m.

Proof. For $m=0$ and $m=1$ our statement is trivial [cf. Lemma 2]. Suppose it is proved up to $m-1 \geqq 1$. From the corollary of Lemma 3, T cannot be a product of fewer than m symmetries. Thus, our theorem follows from Lemma 5 and our induction assumption.
4. From now on we assume not only that T is orthogonal but also that $G(T-I)$ is skew-symmetric. Put $T_{0}=T-I, m=\operatorname{rank} T_{0}$. Being the rank of the skew-symmetric matrix $G T_{0}, m$ is even. As the case $m=0$ is trivial, we may assume $m \geqq 2$.

From our assumptions

$$
\begin{equation*}
G T_{0}+T_{0}^{\prime} G=0 \tag{31}
\end{equation*}
$$

Hence

$$
T^{\prime} G T-G=\left(T_{0}^{\prime}+I\right) G\left(T_{0}+I\right)-G=T_{0}^{\prime} G T_{0}+G T_{0}+T_{0}^{\prime} G=0
$$

implies

$$
\begin{equation*}
T_{0}^{\prime} G T_{0}=0 \tag{32}
\end{equation*}
$$

We obtain from (31) and (32) $G T_{0}{ }^{2}+T_{0}{ }^{\prime} G T_{0}=G T_{0}{ }^{2}=0$. Since G is
regular, it follows that

$$
\begin{equation*}
T_{0}^{2}=0 \tag{33}
\end{equation*}
$$

Our definition of m implies that T_{0} maps the whole space \Re_{n} on an m-space \Re_{m}, and the set of the vectors x with $T_{0} x=0$ forms an ($n-m$)-space \Re_{n-m}. From (33)

$$
\begin{equation*}
\Re_{m} \subset \Re_{n-m} \tag{34}
\end{equation*}
$$

therefore

$$
m \leqq n-m \quad \text { or } \quad m \leqq n / 2
$$

If $x \subset \Re_{m}, y \subset \Re_{n-m}$, then $x=T_{0} z$ for some z, and $T_{0} y=0$. From (31)

$$
x^{\prime} G y=z^{\prime} T_{0}^{\prime} G y=-z^{\prime} G T_{0} y=0 .
$$

So, the two spaces \Re_{m} and \Re_{n-m} are perpendicular. Since the vectors perpendicular to \Re_{n-m} form an m-space containing \Re_{m}, this m-space is equal to \Re_{m}. Hence, a vector is perpendicular to \Re_{n-m} if and only if it lies in \Re_{m}. We obtain from (34) that \Re_{m} is perpendicular to itself. In particular, every vector in \Re_{m} is isotropic.

Let

$$
\begin{equation*}
A=I-\frac{2 a a^{\prime} G}{a^{\prime} G a} \tag{35}
\end{equation*}
$$

be an arbitrary symmetry. Thus a may be any non-isotropic vector. Since it cannot lie in \Re_{m}, it is not perpendicular to \Re_{n-m}, and the ($n-1$)-space \Re_{n-1} perpendicular to a does not contain \Re_{n-m}. The intersection

$$
\begin{equation*}
\Re_{n-m-1}=\Re_{n-1} \cdot \Re_{n-m} \tag{36}
\end{equation*}
$$

of these two spaces is therefore an $(n-m-1)$-space.
Let $U=A T$. We first show that \Re_{n-m-1} is the eigenspace of U belonging to the eigenvalue 1. This implies in particular that

$$
\begin{equation*}
\operatorname{rank}(U-I)=m+1 \tag{37}
\end{equation*}
$$

If $x \subset \Re_{n-m-1}$, then from (36) and (35) $U x=A T x=A x=x$.
Conversely, suppose $U x=x$. Then $T x=A^{2} T x=A U x=A x$ and hence

$$
\begin{equation*}
T_{0} x=(T-I) x=(A-I) x=-\frac{2 a^{\prime} G x}{a^{\prime} G a} \cdot a, \tag{38}
\end{equation*}
$$

From (38) and (32)

$$
x^{\prime} T_{0}^{\prime} G T_{0} x=\left(\frac{2 a^{\prime} G x}{a^{\prime} G a}\right)^{2} a^{\prime} G a=0
$$

Since $a^{\prime} G a \neq 0$, this implies $a^{\prime} G x=0$ or $x \subset \Re_{n-1}$. Going back to (38), we obtain $T_{0} x=0$ or $x \subset \Re_{n-m}$. Thus $x \subset \Re_{n-m-1}$. This proves the above statement.

Since m is even,

$$
\operatorname{rank} G(U-I)=\operatorname{rank}(U-I)=m+1
$$

is odd. Hence, $G(U-I)$ cannot be skew-symmetric.
From Theorem 1, U is a product of $m+1$ symmetries. Hence $T=A U$ can be written as a product of $m+2$ symmetries. Suppose we have expressed T as a product of k symmetries. Then we may put $T=A U$ where A is a symmetry (35) and U is the product of $k-1$ symmetries. Since $U=A T$, we arrive again at (37). From the corollary to Lemma 3,

$$
k-1 \geqq m+1, \quad \text { that is, } \quad k \geqq m+2
$$

So we have the following theorem.
Theorem 2. Suppose T is orthogonal and $G(T-I)$ is skew-symmetric. Let

$$
m=\operatorname{rank}(T-I)
$$

Then

$$
\begin{equation*}
m \equiv 0(\bmod 2) \quad \text { and } \quad m \leqq n / 2 \tag{39}
\end{equation*}
$$

and T can be decomposed into a product of $m+2$ but not fewer than $m+2$ symmetries.

In order to find these transformations $T \neq I$, we choose a basis whose $m>0$ first vectors span \Re_{m}. If $m<n / 2$, the next $n-2 m$ vectors of this basis shall lie in \Re_{n-m}. Since

$$
x^{\prime} G y=y^{\prime} G x=0 \quad \text { for all } x \subset \Re_{m}, y \subset \Re_{n-m},
$$

G has in these coordinates the form

$$
G=\left(\begin{array}{ccc}
0 & 0 & G_{1}^{\prime} \tag{40}\\
0 & G_{2} & * \\
G_{1} & * & *
\end{array}\right) \text { if } m<\frac{n}{2}, G=\left(\begin{array}{cc}
0 & G_{1}^{\prime} \\
G_{1} & *
\end{array}\right) \text { if } m=\frac{n}{2} .
$$

Here G_{1} and G_{2} are regular square matrices; G_{1} is m-rowed, G_{2} is
($n-2 m$)-rowed and symmetric. We have
$T_{0} x \subset \Re_{m}$ for all $x \subset \Re_{n}$ and $T_{0} y=0$ for all $y \subset \Re_{n-m}$.
Hence

$$
T_{0}=\left(\begin{array}{cc}
0 & T_{1} \\
0 & 0
\end{array}\right)
$$

where T_{1} is an m-rowed squared matrix. Its regularity follows from rank $T_{0}=m$. We obtain

$$
G T_{0}=\left(\begin{array}{cc}
0 & 0 \\
0 & G_{1} T_{1}
\end{array}\right)
$$

Thus (32) and (33) are satisfied. Finally, $G T_{0}$ is skew-symmetric if and only if the same holds true of $G_{1} T_{1}$. This leads to the following construction:

Choose $n \geqq 4$ arbitrarily, $m>0$ according to (39) and then G according to (40). Then

$$
T_{0}=\left(\begin{array}{cc}
0 & G_{1}^{-1} T_{2} \\
0 & 0
\end{array}\right)
$$

where T_{2} may be any m-rowed regular skew-symmetric matrix.
If we take, for example, $n=4, m=2$,

$$
G_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad T_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

we may put

$$
G=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \text { and } T_{0}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)^{8}
$$

University of Saskatchewan

[^2]
[^0]: Presented to the Society, September 2, 1949; received by the editors June 14, 1949.
 ${ }^{1}$ Dieudonné, Sur les groupes classiques, Actualités Scientifiques et Industrielles no. 1040, Paris, 1948, pp. 20-22.

[^1]: ${ }^{2}$ The proof of Lemma 4 can be simplified considerably if the case $\mathfrak{F}=\mathfrak{F}_{3}$ is excluded. If \mathfrak{F} is the real field, this lemma is trivial. The matrix $S b \cdot b^{\prime} S+S^{\prime} b \cdot b^{\prime} S$, $-b^{\prime} S b\left(S+S^{\prime}\right)$ depends continuously on b. If it vanishes outside of the quadric \mathfrak{Q} identically, then it will also vanish on \mathfrak{a}. Hence $S b \cdot b^{\prime} S+S^{\prime} b \cdot b^{\prime} S^{\prime}=0$ for all $b \subset \mathfrak{a}$. Therefore, \mathfrak{Q} would be contained in the pair of at most ($n-2$)-dimensional subspaces $S b=0$ and $S^{\prime} b=0$, which is impossible.

[^2]: ${ }^{8}$ Professor Coxeter has made the following comment on the last example: ${ }^{\alpha} \mathrm{A}$ space with two space-like and two time-like dimensions admits a transformation leaving a whole plane invariant although it is not merely a rotation. The explanation is, of course, that this invariant plane is isotropic."

