ON LACUNARY DIRICHLET SERIES

I. I. HIRSCHMAN, JR., AND J. A. JENKINS

The following theorem is suggested by a result of S. Mandelbrojt [2, p. 101]¹ concerning lacunary Fourier series.

THEOREM 1. Let $f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s}$, where $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$, $\lim_{k \to \infty} \lambda_k = \infty$. We denote by γ_c the abscissa of convergence of this series and by γ_a the abscissa of analyticity. It is assumed that $\gamma_c < \infty$, $\gamma_a > -\infty$. Let $\nu < 1$ be the exponent of convergence of the λ_k 's and suppose that

$$|f(s_{\alpha}+\sigma)|=O[e^{-(1/\sigma)^{\mu}}] \qquad (\sigma\to 0+)$$

where $s_a = \gamma_a + i\tau_a$. Then if $\mu > \nu/(1-\nu)$, $f(s) \equiv 0$.

We shall in what follows prove a more general theorem including Theorem 1 as a special case. The methods of the present paper are closely related to and in part derived from the work of L. Schwartz [4]. However no appeal is made to other than standard theorems of analysis.

Let m(0) = 0 and let $m(\sigma)$ be an increasing function defined for $0 \le \sigma \le a$, a > 0. A function f(s) which we may suppose analytic in the half-plane $\sigma > \gamma_1$ is said to have a zero of modular order $m(\sigma)$ at $s_1 = \gamma_1 + i\tau_1$ if

$$|f(s_1 + \sigma)| \le m(\sigma) \qquad (0 < \sigma \le b)$$

for some b>0. Let us define σ as a function of ρ , $\sigma=\eta(\rho)$, by the equation $e^{-\rho\sigma}=m(\sigma)$. Since $m(\sigma)$ decreases as σ decreases to 0 this definition is effective. It is $\eta(\rho)$ which we shall use as the measure of the zero of f(s). As an example, if $m(\sigma)=\exp\left[-(\sigma^{-\mu})\right]$ then $\eta(\rho)=\rho^{-1/(\mu+1)}$.

As the measure of the degree of lacunarity of our Dirichlet series we introduce

$$\zeta(\rho) = \sum_{k=1}^{\infty} \log\left(1 + \frac{2\rho}{\lambda_k}\right).$$

If the sequence $\{\lambda_k\}_1^{\infty}$ has exponent of convergence ν , then by a standard theorem on integral functions [5, p. 251],

$$\zeta(\rho) = O(\rho^{p+\epsilon}) \qquad (\rho \to + \infty).$$

Presented to the Society, September 2, 1949; received by the editors April 11, 1949 and, in revised form, May 20, 1949.

¹ Numbers in brackets refer to the references cited at the end of the paper.

We may now state our principal theorem.

THEOREM 2. Let $0 < \lambda_1 < \lambda_2 < \cdots, \sum_{1}^{\infty} \lambda_{k}^{-1} < \infty$, and let $\zeta(\rho)$ be defined as above. Let

$$f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s}$$

have abscissa of convergence $\gamma_c < \infty$ and abscissa of analyticity $\gamma_a > -\infty$, and let $\gamma_a + i\tau_a$ be a zero of f(s) of modular order $m(\sigma)$. Then if $\eta(\rho)$ is defined as above and if

(1)
$$\liminf_{\rho \to \infty} \zeta(\rho) - \rho \eta(\rho) = -\infty,$$

we have $f(s) \equiv 0$.

In the case considered in Theorem 1 we have, as we have seen, $\zeta(\rho) = O(\rho^{\nu+\epsilon})$, $\eta(\rho) = \rho^{-1/(\mu+1)}$. The assumption $\mu > \nu/(1-\nu)$ shows that condition (1) is satisfied. Thus Theorem 2 does include Theorem 1.

It is clearly sufficient to prove our theorem for $\gamma_a = \tau_a = 0$.

It is immediately verifiable that the function

$$\frac{1}{(1+z)} \prod_{k=1, k \neq n}^{\infty} \left(\frac{\lambda_k + \rho - z}{\lambda_k + \rho + z} \right) = k_n(z, \rho) \qquad (\rho > 0)$$

is analytic for $x \ge 0$, and that

$$\int_{-\infty}^{\infty} |k_n(x+iy,\rho)|^2 dy \leq \pi \qquad (x \geq 0).$$

By a simple extension of Plancherel's theorem, see [3, p. 8], we see that if

$$\phi(n, \rho, \sigma) = \lim_{T \to \infty}^{(2)} \frac{1}{2\pi i} \int_{-iT}^{iT} \frac{k_n(z, \rho)}{k_n(\lambda_n + \rho, \rho)} e^{\sigma z} dz \qquad (0 \le \sigma < \infty),$$

then

(2)
$$\int_0^\infty \phi(n, \rho, \sigma) e^{-\sigma z} d\sigma = \frac{k_n(z, \rho)}{k_n(\lambda_n + \rho, \rho)} \qquad (x > 0).$$

Further

$$\|\phi(n, \rho, \sigma)\|_{2} \equiv \left[\int_{0}^{\infty} |\phi(n, \rho, \sigma)|^{2} d\sigma\right]^{1/2} \leq \left[2^{1/2}k_{n}(\lambda_{n} + \rho, \rho)\right]^{-1}.$$

We assert that

(3)
$$\limsup_{\rho\to\infty} \|\phi(n,\,\rho,\,\sigma)\|_{2} e^{-\zeta(\rho)} < \infty.$$

We have

$$\begin{split} &\|\phi(n,\,\rho,\,\sigma)\|_{2}e^{-\zeta(\rho)} \\ &= \left[\frac{1}{2^{1/2}}\prod_{k=1,\,k\neq n}^{\infty}\left(\frac{\lambda_{n}+\lambda_{k}+2\rho}{\lambda_{k}-\lambda_{n}}\right)\right]\left[1+\lambda_{n}+\rho\right]\left[\prod_{k=1}^{\infty}\left(\frac{\lambda_{k}}{\lambda_{k}+2\rho}\right)\right] \\ &= \frac{1}{2^{1/2}}\left[\prod_{k=1,\,k\neq n}^{\infty}\left(1+\frac{\lambda_{n}}{\lambda_{k}+2\rho}\right)\right]\left[\frac{1+\lambda_{n}+\rho}{\lambda_{n}+2\rho}\lambda_{n}\right] \\ &\cdot \left[\prod_{k=1,\,k\neq n}^{\infty}\left(1-\frac{\lambda_{n}}{\lambda_{k}}\right)\right]^{-1} \\ &\sim \frac{\lambda_{n}}{2^{3/2}}\left[\prod_{k=1,\,k\neq n}^{\infty}\left(1-\frac{\lambda_{n}}{\lambda_{k}}\right)\right]^{-1} \qquad (\rho\to\infty), \end{split}$$

which proves our assertion.

We define

$$F(\rho, s) = e^{-\rho s} f(s).$$

We assert that if

$$||F(\rho, \sigma)||_2 \equiv \left[\int_0^\infty |F(\rho, \sigma)|^2 d\sigma\right]^{1/2},$$

then

(4)
$$\limsup_{n\to\infty} ||F(\rho, \sigma)||_{2} e^{\rho\eta(\rho)} < \infty.$$

Let M be a bound for $f(\sigma)$ for $0 < \sigma < \infty$. We have

$$||F(\rho, \sigma)||_{2} \leq \left[\int_{0}^{\eta(\rho)} e^{-2\rho\sigma} |f(\sigma)|^{2} d\sigma\right]^{1/2} + \left[\int_{\eta(\rho)}^{\infty} e^{-2\rho\sigma} |f(\sigma)|^{2} d\sigma\right]^{1/2}$$

$$\leq m(\eta(\rho)) + Me^{-\rho\eta(\rho)}$$

$$\leq (M+1)e^{-\rho\eta(\rho)}.$$

which proves relation (4).

It follows from a well known theorem concerning restricted overconvergence of Dirichlet series, see [1, p. 141], that there exists an increasing sequence of integers l_k for which

$$\lim_{k\to\infty} \sum_{j=0}^{l_k} a_j e^{-\lambda_j \sigma} = f(\sigma)$$

uniformly for $\epsilon \leq \sigma < \infty$ for any $\epsilon > 0$. Thus if $\epsilon > 0$,

$$\int_0^\infty \phi(n, \rho, \sigma) F(\sigma + \epsilon, \rho) d\sigma$$

$$= \lim_{k \to \infty} \int_0^\infty \phi(n, \rho, \sigma) e^{-\rho(\sigma + \epsilon)} \sum_{i=1}^{l_k} a_i e^{-\lambda_i (\sigma + \epsilon)} d\sigma.$$

By equation (2)

$$\int_0^\infty \phi(n,\,\rho,\,\sigma)e^{-\rho(\sigma+\epsilon)}a_je^{-\lambda_j(\sigma+\epsilon)}d\sigma = \begin{cases} 0, & j \neq n, \\ e^{-\epsilon\rho-\epsilon\lambda_n}a_n, & j = n. \end{cases}$$

Hence

$$\int_0^\infty \phi(n, \rho, \sigma) F(\rho, \sigma + \epsilon) d\sigma = e^{-\epsilon \rho - \epsilon \lambda_n} a_n.$$

By Schwarz's inequality

$$|a_n| \leq e^{\epsilon \rho + \epsilon \lambda_n} ||\phi(n, \rho, \sigma)||_2 ||F(\sigma + \epsilon, \rho)||_2.$$

If ϵ is allowed to approach zero through positive values, we obtain

$$|a_n| \leq ||\phi(n, \rho, \sigma)||_2 ||F(\sigma, \rho)||_2.$$

Using equations (3) and (4) we see that

$$\log |a_n| \le \zeta(\rho) - \rho \eta(\rho) + C$$

where C is a constant which depends on n but not upon ρ . If we allow ρ to increase without limit, assumption (1) of Theorem 2 implies that

$$\log |a_n| = -\infty$$
, that is, $a_n = 0$.

Since this holds for each $n=1, 2, \dots, f(s) \equiv 0$ and our theorem is proved.

We shall now prove that if assumption (1) is replaced by the weaker assumption

$$\lim\inf_{\rho\to\infty}c\zeta(\rho)-\rho\eta(\rho)=-\infty$$

where $c < 2^{-3/2}$, then Theorem 2 is false.

Let us take for the constants λ_k , $0 < a < b < 1 < 4 < 9 < \cdots$. As in Titchmarsh [5, p. 271] we find that

(5)
$$\log \left[\prod_{1}^{\infty} \left(1 + \frac{x}{k^2} \right) \right] \sim \pi x^{1/2} \qquad (x \to \infty).$$

It follows that

(6)
$$\zeta(\rho) = \log\left(1 + \frac{2\rho}{a}\right) + \log\left(1 + \frac{2\rho}{b}\right) + \sum_{h=1}^{\infty} \log\left(1 + \frac{2\rho}{b^2}\right) \sim \pi(2\rho)^{1/2} \qquad (\rho \to \infty).$$

We define

(7)
$$f(s) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{e^{sz}}{\left(1 + \frac{z}{a}\right) \left(1 + \frac{z}{b}\right) \prod_{k=1}^{\infty} \left(1 + \frac{z}{k^2}\right)} dz.$$

Deforming the line of integration of this integral to Rl $z = -(n+1/2)^2$ and allowing n to approach infinity we obtain for s real and positive an expansion of f(s) into a Dirichlet series with exponents a, b, 1, 4, 9, \cdots which then converges in the half-plane Rl s>0. The details of this are left to the reader. Again deforming the line of integration, this time to Rl $z = (\pi/2\sigma)^2$, and using equation (5), we see that if $\epsilon>0$ is fixed, then for $\sigma>0$ sufficiently small we have

$$|f(\sigma)| \le \exp \left[-\frac{1-2\epsilon}{4} \frac{\pi^2}{\sigma}\right] M(\sigma)$$

where

$$M(\sigma) = \frac{1}{2\pi} \int_{\text{R1}_{z=(\pi/2\sigma)^2}} \left| \frac{dz}{\left(1 + \frac{z}{a}\right)\left(1 + \frac{z}{b}\right)} \right|$$
$$= o(1) \qquad (\sigma \to 0 +).$$

Thus we may associate with f(s) and the origin the modular order $m(\sigma) = \exp \left[-((1-2\epsilon)/4)(\pi^2/\sigma)\right]$. We immediately find that

(8)
$$\eta(\rho) = \frac{\pi}{2} (1 - 2\epsilon)^{1/2} \rho^{-1/2}.$$

Comparing equations (6) and (8), we deduce that Theorem 2 is false if $c < 2^{-3/2}$, which is what we wished to show.

REFERENCES

- 1. V. Bernstein, Leçons sur les progrès récents de la théorie des series de Dirichlet, Paris, 1933.
 - 2. S. Mandelbrojt, Analytic functions and classes of infinitely differentiable func-

tions, The Rice Institute Pamphlet, vol. 29, 1942.

- 3. R. Paley and N. Wiener, Fourier transforms in the complex domain, New York, 1934.
 - 4. L. Schwartz, Études des sommes d'exponentielles réelles, Paris, 1943.
 - 5. E. Titchmarsh, The theory of functions, 2d ed., Oxford, 1939.

HARVARD UNIVERSITY

ON THE ABSOLUTE CONVERGENCE OF TRIGONOMETRICAL SERIES

TAMOTSU TSUCHIKURA AND SHIGEKI YANO

1. THEOREM 1. Suppose that a trigonometrical series

$$\sum \rho_n \cos (nx - \alpha_n) \qquad (\rho_n \ge 0, n = 1, 2, \cdots)$$

and its conjugate series

$$\sum \rho_n \sin (nx - \alpha_n)$$

are convergent absolutely at $x = x_0$ and $x = x_1$, respectively. If

$$x_1 - x_0 = p\pi/q$$
 $(p/q irreducible)$

where p is an integer positive, negative, or zero, and q is an odd integer, then

$$\sum \rho_n < \infty.$$

We shall see in Theorem 2 that the above theorem is no longer true if p/q is replaced by p'/q' with an even q' and $p'\neq 0$, or by an irrational number.

PROOF OF THEOREM 1. If we put $x_1 - x_0 = p\pi/q \equiv h$, then by Fatou's theorem¹

(1)
$$\sum \rho_n \left| \cos \left(n(x_1 - sh) - \alpha_n \right) \right| < \infty$$

for every odd s. Hence from the identity

$$\sin (nx_1 - \alpha_n) = \cos nsh \sin (n(x_1 - sh) - \alpha_n) + \sin nsh \cos (n(x_1 - sh) - \alpha_n)$$

we deduce immediately that

(2)
$$\sum \rho_n |\cos nsh \sin (n(x_1 - sh)) - \alpha_n)| < \infty.$$

Received by the editors October 18, 1948 and, in revised form, May 14, 1949.

¹ See, for example, A. Zygmund, Trigonometrical series, p. 134.