
ON LACUNARY DIRICHLET SERIES

i. i. hirschman, jr., and j. a. jenkins

The following theorem is suggested by a result of S. Mandelbrojt

[2, p. 101 ]x concerning lacunary Fourier series.

Theorem 1. Let f(s)= z2t-i a*e-x*', where 0<Xi<X2<X3< • • • ,

lim*.,«, Xi= 00. We denote by yc the abscissa of convergence of this series

and by ya the abscissa of analyticity. It is assumed that yc < 00, ya > — 00.

Let v<l be the exponent of convergence of the X*'s and suppose that

\f(sa +<r)\ =0[e-^"] (<r->0+)

where sa = ya+ira. Then if n>v/(l—v), f(s)=0.

We shall in what follows prove a more general theorem including

Theorem 1 as a special case. The methods of the present paper are

closely related to and in part derived from the work of L. Schwartz

[4]. However no appeal is made to other than standard theorems of

analysis.

Let w(0)=0 and let m(a) be an increasing function denned for

0i£o-iSa, a>0. A function f(s) which we may suppose analytic in the

half-plane <r>7i is said to have a zero of modular order m(&) at

Si = yi+in if

I f(si + a) I = »(«0 (0 < a = b)

for some b>0. Let us define a as a function of p, a = ij(p), by the equa-

tion e~" = m{a). Since m(p) decreases as a decreases to 0 this defini-

tion is effective. It is v{p) which we shall use as the measure of the

zero of f(s). As an example, if m(a) =exp [— (a~")] then 77 (p) =p-i/<f+».

As the measure of the degree of lacunarity of our Dirichlet series

we introduce

Up) = I>g(l + ^\
k—l        \ A*/

If the sequence {X*}" has exponent of convergence v, then by a stand-

ard theorem on integral functions [S, p. 251],

r(p) = CV+«) (p
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We may now state our principal theorem.

Theorem 2. Let 0<Xi<X2< • • • ,zZi >^1<<0, and let f(p) be

defined as above. Let

/(*) = Z «*e~Xt*
k-1

have abscissa of convergence yc < 00 and abscissa of analyticity ya > — »,

ored let ya+ira be a zero of f(s) of modular order m(a). Then if ri(p)

is defined as above and if

(1) lim inf f (p) - pr/(p) - — oo,
p—» CO

we havef(s) =0.

In the case considered in Theorem 1 we have, as we have seen,

f(p) =0(p'+<), v(p) =p-1'<*+1>. The assumption p>v/(l —v) shows that

condition (1) is satisfied. Thus Theorem 2 does include Theorem 1.

It is clearly sufficient to prove our theorem for ya = ra = 0.

It is immediately verifiable that the function

1 "    /X* + p - z\
TTTT  n L  ,    ,  )-*-(«.p) (p>o)
(1 + Z)    k=\,k*n  \X* + p + Z/

is analytic for x = 0, and that

f  I *»(* + iy, P) |'ay = x (at ̂  0).
d —CO

By a simple extension of Plancherel's theorem, see [3, p. 8], we see

that if

(2)      1     f iT kn(z p)
<b{n, p, a) = l.i.m.— I " '-        «"&        (0 Si <r < •),

r« 2iri ./ _<r £„(\„ + p, p)

then

kn(z, p)

*n(X„ + p, p)

Further

u/2

(2) f %(«, p, <r)e—dV =   W^(Z'P)   ^ (x > 0).
J 0 *n(a„ + p, p)

lk(», P, «r)||, " [ J    I       p. <0 l2^J   = [21/2*n(X„ + p, p)H

We assert that
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(3) lim sup||</>(«, p, <r)||2e_r('') < «>.
p-»00

We have

||<A(«, p, <r)||2e-ro>>

__Lr n (.+-j=-\]r1+>-+'j
21'2 L k-tt» \      X* + 2p/J L  Xn + 2p J

[ n (>-£)]-'

which proves our assertion.

We define

F(p, s) = e-"f(s).

We assert that if

\\F(P, *)H* - [ f   \HP, °)\2do-J\

then

(4) lim supll^Xp, (r)!!^"^' < °°.
p—* oo

Let M be a bound for/(cr) for 0 <cr < °o. We have

er2" I /(er) 12dVj    + \_J ^ «-2" I /to I *d<rj

= m(v(p)) + Me-''^'

= (M + l)e-'"(',)1

which proves relation (4).

It follows from a well known theorem concerning restricted over-

convergence of Dirichlet series, see [l, p. 141], that there exists an

increasing sequence of integers h for which

ik

lim Z djer^i' = /(<r)
t-»» ,=0
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uniformly for » for any e>0. Thus if e>0,

I   (pin, p, o-)F{<t + e, p)da
J 0

p 00 Ii

= lim  I   <6(w, p, o-je-^+o Z a (<r+0oV.
«/ o j'=l

By equation (2)

/CO, / 9* n,<b(n, p, a)e-<l<-'+l)aje-^(''+t)do- = <
o U~tp-tKan,        j = n.

Hence

0

<p(n, p, tr)F(p, a + e)d<x = e-«^eX»tin.
o

By Schwarz's inequality

I o.| = «"Hltf». P, <r)||2||F(o- + 6, p)||2.

If e is allowed to approach zero through positive values, we obtain

I o«| = ||*(n, p, o-)||2||F(<r, p)||2.

Using equations (3) and (4) we see that

log I o„ I = f (p) - pr\(p) + C

where C is a constant which depends on n but not upon p. If we allow

p to increase without limit, assumption (1) of Theorem 2 implies that

log I o„ [ = — oo, that is, o„ = 0.

Since this holds for each n = l, 2, • • • ,/($)=.() and our theorem is

proved.

We shall now prove that if assumption (1) is replaced by the

weaker assumption

lim inf cf(p) — prj(p) = — <»
p—.00

where c<2-3'2, then Theorem 2 is false.

Let us take for the constants X*, 0<o<o<l <4<9< • • • . As in

Titchmarsh [5, p. 271] we find that

(5) log n i+- o->»).
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It follows that

(6)
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f(p) = l0g(l + ^ + l0g(l + y)

+ Zl°g(i + ^)~T(2p)1/2

[August

(P

We define

(7) M
1

2ti

(-7)(-l)n(-i)
Deforming the line of integration of this integral to Rl z = — (n +1/2)2

and allowing n to approach infinity we obtain for 5 real and positive

an expansion of f(s) into a Dirichlet series with exponents a, b, 1,

4, 9, • • • which then converges in the half-plane Rl s>0. The de-

tails of this are left to the reader. Again deforming the line of integra-

tion, this time to Rl z=(ir/2<r)i, and using equation (5), we see that

if e > 0 is fixed, then for a > 0 sufficiently small we have

.           r l-2fir!l
I/(*)| gexp|^--—-Jtfr»

where

-rf2lTt/Rlz=(T/2o-)2

dz

('+t)(-t)

= 0(1) 0^0+).

Thus we may associate with f(s) and the origin the modular order

m{<x) =exp [ — ((1 -2€)/4)(7r2/V) ]. We immediately find that

(8) V(P) = — (1 - 2£)i'2p-i/2.

Comparing equations (6) and (8), we deduce that Theorem 2 is false

if c < 2~w, which is what we wished to show.
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ON THE ABSOLUTE CONVERGENCE OF
TRIGONOMETRICAL SERIES

tamotsu tsuchikura and shigeki yano

1. Theorem 1. Suppose that a trigonometrical series

zZ Pn cos (nx — a„) (p„ = 0, n = 1, 2, • • • )

and its conjugate series

zZ Pn sin (nx — a„)

are convergent absolutely at x = xo and x = xi, respectively. If

Xi — Xo = ptr/q (p/q irreducible)

where p is an integer positive, negative, or zero, and q is an odd integer,

then

1Zpn< 00 •

We shall see in Theorem 2 that the above theorem is no longer

true if p/q is replaced by p'/q' with an even q' and p'r^O, or by an

irrational number.

Proof of Theorem 1. If we put xi—xo = pir/q = h, then by Fatou's

theorem1

(1) zZ Pn I cos (n(xi — sh) — a„) I < oo

for every odd s. Hence from the identity

sin (nxi — an) = cos nsh sin (n(xi — sh) — an)

+ sin nsh cos (n(xi — sh) — an)

we deduce immediately that

(2) zZ Pn I cos nsh sin (n(x\ — sh)) — «„) | < w.
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