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TYPICALLY-REAL FUNCTIONS
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1. Introduction. Let

(1.1) w = /(z) = z + a2z2+ • • • + an2»+ • • •

be regular for |z| <R and/(x) real for —R<x<R.f(z) is said to be

typically-real with respect to the circle |z| —R if the imaginary part

of /(z) has the same sign as the imaginary part of z when z is not

real and |z| <R [l].1 In particular, if f(z) is schlicht or Univalent

for |z| <R and the coefficients o„, n — 2, 3, • • • , are all real, then

/(z) is a typically-real function. If further, w=/(z) maps each circle

I z| =r<R into a contour having the property that every line parallel

to the imaginary axis cuts the contour in not more than two points,

we say that/(z) is convex in the direction of the imaginary axis rela-

tive to the circle |z| =R. The necessary and sufficient condition that

/(z) be convex in the direction of the imaginary axis when it is real

on the real axis is that zf'(z) be typically-real [5; 4]. In the discussion

to follow we shall assume that R = 1.

We state the following lemma due to L. Fejer (Turän [2], Szäsz

[3]):

Lemma 1. For a value of r, 0 < r < 1, let zZn- i X„r" converge. In order

that

00

(1.2) zZ Anr" sin nx-sm ny = 0        for 0 < x < ir;0 < y < it,
n-1

it is necessary and sufficient that

00

(1.3) zZ n\nrn sm mp = 0 for 0 < $ < ir.
n—l

It is the purpose of this paper to give some applications of Lemma

1 to functions

(1.4) F(z) = zZ anbnzn

where
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00 00

(1.5) /(«) = I>n2B,        fCO = E bnZ", fll = h = 1,
n—1 n—1

are both typically-real with respect to the unit circle | z| =1. The same

method of proof may be used to obtain many special results for the

functions F(z) of (1.4). We include here the proofs of several theorems

which illustrate the procedure.

Theorem 1. If

CO oo

(1.6) f(z) = E g(z) = E bnZn, d = h= 1,
n—1 n—1

are regular and typically-real for \z\ <1, then

(1.7) F(z) = E ffnOnZ", |*| <1,
n=l

is typically-real for |z| ^2 — 31'2. When

/(z) a g(2) = z(l - g)-*      F(z) = (z + z2) • (1 - z)-3,

F(z) is «o/ typically-real for \z\ <p for any p>2—31/2.

Theorem 2. 7/

CO 00

(1.8) /(«) = E ««*",        g(z) = E *nZ", »1 - h - 1,
n—1 n=l

are regular and typically-real for |z| <1, awa" if

(1.9) F(z) = E ffn&nZ",
n-1

<Aew

(1.10) A(z) s f -dz = E -2n
Jo    z „_i «

is regular and typically-real for \z\ <1.

Theorem 3. 7/

oo oo

(1.11) /(*) = E fnz",      i(z) = E dnz\      C, - 0*1 = 1,
n—1 71—1

are regular, Univalent, and convex in the direction of the imaginary axis

for I z| <1, ana" rea* ow /Ae real axis, then
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00

(1.12) F(Z) ** Z2 Cnfai*
n-1

is also regular, Univalent, and convex in the direction of the imginary

axisfor |z| <1.

If in Theorem 3 we take g(z) to be the «th Cesäro partial sum of

order 3 of the geometric series

(1.13) z(l - z)-1 = z + z2 -{-h-2"+---,

which E. Egerväry [6] has shown to be Univalent and convex for

121 < 1, we obtain immediately a new proof of the following theorem

of L. Fejer [5].

Theorem 4. (Fej6r) If

(1.14) f(z) = zZcnZ»
n—l

be regular, Univalent', and convex in the direction of the imaginary axis

for \z\ <l and real on the real axis, (hen the Cesäro partial sums of

order 3 of (1.14) are also Univalent and convex in the direction of the

imaginary axisfor \ z\ < 1.

Theorem 5. If

CO co

(1.15) /(z) = zZ 0»z", g(z) = 1Z bnzn, ai = h = 1,

are regular and typically-real for \z\ <1, and if

00

(1.16) F(z) = zZ ö„6„z", |z|<l

then 9?F(rei9)=0 for \d\ =arc cos p(r)<ir/2, 0<r<l, where 4r/*(r)

= (l+34r2+r4)1/2 —1—r2. The inequalities are sharp.

Theorem 5 includes a result of W. Rogosinski [l] who has shown

that F(r)jäO, 0<r<l. It is not hard to show from Theorem 5 that

the function /(z) of this theorem satisfies the inequality

rSr, , (f(zeie))
(1.17) J ^   I /(««) •/(*) I cos arg j     ^ 0,

for z = re**, r<l, |ö| ^arc cos pir2), with equality holding for

0 = arc cos n(r2), f(z) =z(l — z)~2. Thus a specially weighted average

of the cosine of the angle subtended at the origin by the points
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f(z), f(zea) is non-negative, although the cosine itself may be some-

times negative. We omit the proof of (1.17).

2. Proof of Theorem 1. It has been shown elsewhere [4] that the

coefficients of the powers series for f(z) and g(z) in (1.5) have the

representation

1  cT sin nx 1  rr sin ny
(2.1) a„ = — I    —-da(x),      ö„ = — —JLdß(y)

t j o     sin x irJ| any

where a(x), ß(y) are non-decreasing functions in the interval (0, it)

normalized so that

(2.2) f  da(x) = f  dß{x) = *,
j o j o

It follows that the inequality

00

(2.3) IF(reie) = £ anKrn sin «0 = 0
n=l

for O<0<7r for a suitable range of r can be deduced from the in-

equality

™   sin nx sin ny
(2.4) zZ —-:—-t» sin »0 = 0, 0 < 0 < it,

„=i   sin sc    sin y

by term by term integrations with the aid of (2.1). However, if we

apply Lemma 1 twice, we need only find the range of r for which

(z = reie)

(3 + z%) "
(2.5) I-- = £ nV sin «0 = 0, 0 < 0 < T.

(1 - z)3 „=1

/{(z + z2) • (1 - z)3} = r sin d{ 1 - 6r2 + r4 - 2(r + r3) cos 0}

(2.6) = r(l - r)2 (l + 4r + r2) sin 0

= 0     for 0 = 0 = x, 0 = r = 2- 31'2.

The example/(z) =g(z) =z(l — z)~2, P(z)»(z+z2)(l — z)-', shows that

the range of r obtained above cannot be improved upon. This com-

pletes the proof of Theorem 1.

3. Proofs of Theorems 2 and 3. Using the notation of Theorem 2,

we have

(3.1) *(«) = £— z\ |z|<l,
n-i n
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(3.2) l{h(z)} = zZ ^-rnsmnd, z = re".

Thus l{h(z)} =0 for O=0 = x, 0<r<l, follows from

"   1   sin nx sin ny
(3.3) zZ-.—-t*sin»0 = O, 0 = 0 = tt,

n=i n   sin x    sin y

by term by term integrations and the aid of (2.1) and (2.2). But by

Lemma 1, (3.3) may be replaced by

Jf, sin ni/
(3.4) zZ-sin »ö = 0 for 0 < $ < x, 0 = 0 = tt.

„=i   sin yp

"   sin nit , .
(3.5) X) - sin «0 = l{z(l - 2z cos ^ + z2)"1}.

„„1   sin ^

Moreover, z(l—2z cos^+z2)-1 i,s typically-real for |z| <1, 0=u^ = 7t.

Thus «(z) ij5 also typically-real for |z| <1. This completes the proof

of Theorem 2.

Theorem 3 follows from Theorem 2. For if

CO 00

(3.6) f(z) = zZ CnZn,      giz) = zZ dnzn, Cl - dl 1,
n=l n-1

be regular, Univalent, and convex in the direction of the imaginary

axis, and real on the real axis, then z/'(z) and zg'(z) are typically-real

for ]zj <1. It follows from Theorem 2 that

■A (ncn)(nd„) . .
(3.7) %T(,) m 12 *», |z|<l,

n=i n

is typically-real for |z| <1. Thus

oo

(3.8) F{z) = zZ c»dnz\ I zI < 1,
n-l

is regular, Univalent, and convex in the direction of the imaginary

axis.

4. Proof of Theorem 5. With the notation of Theorem 5 let

oo

(4.1) F(Z) = ZZ «n&nZ", <ti * »I - 1,   I Z I  < 1.
n=l

With the aid of (2.1) and (2.2) it follows that the inequality

(4.2) Wire") = 0,       [ 01 = arc cos n(r), 0 < r < 1,
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can be deduced from the inequality

™   sin nx sin ny . ,
(4.3) 2^ —-■-cos nd = 0,    I 01 = arc cos n(r),

„_i  sin a:    sin y

by the method used in the preceding paragraphs. By Lemma 1, we

need only find when

"    sin w0
(4.4) zJn-r"cosw0 = O, 0 = \p = r,

n=i    sin 0

or, letting a = ir—6, 0 = 7r—0, when

™    sin n<f>
(4.5) 2^ »- cos »a ^ 0, 0 = </> = jt,

„=1    sin 0

or when

(4.6) 2c{ (z - z3) • (1 - 2z cos ^ + z2)"2} ^0, z = re'«.

Since

£{(z-z3)-(l - 2z cos0 + z2)2}

(4.7) = r(r2 - 1) [4r2 cos3 a - {1 + (6 + 4 cos2 <*>)r2 + r4} cos a

+ (4r + 4r3) cos <p],

it will be sufficient to determine the values of a so that when 0 <r <1,

0=0 = 7r, we have

4r2 cos3 a — {1 + (6 + 4 cos2 <p)r2 + r4} cos a

+ (4r + 4r3) cos 0 = 0.

(4.8) may also be written in the form

(2r cos a — 1 — r2) {2r cos2 a+(l + r2) cos a — ir\
(4.9) V 1 1

+ 4r2(l - cos2 0) cos a - (I - cos 0)(4r + 4r3) = 0;

with regard to the last two terms of (4.9) we note that

(4.10) 4r2(l - cos20) cos a - (1 - cos0)(4r 4- 4r3) = - 8r(l 4- r2)

with equality occurring in (4.10) for 0 = 7r and for all a. Thus the

left-hand side of inequality (4.8) is not less than

(4.11) 4r2 cos3 a - (1 4- 10r2 4- r4) cos a - 4r - 4r3

and the left-hand side of (4.8) equals the expression in (4.11) when

0 = ir. Factoring (4.11) we have to determine when
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(4.12)     (1 + 2r cos a + r2) {2r cos2 a - (1 + r2) cos a - 4r} = 0.

(4.12) holds when, and only when,

- 4r = 4r cos a < - {(1 + 34r2 + r*)"2 - 1 - r2\(4.13) - l;

= — n(r) ■ 4r.

Thus |ö| = J7r — a\ =arc cos ju(r) <ir/2.

The estimate for the bound on 6 is sharp, as is seen by taking

<p=7r,/(Z)=g(2)=z(l-z)-2.
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