
LIMITING VALUES OF SUBHARMONIC FUNCTIONS1

elmer tolsted

1. Introduction. In 1928, Littlewood obtained the following result

[1, p. 393].2

(1.1) Theorem. Let u(r, 6) be subharmonic in the unit circle, r<l,

and satisfy

Then there exists a finite-valued function U(9), 0 g 9<2tt, such that limr_i

u(r, 6) = U(0) for almost all values of 6.

In 1934, Priwaloff published a generalization of Littlewood's result,

which turned out to be incorrect. When the domain under considera-

tion is the unit circle, then Priwaloff's generalization consisted in

allowing "non-tangential" approaches to the boundary of the disc.

In 1942, during the course of his lectures on Subharmonic functions

at Brown University, the late Professor J. D. Tamarkin discovered

an error in Priwaloff's proof. Then in a letter to Tamarkin in 1943,

Professor A. Zygmund described a counter-example to Priwaloff's

result.

In this paper, we present several generalizations of Littlewood's

result (see §3) as well as several counter-examples to Priwaloff's re-

sult (see §4).

2. Definitions and lemmas. Points on the unit circle will be denoted

by e*f; the point (1, 0) will be denoted by B. The coordinates (x, y)

and (r, 6) will be used interchangeably to denote the point P, and

(p, 4>) will be used to denote the point Q; here P and Q are points in

the unit disc. The point inverse to P with respect to the unit circle

will be denoted by P'(l/r, 0).

The letter A denotes a positive absolute constant, though not al-

ways the same from one occurance to another.

We shall use the notation 5 = 1— r and <r = l—p.

The symbol L+(£) will denote the (short) line segment approaching

the point ei£ from the interior of the unit circle and making an angle \p
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with the radius vector to the point ei(. We shall consider \p positive if

the rotation from the radius vector to Z^(i;) is clockwise. For a fixed

angle yp, \\p\ <ir/2, the family of lines 7_^(£), 0^£<27r, has for its

envelope a circle of radius p$= | sin \f/\ inside and concentric with the

unit circle. We shall let S+(£), 0^i/'<tt/2, denote the area in the

ring p*^p<l between the lines L+(£) and A_^(£). Weshall use 5+(!;)

to denote the area in the ring p^5=p<l which is outside the sector

The phrase "P may approach the unit circumference at the point

ei{ along any non-tangential path" is equivalent to the statement

"P may approach the point eif along any path which remains within

some sector 5^(£), \{/<it/2." For brevity this type of approach shall

be designated by P—>s^({>ei5. In general the nature of the path of

approach shall be indicated as a subscript to the symbol —■>.

A simple geometric argument yields the following result.

(2.1) Lemma. Let P(r, 6) be a point on the segment L«(0), a<w/2,

and let Q(p, <p) be a point on the segment La(j). Then there exists a

constant k\, 0<&i<°°, such that r>p0 + (l — p<*)/2 implies PQ^k^r,

0^t<2tt.

The Green's function for the unit disc is given by

rOP'

g{P,Q) =1°S-|f7-

Littlewood showed that

(2.2) Ogg(P,Q) gAas/PQ*

holds [l, p. 394]. We shall require further estimates of g(P, Q), similar

to (2.2). To that end let a be fixed, |a| <ir/2; then we can locate the

point Q(p, <p) by the coordinates (<r, r) where <r = l— p, and La(j) is

the segment passing through Q meeting the unit circumference at eiT.

We shall divide the ring p>po into three sets Ri, R2, and R3 defined

explicitly in terms of the coordinates a and r of the point Q as follows:

Ri-   | o- — s | = s/2,       I t| ig S,      p > po,

R2:   I o- — s I > s/2,       I t I äs,      p > po,

R3:   I t I > j,      p > po-

In Ri we shall prove

o-      As2 1
(2.3) g(P,Q) ^-log—,   for   s< — -
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We know that

r-P'Q     1 r2P'Q2
(2.4) g(P, Q) = log- = — log-— •K , V PQ       2 PQ*

First note that r < 1, and for Q in i?t we have PQ^As. Also PP' = 1/r

-r =(l-r)(14-r)/r^4s for 5<l/2, and P'ögPP'4-P(?^.45. At
this point we use (2.1) to obtain the important fact that PQ^kir

where 0 < ki < oo . Thus

1 As2
g(P, Ö) = - log

2 Afr2

and (2.3) follows at once from the fact \ <r — s\ ^s/2 implies l/2^a/$

^3/2.
In i?j we shall prove

Aas
(2.5) g(P,Q)^

S2 + T2

By (2.2) we have that

Aas Aas
g(P, Q) <. -=-

~ PQ2     PQ2/2 + PQ2/2

But for Q in Rit |<r-s| >s/2; and hence PQ2/2^s2/8. By (2.1),

PQ2/2 ^ klr2/2, and so we have

Aas
g(P, Q) <

S2/8 + k\r2/2

which implies (2.5).
In Ri we have

A as
(2.6) g(P, Q) g —

which follows at once from (2.2) and (2.1).

Finally, we shall need the following simple results on approxima-

tions [1, §3].

Suppose that J*(t) is non-negative and monotone increasing to a

finite J*(ir) in O^r^x and satisfies

J*(r)
lim sup-2= y(po);

r->+0 T

then
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f dJ*(r)
(2.7) lim sup j I -;—^ Ar)(po),

J «-o«-.+0       J ,_0

C dJ*(j)
(2.8) lim sup s I -^ Art(j>0),

»-»+0       J0     S2 + TZ

and

(2.9) lim sup — f log — dJ*(r) £ Ar,(Po).
J-»+0     S  Jo T2

3. Generalizations of Littlewood's theorem. If w(P) is subharmonic

in the unit circle, and if w(P) satisfies (1.2), then ti(P) can be repre-

sented as

(3.1) u(P) = h(P) - ff g(P, Q)dP(Q)

where h(P) is harmonic in the circle r<l, and satisfies

(3.2) f* \h(r,B)\d6 = 0(1), r<l,

and F(Q), the generalized mass distribution function associated with

w(P), is a non-negative, additive function of sets satisfying

(3.3) JJ*(1 -P)dF{Q) < + co.

The integrals in (3.1) and (3.3) are Stieltjes-Radon integrals extended

over the unit circle, p<l [l, Lemma 3].

Since h{P) satisfies condition (3.2), the limit of h(P) exists for al-

most all values of £ as P approaches eil along any non-tangential

path (see [4, Chapter IV, Theorem 1 and Chapter II, Theorem 7]).

Having thus disposed of the harmonic part of (3.1), we have reduced

our problem to the consideration of the behavior of the potential of

positive mass distribution

(3.4) «-(P)= ffg(P,Q)dF(Q)

as P approaches the unit circumference.

Littlewood showed that w(P) had radial limit zero at almost all

points of the unit circumference [l, Lemma 4]. Priwaloff tried un-

successfully to show that w(P) had a non-tangential limit zero at al-

most all points of the unit circumference. Since Littlewood showed
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that (1.2) and the combination of (3.1) and (3.3) are equivalent re-

strictions on the subharmonic function u(P), the results in this paper

are derived from the consideration of potential functions of the type

(3.4) whose associated mass distribution functions F(Q) satisfy (3.3).

Such potential functions of positive mass distribution are super-

harmonic (see [3, 4.34] and [3, 1.1 ]). Since the negative of a super-

harmonic function is subharmonic, we may apply the theory of sub-

harmonic functions, with obvious modifications, to our potential

functions (3.4) whenever necessary.

We shall use the method of Littlewood to generalize (1.1) from the

case of radial approach to the case in which the approach to the

boundary of the unit circle is along the rotations of a fixed line seg-

ment or a fixed curve.

(3.5) Theorem. Let u(P) be subharmonic in the unit circle, r<i'

and satisfy (1.2). Let La(j-) be a straight line segment which approaches

the unit circumference at the point ei( making a fixed angle a<rr/2 with

the radius vector to the point ei(. Then there exists a finite valued function

U(Z), — tt^1-<it, such that, for almost all values of £,

lim    w(P) = U(0-

Proof. In view of the preceding remarks it will be sufficient to

prove with the aid of (3.3) that

(3.6) lim      ff g(P,Q)dP(Q) = 0

for almost all values of £, 0^£<27r.

Let

(3.7) «(P0) = rr (i-P)dF(Q)
*   d P>P0

and let n(po) = (e(p0))1/2. By (3.3) we have that lim,,,..! «(po)=0 and

thus that lim„0..i rj(p0) =0.

Next we shall define

(3.8) HQ=ff*dF(Q)

over the part of the ring p>po between and including the segments

La(0) and £<,(£). From the properties of <r, F(Q), and Z„(£) it follows

that for po near to one, <£(£) is a monotone increasing function of £.

In view of (3.7), $(£) remains less than 2e(p0), 0^^2tt, and $'(£)

exists for almost all values of £.
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Let E(po) be the set of values of £, 0^^<2ir, for which

(3.9) 0 g *'($) g 2,(P0)

and let CE. be the complement of E. From the relations

2ij*(po) = 2«(p0) ̂ H2t) f> f 4>'(£)tf$
«/ o

^ f    *'({)<^ ^ i»(C.£.)2»j(po)
J ce.

we may conclude that the measure of CE. does not exceed n(po).

At this set E(p0) whose complement CE. has measure not exceeding

r\ (po) we shall show

(3.10) lim sup   f f    g<p, Q)dP(Q) £ Av(Pa).

Since

lim   f f    *(/>, Q)dF(Q) = 0

uniformly in £, the left side of (3.10) is unaltered when the symbol

p>po is suppressed and the integration taken over the whole of

p<l. But then the left side of (3.10) does not depend on po; hence

since ??(po) is arbitrarily small, (3.10) once proved implies (3.6) and

establishes the theorem.

Let now

(3.11) /(M = J*J cdF(Q)

over the portion of the ring p>po between and including the segments

La(i) and La(^+t). If now £ is a point of E(p0) we have by the char-

acteristic property of E

J(Z, 0
(3.12) lim sup      ,    ^ 2r,(Po).

<-o      I 11

We may assume without loss of generality that B, the point for

which £ = 0, is a point of the set -E(po). We then write J(t) for J(0, t)

and define

(3.13) j*(t) = j(t) + \n-t)\.

It follows from (3.12) and (3.13) that
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(3.14) lim sup-^ 4?7(po).
t-o <

With the aid of (3.14) we shall prove (3.10) for the case £ = 0;

namely

(3.15) lim sup   f f g(P, Q)dP(Q) £ Av(p0),
r-LaWB   J Jp>pt

thus establishing the theorem. In order to demonstrate (3.15) we di-

vide the ring p>po into the three regions Ry, R2, and i?3 described in

§2 and establish the theorem by showing that

(3.16) lim sup   f f g(P, Q)dF(Q) £ Av(Po),      i - I, 2, 3.

We shall need Fubini's theorem and the inequalities quoted in §2.

Let

(3.17) A,(P) = J*J^ g(P,Q)dF(Q).

By (2.3) we have

r c <r -4*
Ax(P) g I      -log—^(o-.r);

J Jrx s t

and by (3.11), (3.13), and Fubini's theorem we may write

C • 1 As1
Ax(P) ^       -log— dJ*(r).

J 0    s t

But then by (2.9) and (3.14) we have that

If As2
lim sup Ai(P) ^ lim sup— I   log-dJ*(r) ^ -4tj(po);

«-•+0 «-»+o   s Jo t2

and since P—»73 implies s—»4-0, we have

(3.18) lim sup Ai(P) ^ Ati(Po).

Let

(3.19) A2(P) = J*£ g(P,Q)dF(Q).

By (2.5) we have
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A as

A,(P)s//.,?T><'->;

and by (3.11),(3.13), and Fubini's theorem we may write

As

A*(P) ^ f dj*(r).
o s2+t2

But then by (2.8) and (3.14) we have that

(" dJ*(r)
lim sup A2(P) ^ lim sup As I -^ Arj(pQ);

t-»+0 «->+o        Jo s* + t2

and since P—>B implies j—>4-0, we have

(3.20) lim sup A2(P) ^ Ai)(p0).

Let

(3.21) A8(P) = J*g{P,Q)dF{Q).

By (2.6) we have

^-dFOr.r);

and again using (3.11), (3.13), and Fubini's theorem we may write

A3(P) 5? f ^dJ*(r).

Then by (2.7) and (3.14) we have that

AdJ*(r)
lim sup AS(P) ;£ lim sup j J -— ^ An(po);

t-»+0 «->+o     J ,-0 t2

and since P—>73 implies 5—»4-0, we have finally

(3.22) lim sup AS(P) g An(fio).

Combining the results (3.18), (3.20), and (3.22) gives us (3.16),

thus proving the theorem.

(3.23) Corollary. Let C„(0) be a curve which approaches the unit

circumference at B, and is tangent to La(0) at B. Let Ca(£) be the curve

obtained by rotating the curve Ca(fi) through an angle £ about the origin.

Then if u(P) is the subharmonic function of Theorem (3.5), we have
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lim SUR  w(P) = U(k)

for almost all values of £, 0^£^27r.

Proof. The proof goes through exactly as the proof of the theorem.

The crucial part of the argument is the demonstration of Lemma (2.1)

for P on Ca(0) and Q on Ca(r), which is needed to obtain the essential

inequalities (2.3), (2.5), and (2.6). Lemma (2.1) may be proved for

such curves Ca(0) and Ca(r) if they are tangent to the lines La(0)

and La(r) respectively. If, however, the curve Ca(0) oscillated rapidly

as it approached the unit circumference, (2.1) would obviously be

false, and the proof could not be carried out. The counter-examples

in the following section need such rapidly oscillating curves.

(3.24) Corollary. For almost all values o/£, 0 ̂ £ ^ 2ir,

It is not difficult to show that X(a, £) is a measurable function of the

variables a and £. It follows from Theorem (3.5) that for fixed a,

X(a, £) = 0 for almost £. It follows immediately from Fubini's theorem

that for almost any fixed value of £, X(a, £) = 0 for almost all a. This

proves the corollary.

4. Counter-examples. In view of the remarks made at the beginning

of §3, a counter-example to Priwaloff's theorem will be any potential

function (3.4) whose associated mass distribution function, F(Q),

satisfies (3.3) but which fails to have a non-tangential limit at a set

of points on the unit circumference of positive measure.

The following counter-example is essentially the one described by

Zygmund in a letter to Tamarkin in 1943.

(4.1) Example. Consider the potential function

lim a «(P) = t/($)

for almost all values of a, a=a(£), 0^a<ir/2.

Proof. Define the function X(a, £) as

1 if lim u{P) fails to exist,

0   if       lim     u(P)   does exist.

(4.2)

Suppose the mass distribution function Pi((?) is totally discreet; that
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is, the mass is concentrated at a denumerable set E of points con-

verging to the unit circumference. For example, let

where En consists of it points equally distributed on the circumfer-

ence of the circle of radius p„ = 1 — l/n with one of the n points lying

on the positive x-axis. At each point of En place a mass of 1/2".

Then the total mass contained in the set En is n/2n and we have

Thus (3.3) is satisfied for the mass distribution function Fi(Q).

For yp such that tan-1 27r <\p <ir/2, it is not difficult to show that

for sufficiently large n at least one point from each of the sets En,

En+i, En+i, • • • lies within the sector Sf(£) for any value of £,

<2tt.
Choose a path approaching e*{ which passes through points of the

sets £„, En+X, • ■ • and remains within the sector 5*(£). At each of

these points w\(P) = 4- 00 • Thus we have that

(4.3) lim sup Wi(P) = + »

for all values of £, Og£<2ir.

Since Wi(P) satisfies (3.3) yet fails to have a finite non-tangential

limit at every point of the unit circumference, we have a counter-

example to Priwaloff's theorem.

It is interesting to note that

for almost all values of £, 0^£<27r. For Littlewood showed that the

radial limit of a potential of the form (4.2) is zero at almost all points

of the unit circumference [l, Lemma 4].

If, instead of considering sectorial approaches to the unit circum-

ference, we restrict the path of approach to lie between any two

distinct curves tangent to each other at the point ei(, the limit of the

potential function (3.4) may still fail to exist at all points of the unit

circumference. It is easy to construct such a function by simply

placing a denumerable infinity of masses on each of the circles of

radius p„ and at the same time preserve (3.3).

The final counter-example is that of a bounded superharmonic func-

tion whose associated mass distribution function F(Q) is absolutely

E = Ey 4- £2 4- E3 + ■ ■ ■ + En + ■ ■ ■

(4.4) lim inf  wi(P) = 0
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continuous. That means, for any Borel measurable subset e of the

unit circle

(4.5) F(e) = fJf(Q)dQ

where f(Q) is a non-negative Lebesgue integrable function called the

density function associated with the given superharmonic function

(see [3, 4.33]).

(4.6) Example. Let the circles C„,(P„,., i?„), « = 1,2, • • • , «, be the

it circles whose centers are at the points of the set En in (4.1) and

whose radii are Rn = l/2n. Consider the following function defined in

the unit circle.

(4.7)   w2(P) =

[0 for P outside the circles Cni;

i = 1, 2, • • • , n; n = 1, 2, • • • ,

1 - (R/Rn)ll2n    for P within one of the circles CBf

where P has polar coordinates (R, 0)

with respect to the point Pn<.

Outside the circles C„„ m>2(P) is harmonic since Aw2(P) =0 trivially.

For P within any one of the circles Cni the Laplacian is

d2Wi      1 dv>2 d2u>2
Aw2(P) = Awi(R, 0) =

dR*     R  dd dd%
(4.8) _i

■Ü - fR(l/2»)-2]

Since the Laplacian is non-positive in the unit circle, our function

(4.7) is superharmonic in the unit circle (see [3, 4.1]).

The superharmonic function (4.7) takes on the value 1 at the points

Pni of E and the value 0 in the space between the non-overlapping

circles C*t. Hence if we choose a path approaching eif through the

points of E as in (4.1), we find that w2(P) will oscillate between the

values 0 and 1. Thus at every point of the unit circumference (4.7)

fails to have a non-tangential limit.

According to Rado [3, 6.2] the density function associated with a

superharmonic function is given by the formula

(4.9) /(Q) = (-1/2t)AWj(Q).

Thus for the superharmonic function (4.10) the density function is

given by
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(4.10) /(G)

0 for Q outside the circles C„„

1 1 1

2tt 22» Rn"*

where Q is within Cni and has polar coordinates

(R, 6) with respect to P*t.

Since f(Q) in (4.10) is summable the mass distribution function, F(Q)

is absolutely continuous.

In order to show that (4.7) is our desired counter-example, it re-

mains to show that (3.3) is satisfied by F(Q). But in view of (4.5) we

may write (3.3) as

(4.11) ff (1 - P)f(Q)dQ < 4- «.

Since/(OJ =0 outside the circles Cni, * = 1, 2, • • ■ , n; n = l, 2, • • • ,

we may write the integral (4.11) as

(4.12) f f (1 " p)f(Q)dQ = £ n f f  (1 - P)M)dQ.
J J n—1     J J Cm

For Q in Cni we have that 1 —l/«4-l/2n; hence it follows from

(4,10) and (4.12) that

jf (l - p)f(Q)dQ

1+-M        I --RdRdd}
£i\      2«) IJ„    Jo    2x2»Äi'2" /

Thus (4.11) is satisfied and (4.7) is the desired counter-example.
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