ON A THEOREM OF R. MOUFANG

R. H. BRUCK

A loop is a system with a binary operation, possessing a unit 1, and such that any two of the elements in the equation xy = z uniquely determine the third. A *Moufang* loop [1, chap. 2]¹ may be characterized [by] the [identity $xy \cdot zx = (x \cdot yz)x$. The following theorem is due to R. Moufang [2].

THEOREM. If $ab \cdot c = a \cdot bc$ for three elements a, b, c of a Moufang loop, the subloop generated by them is associative.

We give a particularly simple proof for the commutative case. (This proof, although complete in itself, stems from the theory of autotopisms introduced in [1], which will be applied elsewhere to the noncommutative case.) Henceforth let G be a commutative Moufang loop. For each x in G define the permutation R(x) by yR(x) = yx. The defining relation can be written in the two forms

(1)
$$yx \cdot zx = (yz \cdot x)x, \qquad yR(x) \cdot zR(x) = (yz)R(x)^2.$$

If we take z = x in (1), $yx \cdot xx = (yx \cdot x)x$. If we replace yx by y,

$$(2) y \cdot xx = yx \cdot x$$

If x^{-1} is defined by $xx^{-1} = 1$ (so that $(x^{-1})^{-1} = x$), (1) with $z = x^{-1}$ gives $yx = (yx^{-1} \cdot x)x$, $y = yx^{-1} \cdot x$ and

(3)
$$yx \cdot x^{-1} = y$$
, $R(x)^{-1} = R(x^{-1})$.

Let \mathfrak{G} be the group generated by the R(x), and consider its elements $S = R(a_1)R(a_2) \cdots R(a_n)$, $T = R(a_1)^2R(a_2)^2 \cdots R(a_n)^2$. By (3), every element of \mathfrak{G} can be put in the form S. By repeated application of (1), $yS \cdot zS = (yz)T$. If the a_i are chosen so that 1S = 1, let y=1 and have S = T. Thus the subgroup \mathfrak{G} of \mathfrak{G} , consisting of the S with 1S = 1, is a group of automorphisms of G. We use this "remark" several times; its value lies in the readily verified fact that the elements left invariant by a set of automorphisms of a loop form a subloop.

Let *H* be the subloop of the theorem and H_1 the subset consisting of the *z* in *H* such that $ab \cdot z = a \cdot bz$. Equivalently, zS = z where *S* $= R(ab)R(a^{-1})R(b^{-1})$. By the remark, *S* induces an automorphism of *H*, so H_1 is a subloop of *H*. Moreover H_1 contains *c*, by hypothesis,

Received by the editors December 1, 1949.

¹ Numbers in brackets refer to the references cited at the end of the paper.

and a, b, by (2). Hence $H_1 = H$.

In particular, therefore, $ab \cdot c^{-1} = a \cdot bc^{-1}$. If we apply (3) and (1) in turn, $ab = (a \cdot bc^{-1})c$, $ab \cdot c = ac \cdot b$. It is now easy to see that the relation $ab \cdot c = a \cdot bc$ remains true under all permutations of $a, \overset{w}{}b, c$. We deduce among other things that $ac \cdot z = a \cdot cz$ for all z in H.

Let H_2 be the subset consisting of the y in H such that $ay \cdot z = a \cdot yz$ for all z in H. By the remark, H_2 is a subloop of H, containing a, by (2), and b, c, by the above proofs. Hence $H_2=H$.

A similar argument now gives $xy \cdot z = x \cdot yz$ for all x, y, z in H.

References

1. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. vol. 60 (1946) pp. 245-354.

2. Ruth Moufang, Zur Struktur von Alternativkörpern, Math. Ann. vol. 110 (1935) pp. 416-430.

UNIVERSITY OF WISCONSIN