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1. Introduction. The purpose of the present note is to supplement

in some points the results obtained by the authors in a previous com-

munication. Let An denote the total matric algebra of order n2 over

a field P. In [l j1 we have determined the totality of minimal identities

satisfied by A„, in all cases where n>2 or F^P2, where P2 denotes

the prime field of characteristic 2. In all these cases each minimal

polynomial is (but for a numerical factor) either a standard poly-

nomial of degree 2« or a sum of such standard polynomials. This is

not so if «^2 and F = P2.

In [l, Theorem 6] we have shown that in these two exceptional

cases nonlinear minimal polynomials do exist. In §2 of the present

note we determine the totality of the minimal identities in these ex-

ceptional cases.

In [l] it was shown that all linear minimal polynomials of a simple

or a semi-simple algebra are again the standard polynomials and

their linear combinations. In §3 we prove that in general all minimal

polynomials of a semi-simple algebra are linear, hence all results on

minimal polynomials for total matric algebras, which we have ob-

tained in [l], may be extended to simple and semi-simple algebras.

For an algebra A with a radical P we have found in [l] an identity

whose degree depends on the index of B and the orders of the simple

constituents of the difference algebra A—B. This yields an upper

bound and a lower bound for the degree of a minimal identity in the

non-semi-simple case. In §4 of the present note we show by examples

that these estimates are in a way the best possible ones.

2. The minimal polynomials in the exceptional cases. We first

dispose of the case » = 1 and F=P2, that is, Ai=P2. The only non-

linear minimal polynomial depending on one indeterminate x is the

polynomial x2+x. The only minimal polynomial depending on two

indeterminates Xi, x2 and linear in each of these ¡ndeterminates is by

[l, Theorems 1, 7] the standard polynomial 5(xi, x2) = XiX2 — x2Xi.

For an arbitrary set of indeterminates Xi, • • • , xk (A ̂ 2), denote

by Mi the module over P2 defined by the set of all minimal poly-

nomials of Ai, depending on Xi, • • • , xk. It is readily seen that a

basis of Mi is constituted by the following polynomials,
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Xi + Xi, ¿>(Xjv Xjt),

where i= 1, 2, ■ ■ ■ , k and (ji,j2) ranges over all combinations of two

letters out of k. The dimensionality of this module is, therefore,

k+Ckl2-

Consider now the algebra A2 over the field F = P2, and let /

=/(xi, • • • , xk) be a minimal polynomial of A2 (hence of degree 4) so

that each monomial of / has a degree ^ 1 in each of the x<, that is,

&^4. It is sufficient to determine all minimal polynomials satisfying

this condition, since by [l, Lemma 7] every minimal polynomial may

be represented as a sum of minimal polynomials of this type.

The elements of A2 over P2 satisfy one of the following 4 equations:

y2 = 0,       y2 = y,       y2 = 1,       y2 = y + 1

and each of these equations is satisfied by some elements of ^42.This

implies that no identity of the form: x4+ßiXs+ß2X2+ß3x+ßi = 0

(/3¿£P2) is satisfied by ^42, and hence k^2. If further fe = 4, that is,/

is linear in each of the indeterminates, by [l, Theorem 2] we know

that/ is the standard polynomial S(xi, x2, x3, x4). Thus it remains to

determine all minimal polynomials/(xi, • • • , xk) with k = 2, 3.

Consider first the case k = 3. In this case we may write/ in the

form

(i) /.-/• +A+ /i + /i
where each of the monomials of /o with a nonzero coefficient is of

degree 1 in each x¡ (that is, /0 is either zero or of degree 3) while for

t—1, each monomial of A with a nonzero coefficient has degree 2 in

Xi and degree 1 in xk, k^i. This implies that at least one of the fi,

¿sl, is not equal to 0 and we may assume that/i^O. Hence (1) isa

special case of formula (30) in [l] and we may apply the results

obtained in [l]. Thus we have according to formula (34) of [l]:

/ = /o + ctipi + a2p2 + a¡p3, «i 5¿ 0,

where pi is the sum of all 12 monomials having degree 2 in x< and

degree 1 in xk, k^i.

First apply the substitution Xi = ei2, x2 = e22, x3 = e2i., The only

monomial linear in each x< which yields under this substitution the

unit en is XiX2x3. It is readily verified that pi(ei2, e22, e2i) =0, i = l, 3,

and p2(ei2, e22, e2i) =eu. This implies that a2 is also the coefficient of

the monomial XiX2x3 of/0. A permutation of Xi and x3 in the last sub-

stitution shows that a2 is also the coefficient of the monomial x3x2Xi.

Similar results may be obtained for «i and «3, hence



322 A. S. AMITSUR AND J. LEVITSKI [April

/ = ai(x2XiX3 + X3XiX2 + pi) + a2(XiX2X3 + £3X2X1 + p2)

+ a3(xix3x2 + x2x3Xi + p3).

Now apply the substitution: Xi = en, x2 = ei2, x3 = e22. The only

monomials of / which yield ei2 are x?x2x3, Xix2x3, and XiX2x^, hence

ai+a2+a3 = 0. Since each a, is either 0 or 1, and «i^O, it follows that

either «2 = 0, a3 = 1, or a2 = 1, a3 = 0. Denote by ii, j, A) any permuta-

tion of the three indices 1, 2, 3 and put

(2) Gi = XjXiXk + xicXiXj + pi, i = 1, 2, 3;

then/ is either Gi+G2 or G1+G3. Consider the three polynomials

Hi = G2 + G3,        H2 = Gi + G3,        H3 = Gi + G2.

Each polynomial Hi is of degree 1 in x,- and of degree 2 in xk, k^i.

Since the underlying field is of characteristic 2 it follows that Hi+H2

+Ha = Q. The polynomials Hi may be transformed into each other

by changing the roles of the indeterminates, and thus it follows that

/ must be one of the three polynomials Hi, H2, H¡.

Since it was shown in [l, Theorem 6] that the identity

Q(x, y) — xy3 + yxy2 + y2xy + y3x + xy2 + y2x = 0

is satisfied by A2 over P2, and it is readily seen that

Qixi, x2 + X3) - Qixi, Xi) - Qixi, x3) = Hi(xu x2, x3),

we conclude that the identity Hi = 0 and hence, also, H2 = 0 and H3 = 0

are indeed satisfied by the algebra A2 over P2.

Thus we have:

Theorem la. The polynomial /(xi, x2, x3), where each term is of degree

^ 1 in each x,-, is a minimal polynomial of A2 over P2 if and only iff is

one of the polynomials Hi, H2, Hz.

We now turn to the case where the minimal polynomial /(yi, y2)

depends on 2 indeterminates. The polynomial / has monomials with

degree ^2 in one of the y's, say in y2. The polynomial Pi(xi, x2, x3)

defined by

Fi(xi, x2, xz) = f(xh x2 + x3) - f(xh x2) - f(xu x3)

is again a minimal polynomial of A2. It is evident that Fi is symmetric

in x2 and x3, and each term of P is of degree è 1 in each of the x's.

Hence it follows by the preceding theorem that Pi(xi, x2, xs)

= Hi(xi, x2, x3). We have already seen that

Qi(xi, x2 + xz) - Qi(xi, x2) - Qi(xi, xz) = Hi(xu x2, x3)
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where Q,(y,, y2) =yi^+y2yiy2+yb'i3'»+y2yi+yiy2S+y2yi- Hence, by

putting /,(y,, y2)=/(yi, yi)-Qi(yu yi), it follows that/,(x,, x2+x3)

—/i(xi, x2) — A(xi, Xj)sO identically in x,, x2, x3. This implies that

either A(yi, y2)=0 or/i(yi, y2) is linear in y2. In the former case we

obtain/(yi, y2)=Qi(yi, y2), while in case /,(yi, y2)^0 we know that

A(yi, y2) is again a minimal polynomial of A2 over P2 such that each

term of /, is of degree è 1 in yi and in y2. Since /, is linear in y2, it

must be of degree ^ 2 in y,. Hence, in a similar manner we show that

the polynomial F2(xi, x2, x3) =A(xi+x2, *»)—A(*i. %)-/i(x2, x3) is

equal to 773. Since the polynomial

3 2 2 3 2 2

(Myi, y2) = yiy2 + yiy2yi + yiy2yi + y2yi + yiy2 + y2yi

also satisfies Q2(xi+x2, x3)-Q2(xu x3)-Q2(x2, x3)=H3(xu x2, x3), it

follows similarly that either the polynomial A(yi, y2) — Qz(yi, y2)

=/2(yi, y2) is zero, or f2 must be linear in y,. The latter possibility

leads to a contradiction, since in this case/2 must be linear in y2 also,

which implies that the general degree of /2 is less than 4, which is

impossible, since A is a minimal polynomial of A2. This implies that

f(Vu yz)=Qi(yi, yO + QsCy,, Vi)- It has already been shown that the
identities Qi(yi, y2) =0, Q2(yi, y2) =0 hold in A2 over P2. Hence, also

the identity Qi + Q2 = Q holds in A2 over P2 and we have:

Theorem lb. A polynomial f(yu y2), such that each term of f is of

degree not less than 1 in yi and y2, is a minimal polynomial of A2 overP2

if and only if /=(?,, or f=Q2, or f=Qi + Q2.

By summarizing above results we get:

Theorem 1. Let f(xi, ■ ■ ■ , xk) be a minimal polynomial of A2 over

P2, such that each monomial of f is of a degree ^ 1 in each x<, then

2 = ¿ = 4, and:

(1) 7/ ¿ = 4 then f(xi, x2, x3, x4) =5(xi, x2, x3, x4).

(2) If k = 3 then f is one of the polynomials Hi, H2, 7T3.

(3) If k = 2 then f is one of the polynomials Qi, Q2, Qi+Q2.

Since by [l, Lemma 7] it follows that every minimal polynomial

may be represented as a sum of polynomials of the type mentioned in

the preceding theorem, we have:

Theorem 2. The module M2 defined by the minimal polynomials of

A2 over P2, depending on the indeterminates x,, x2, • ■ • , x», k^4, has

the dimensionality Ck,t + 2Ck,3+2Ck¡2. Asa basis for M2 we may choose

the polynomials:

¿(xtl, Xit, X;,, Xit), tiiyXi^ Xjj, Xit), H2(Xiv Xjj, x,-3), (¿i(Xiv Xit), (¿2(Xilt x,J
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where (ii, i2, iz, it) is an arbitrary combination of 4 letters out of k.

For k = 3 we have the basis

Hiixi, x¡, xz),       H2ixi, xt, Xz),       Qiixilt x,,),       Q(xh, x,-,)

where (*lf i2) is an arbitrary combination of 2 letters out of 3, and in

this case the dimensionality of M2 is 8.

For A = 2, the dimensionality of M2 is 2 and we have the basis

Qi(xi, xt),       Q2(xh x2).

For later reference we need the following remark.

Remark. If in Hi (resp. Qi) one ignores the order of the factors,

one obtains iii = 4xix2x3+l 2xi^x3+12x1X2X3 (resp. Çi = 2xi^ + 4xiX^).

3. Simple and semi-simple algebras. We shall need the following

generalization of Kaplansky's Lemma 3 [2].

Lemma. If an algebra A over F satisfies an identity f(xi, ■ ■ ■ , xk) = 0

which is homogeneous in each xt and of degree not greater than 2 in each

Xi, then the given identity is satisfied also by the direct product AXG,

where G is a field containing P.

Proof. We prove the lemma by induction on the number of the in-

determinates Xi whose degree in/ is 2.

By Lemma 3 in [2] our lemma holds when / is linear in each x,-.

Suppose now that f(xi, ■ ■ ■ , xk) is of degree 2 in x, where 1 ̂ t'^A

and consider the polynomial

gi(Xi, • • •  , X,_l, U, V, Xi+i, ■ ■ ■ , xk)

(3)     = f(xi, ■ ■ ■ , Xi_i, u + v, Xi+i, ■••)—/(■*• 1 Xi-i, u, xi+i, • ■ • )

-/(•••, Xi-i, V, Xi+i, ■ ■ ■ ).

This polynomial is apparently homogeneous in each of its inde-

terminates, and the number of indeterminates whose degree in gi is 2

is less than that of/. Since the identity gi = 0 holds in A, we may

assume (by induction) that the identity g, = 0 holds also in AXG.

By (3) we have, for any sequence of A +1 elements ¿1, b2, Oi, ■ • • , a<_i,

C.-+1, • • • , ak belonging to A XG, the relation

/(«1, • • ■ , «<-i, h + b2, ai+i, ■ ■ ■ , ak)

= /(•••, &!,■■•)+/(• ••,*«,•••).

Since relation (4) evidently holds also in case f(xi, •••,#*) is linear

in x,-, we may assume its validity for each xt, l^i'^A. Now each

element aEAXG has the form a= Et^j where a¡EA and y ¡EG.

Hence in view of (4) it remains only to show that/(xi, • • • , x*) =0
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for Xi = 8ibi, biEA, 5,£C7. This is evident, since /(5,6,, • • • , 8kbk)
= 8[l - • • 8"t"f(bi, - ■ • , bk) =0 where vt is the degree of x,- in /. This

completes the proof of the lemma.

With the aid of the preceding lemma we now extend Theorems 4

and S of [l] to the general case of simple algebras by proving the

following theorem:

Theorem 3. Let Abe a simple algebra of order n2 over its centre, and

suppose that A is neither P2 nor is A the total matric algebra A2 over P2.

Then f(xi, ■ • • , xm) = 0 is a minimal identity of A if and only if m

^ 2« and

f(xu ■ • • , xm) = 2 a(i)S(xil, • • • , XiJ

where the sum ranges over all Cm,2n combinations (i) of 2n letters out of

m letters, and the «(,-) are in the underlying field.

Proof. Since A is a normal simple algebra over its centre C, there

exists a field G containing C, for which AXG over C is the total

matric algebra An over G. The algebra AXG is apparently neither

the algebra A2 over P2 nor is A XG the field P2 since A is not one of

these exceptional cases. We assert first that the minimal polynomials

of A are linear in all their indeterminates. Indeed suppose that A

possesses nonlinear minimal polynomials. Then by Lemmas 5 and

6 of [l] we may assume that there exists a minimal polynomial

/(xi, • • • , xm) of A which is homogeneous and of degree not greater

than 2 in each of the x's and of degree 2 in some of them. By the

preceding lemma it follows that the identity/ = 0 is satisfied also by

the algebra AXG. But since AXG is a total matric algebra and

A XG is not one of the exceptional cases, this contradicts Theorem 5

of [l]. This implies that every minimal identity/ = 0 satisfied by A

is a linear identity. By Theorem 4 of [l] it follows, therefore, that

m^ 2«, and

^xi, *••»*») — 2 a(>)S(xh, • • •. *<»»)
«)

where a^EG. One readily verifies that a^EF, since / is a poly-

nomial in F.

By [l, Theorem 7] we know that the converse is true also, that is,

the identities of the type 2(0 au>S(xñi ' ' ' > xh»)=® are satisfied

by the algebra A. This completes the proof of the theorem.

Consider now a semi-simple algebra A over F, and suppose that A

is a direct sum of the simple algebras A', A", • • • , Aw. Denote by

n\ the order of A^ over its centre, and put «2 = max (n\, • • • , n%).
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It is readily verified2 that an identity/=0 is satisfied by A if and only

if it is satisfied by every constituent -4(i).

Consider first the following exceptional cases:

(I) All algebras AU) are isomorphic with P2. This implies n = 1 and

F = P2. Hence,/=0 is a minimal identity of A if and only if/ = 0 is a

minimal identity of P2, and these identities were determined in the

previous section.

(II) Some algebras A{i) are the algebras A2 over P2, and the re-

maining algebras A(i) (if any) are commutative fields of character-

istic 2. This implies F=P2, n = 2.

By the remark at the end of the previous section it follows that all

minimal identities of A2 over P2 are satisfied also by commutative

fields of characteristic 2. This implies that in case (II) the module of

the minimal polynomials of the algebra A is the same as the module

of the minimal polynomials of the algebra A2 over P2, and a base for

the latter module was given in Theorem 2.

Now we turn to the general case, that is, either n>2 or F?¿P2, or

in case n = 2 and F = P2, some algebra AU) is a total matric algebra

of degree 2 over a field ¿¿P2. For such algebras we prove the validity

of Theorem 3, that is:

Theorem 4. Let A be a semi-simple algebra not of the types (I) or

(II), then /(xi, • • • , xm) =0 is a minimal identity of A if and only if

m^2n, and

f(xi, ■ ■ ■ , xm) = E ali)Sixil, • • • , xhn)
(<)

where the sum ranges over all Cm,2n combinations ii) of 2« letters out of m

letters, and aa) are in F.

Proof. We have already seen that A satisfies an identity/=0 if

and only if/=0 is satisfied by every constituent Au). The minimal

identities of the algebra A 0) of order «2 = n2 over its centre are satis-

fied also by the algebra Ali) for which niSn¡ = n if either n>2 or

F^Pi, and when m = 2 and F=P2, the minimal identities of the

algebra AU) of order 4 over ¡ts centre C such that CZjP2 are also

satisfied by the other constituents A(i). This implies that / is a

minimal polynomial of A if and only if./ is a minimal polynomial of

that particular algebra Aa). Hence our theorem is an immediate

consequence of Theorem 3.

4. Algebras with radical. Let r be the index of the radical N of

2 See also [l, §4].
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the algebra B over F, and let w2 = max (n\, ■ ■ ■ , n\) where n\ are

the orders of the simple constituents of the difference algebra B — N.

We prove :

Theorem 5. Denote by m the degree of the minimal polynomial of B.

Then:

(1) 2n^m^2nr;

(2) There exist algebras B over F with the index r for which m = 2n,

as well as algebras for which m = 2nr.

Proof. By [l, Theorem 9] we know that B has identities of degree

2wr. This implies that m^2nr. Since an identity satisfied by B is

satisfied also by B — N, it follows that m^2n, that is, 2n^m^2nr.

Now let Bi=An+N denote a direct sum of a total matric algebra

An over F and a nilpotent algebra N of index t¿2n. The identity

S(xi, ■ ■ ■ , x2n) =0 is satisfied by both An and A^ and hence also by

2$,. This implies that the minimum degree mi of Bi is at most 2n.

On the other hand wzi^2ra. It follows, therefore, that mi = 2n.

Finally consider the algebra B2, defined as the algebra of all

matrices (a,*) of order r over F where aik = 0 for i>k, that is, the

ring of all matrices of order r with zeros beneath the diagonal. The

radical A^2 of this algebra is the set of all matrices (aik) where <z,* = 0

when i = &, that is, A^2 is the set of all matrices of B2 with zeros in the

diagonal, and its index is therefore equal to r. The semi-simple alge-

bra B2 — N2 is a direct sum of r commutative fields, that is, n — \. The

minimum degree m2 of T?2 is therefore subject to the inequality

2gm2 = 2r. If B2 has a polynomial identity of degree m2<2r, then

evidently it possesses also an identity of degree 2r —1. Hence, by

[2, Lemma 2], it follows that B2 possesses also an identity

/(xi, • • • , x2r-0=0 of degree 2r—1, where / is homogeneous and

linear in all the indeterminates x¿. We may assume that the coeffi-

cient a of the monomial XiX2 • • • x2r_i of / is not zero.

Now substitute x2,_1i = en, x2i = eu+i, * —1, 2, ■ ■ ■ ,r — 1, x2r_i = er,-.

The only monomial of / which yields under this substitution a non-

zero element is Xi • • • x2r_i, hence f = aen?*0 which is a contradic-

tion. This implies that m2^2r. Hence w2 = 2r, which completes the

proof of the theorem.
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