REMARKS ON MINIMAL IDENTITIES FOR ALGEBRAS ## A. S. AMITSUR AND J. LEVITZKI - 1. Introduction. The purpose of the present note is to supplement in some points the results obtained by the authors in a previous communication. Let A_n denote the total matric algebra of order n^2 over a field F. In $[1]^1$ we have determined the totality of minimal identities satisfied by A_n , in all cases where n > 2 or $F \neq P_2$, where P_2 denotes the prime field of characteristic 2. In all these cases each minimal polynomial is (but for a numerical factor) either a standard polynomial of degree 2n or a sum of such standard polynomials. This is not so if $n \leq 2$ and $F = P_2$. - In [1, Theorem 6] we have shown that in these two exceptional cases nonlinear minimal polynomials do exist. In §2 of the present note we determine the totality of the minimal identities in these exceptional cases. In [1] it was shown that all *linear* minimal polynomials of a simple or a semi-simple algebra are again the standard polynomials and their linear combinations. In §3 we prove that in general *all minimal* polynomials of a semi-simple algebra are linear, hence all results on minimal polynomials for total matric algebras, which we have obtained in [1], may be extended to simple and semi-simple algebras. For an algebra A with a radical B we have found in [1] an identity whose degree depends on the index of B and the orders of the simple constituents of the difference algebra A-B. This yields an upper bound and a lower bound for the degree of a minimal identity in the non-semi-simple case. In §4 of the present note we show by examples that these estimates are in a way the best possible ones. 2. The minimal polynomials in the exceptional cases. We first dispose of the case n=1 and $F=P_2$, that is, $A_1=P_2$. The only non-linear minimal polynomial depending on one indeterminate x is the polynomial x^2+x . The only minimal polynomial depending on two indeterminates x_1 , x_2 and linear in each of these indeterminates is by $\begin{bmatrix} 1 \end{bmatrix}$, Theorems 1, 7 the standard polynomial $S(x_1, x_2) = x_1x_2 - x_2x_1$. For an arbitrary set of indeterminates x_1, \dots, x_k $(k \ge 2)$, denote by M_1 the module over P_2 defined by the set of all minimal polynomials of A_1 , depending on x_1, \dots, x_k . It is readily seen that a basis of M_1 is constituted by the following polynomials, Received by the editors January 11, 1950. ¹ Numbers in brackets refer to the bibliography at the end of the paper. $$x_i^2 + x_i, \qquad S(x_{i_1}, x_{i_2}),$$ where $i = 1, 2, \dots, k$ and (j_1, j_2) ranges over all combinations of two letters out of k. The dimensionality of this module is, therefore, $k + C_{k,2}$. Consider now the algebra A_2 over the field $F = P_2$, and let $f = f(x_1, \dots, x_k)$ be a minimal polynomial of A_2 (hence of degree 4) so that each monomial of f has a degree ≥ 1 in each of the x_i , that is, $k \leq 4$. It is sufficient to determine all minimal polynomials satisfying this condition, since by [1, Lemma 7] every minimal polynomial may be represented as a sum of minimal polynomials of this type. The elements of A_2 over P_2 satisfy one of the following 4 equations: $$y^2 = 0$$, $y^2 = y$, $y^2 = 1$, $y^2 = y + 1$ and each of these equations is satisfied by some elements of A_2 . This implies that no identity of the form: $x^4 + \beta_1 x^3 + \beta_2 x^2 + \beta_3 x + \beta_4 = 0$ $(\beta_i \in P_2)$ is satisfied by A_2 , and hence $k \ge 2$. If further k = 4, that is, f is linear in each of the indeterminates, by [1, Theorem 2] we know that f is the standard polynomial $S(x_1, x_2, x_3, x_4)$. Thus it remains to determine all minimal polynomials $f(x_1, \dots, x_k)$ with k = 2, 3. Consider first the case k=3. In this case we may write f in the form $$f = f_0 + f_1 + f_2 + f_3$$ where each of the monomials of f_0 with a nonzero coefficient is of degree 1 in each x_j (that is, f_0 is either zero or of degree 3) while for $i \ge 1$, each monomial of f_i with a nonzero coefficient has degree 2 in x_i and degree 1 in x_k , $k \ne i$. This implies that at least one of the f_i , $i \ge 1$, is not equal to 0 and we may assume that $f_1 \ne 0$. Hence (1) is a special case of formula (30) in [1] and we may apply the results obtained in [1]. Thus we have according to formula (34) of [1]: $$f = f_0 + \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3, \qquad \alpha_1 \neq 0,$$ where p_i is the sum of all 12 monomials having degree 2 in x_i and degree 1 in x_k , $k \neq i$. First apply the substitution $x_1 = e_{12}$, $x_2 = e_{22}$, $x_3 = e_{21}$. The only monomial linear in each x_i which yields under this substitution the unit e_{11} is $x_1x_2x_3$. It is readily verified that $p_i(e_{12}, e_{22}, e_{21}) = 0$, i = 1, 3, and $p_2(e_{12}, e_{22}, e_{21}) = e_{11}$. This implies that α_2 is also the coefficient of the monomial $x_1x_2x_3$ of f_0 . A permutation of x_1 and x_3 in the last substitution shows that α_2 is also the coefficient of the monomial $x_3x_2x_1$. Similar results may be obtained for α_1 and α_3 , hence $$f = \alpha_1(x_2x_1x_3 + x_3x_1x_2 + p_1) + \alpha_2(x_1x_2x_3 + x_3x_2x_1 + p_2) + \alpha_3(x_1x_3x_2 + x_2x_3x_1 + p_3).$$ Now apply the substitution: $x_1 = e_{11}$, $x_2 = e_{12}$, $x_3 = e_{22}$. The only monomials of f which yield e_{12} are $x_1^2x_2x_3$, $x_1x_2x_3$, and $x_1x_2x_3^2$, hence $\alpha_1 + \alpha_2 + \alpha_3 = 0$. Since each α_i is either 0 or 1, and $\alpha_1 \neq 0$, it follows that either $\alpha_2 = 0$, $\alpha_3 = 1$, or $\alpha_2 = 1$, $\alpha_3 = 0$. Denote by (i, j, k) any permutation of the three indices 1, 2, 3 and put (2) $$G_i = x_i x_i x_k + x_k x_i x_j + p_i, \qquad i = 1, 2, 3;$$ then f is either G_1+G_2 or G_1+G_3 . Consider the three polynomials $$H_1 = G_2 + G_3$$, $H_2 = G_1 + G_3$, $H_3 = G_1 + G_2$. Each polynomial H_i is of degree 1 in x_i and of degree 2 in x_k , $k \neq i$. Since the underlying field is of characteristic 2 it follows that $H_1 + H_2 + H_3 = 0$. The polynomials H_i may be transformed into each other by changing the roles of the indeterminates, and thus it follows that f must be one of the three polynomials H_1 , H_2 , H_3 . Since it was shown in [1, Theorem 6] that the identity $$O(x, y) = xy^3 + yxy^2 + y^2xy + y^3x + xy^2 + y^2x = 0$$ is satisfied by A_2 over P_2 , and it is readily seen that $$Q(x_1, x_2 + x_3) - Q(x_1, x_2) - Q(x_1, x_3) = H_1(x_1, x_2, x_3),$$ we conclude that the identity $H_1 = 0$ and hence, also, $H_2 = 0$ and $H_3 = 0$ are indeed satisfied by the algebra A_2 over P_2 . Thus we have: THEOREM 1a. The polynomial $f(x_1, x_2, x_3)$, where each term is of degree ≥ 1 in each x_i , is a minimal polynomial of A_2 over P_2 if and only if f is one of the polynomials H_1 , H_2 , H_3 . We now turn to the case where the minimal polynomial $f(y_1, y_2)$ depends on 2 indeterminates. The polynomial f has monomials with degree ≥ 2 in one of the y's, say in y_2 . The polynomial $F_1(x_1, x_2, x_3)$ defined by $$F_1(x_1, x_2, x_3) = f(x_1, x_2 + x_3) - f(x_1, x_2) - f(x_1, x_3)$$ is again a minimal polynomial of A_2 . It is evident that F_1 is symmetric in x_2 and x_3 , and each term of F_1 is of degree ≥ 1 in each of the x's. Hence it follows by the preceding theorem that $F_1(x_1, x_2, x_3) \equiv H_1(x_1, x_2, x_3)$. We have already seen that $$O_1(x_1, x_2 + x_3) - O_1(x_1, x_2) - O_1(x_1, x_3) = H_1(x_1, x_2, x_3)$$ where $Q_1(y_1, y_2) = y_1y_2^3 + y_2y_1y_2^2 + y_2^2y_1y_2 + y_2^3y_1 + y_1y_2^2 + y_2^2y_1$. Hence, by putting $f_1(y_1, y_2) = f(y_1, y_2) - Q_1(y_1, y_2)$, it follows that $f_1(x_1, x_2 + x_3) - f_1(x_1, x_2) - f_1(x_1, x_3) \equiv 0$ identically in x_1, x_2, x_3 . This implies that either $f_1(y_1, y_2) \equiv 0$ or $f_1(y_1, y_2)$ is linear in y_2 . In the former case we obtain $f(y_1, y_2) \equiv Q_1(y_1, y_2)$, while in case $f_1(y_1, y_2) \not\equiv 0$ we know that $f_1(y_1, y_2)$ is again a minimal polynomial of A_2 over P_2 such that each term of f_1 is of degree ≥ 1 in y_1 and in y_2 . Since f_1 is linear in y_2 , it must be of degree ≥ 2 in y_1 . Hence, in a similar manner we show that the polynomial $F_2(x_1, x_2, x_3) = f_1(x_1 + x_2, x_3) - f_1(x_1, x_3) - f_1(x_2, x_3)$ is equal to H_3 . Since the polynomial $$Q_2(y_1, y_2) = y_1^3 y_2 + y_1^2 y_2 y_1 + y_1 y_2 y_1^2 + y_2 y_1^3 + y_1^2 y_2 + y_2 y_1^2$$ also satisfies $Q_2(x_1+x_2, x_3)-Q_2(x_1, x_3)-Q_2(x_2, x_3)=H_3(x_1, x_2, x_3)$, it follows similarly that either the polynomial $f_1(y_1, y_2)-Q_2(y_1, y_2)=f_2(y_1, y_2)$ is zero, or f_2 must be linear in y_1 . The latter possibility leads to a contradiction, since in this case f_2 must be linear in y_2 also, which implies that the general degree of f_2 is less than 4, which is impossible, since f_2 is a minimal polynomial of A_2 . This implies that $f(y_1, y_2) = Q_1(y_1, y_2) + Q_2(y_1, y_2)$. It has already been shown that the identities $Q_1(y_1, y_2) = 0$, $Q_2(y_1, y_2) = 0$ hold in A_2 over P_2 . Hence, also the identity $Q_1 + Q_2 = 0$ holds in A_2 over P_2 and we have: THEOREM 1b. A polynomial $f(y_1, y_2)$, such that each term of f is of degree not less than 1 in y_1 and y_2 , is a minimal polynomial of A_2 over P_2 if and only if $f = Q_1$, or $f = Q_2$, or $f = Q_1 + Q_2$. By summarizing above results we get: THEOREM 1. Let $f(x_1, \dots, x_k)$ be a minimal polynomial of A_2 over P_2 , such that each monomial of f is of a degree ≥ 1 in each x_i , then $2 \leq k \leq 4$, and: - (1) If k = 4 then $f(x_1, x_2, x_3, x_4) = S(x_1, x_2, x_3, x_4)$. - (2) If k=3 then f is one of the polynomials H_1 , H_2 , H_3 . - (3) If k=2 then f is one of the polynomials Q_1, Q_2, Q_1+Q_2 . Since by [1, Lemma 7] it follows that every minimal polynomial may be represented as a sum of polynomials of the type mentioned in the preceding theorem, we have: THEOREM 2. The module M_2 defined by the minimal polynomials of A_2 over P_2 , depending on the indeterminates $x_1, x_2, \dots, x_k, k \ge 4$, has the dimensionality $C_{k,4}+2C_{k,3}+2C_{k,2}$. As a basis for M_2 we may choose the polynomials: $$S(x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}), H_1(x_{i_1}, x_{i_2}, x_{i_3}), H_2(x_{i_1}, x_{i_2}, x_{i_3}), Q_1(x_{i_1}, x_{i_2}), Q_2(x_{i_1}, x_{i_2})$$ where (i_1, i_2, i_3, i_4) is an arbitrary combination of 4 letters out of k. For k = 3 we have the basis $$H_1(x_1, x_2, x_3), \qquad H_2(x_1, x_2, x_3), \qquad Q_1(x_{i_1}, x_{i_2}), \qquad Q(x_{i_1}, x_{i_2})$$ where (i_1, i_2) is an arbitrary combination of 2 letters out of 3, and in this case the dimensionality of M_2 is 8. For k=2, the dimensionality of M_2 is 2 and we have the basis $$Q_1(x_1, x_2), Q_2(x_1, x_2).$$ For later reference we need the following remark. REMARK. If in H_1 (resp. Q_1) one ignores the order of the factors, one obtains $H_1 = 4x_1x_2x_3 + 12x_1x_2^2x_3 + 12x_1x_2x_3^2$ (resp. $Q_1 = 2x_1x_2^2 + 4x_1x_2^3$). 3. Simple and semi-simple algebras. We shall need the following generalization of Kaplansky's Lemma 3 [2]. LEMMA. If an algebra A over F satisfies an identity $f(x_1, \dots, x_k) = 0$ which is homogeneous in each x_i and of degree not greater than 2 in each x_i , then the given identity is satisfied also by the direct product $A \times G$, where G is a field containing F. PROOF. We prove the lemma by induction on the number of the indeterminates x_i , whose degree in f is 2. By Lemma 3 in [2] our lemma holds when f is linear in each x_i . Suppose now that $f(x_1, \dots, x_k)$ is of degree 2 in x_i where $1 \le i \le k$ and consider the polynomial $$g_{i}(x_{1}, \dots, x_{i-1}, u, v, x_{i+1}, \dots, x_{k})$$ $$(3) = f(x_{1}, \dots, x_{i-1}, u + v, x_{i+1}, \dots) - f(\dots, x_{i-1}, u, x_{i+1}, \dots)$$ $$- f(\dots, x_{i-1}, v, x_{i+1}, \dots).$$ This polynomial is apparently homogeneous in each of its indeterminates, and the number of indeterminates whose degree in g_i is 2 is less than that of f. Since the identity $g_i = 0$ holds in A, we may assume (by induction) that the identity $g_i = 0$ holds also in $A \times G$. By (3) we have, for any sequence of k+1 elements $b_1, b_2, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_k$ belonging to $A \times G$, the relation (4) $$f(a_1, \dots, a_{i-1}, b_1 + b_2, a_{i+1}, \dots, a_k) = f(\dots, b_1, \dots) + f(\dots, b_2, \dots).$$ Since relation (4) evidently holds also in case $f(x_1, \dots, x_k)$ is linear in x_i , we may assume its validity for each x_i , $1 \le i \le k$. Now each element $a \in A \times G$ has the form $a = \sum \gamma_i a_i$ where $a_i \in A$ and $\gamma_i \in G$. Hence in view of (4) it remains only to show that $f(x_1, \dots, x_k) = 0$ for $x_i = \delta_i b_i$, $b_i \in A$, $\delta_i \in G$. This is evident, since $f(\delta_1 b_1, \dots, \delta_k b_k) = \delta_1^{\nu_1} \dots \delta_k^{\nu_k} f(b_1, \dots, b_k) = 0$ where ν_i is the degree of x_i in f. This completes the proof of the lemma. With the aid of the preceding lemma we now extend Theorems 4 and 5 of [1] to the general case of simple algebras by proving the following theorem: THEOREM 3. Let A be a simple algebra of order n^2 over its centre, and suppose that A is neither P_2 nor is A the total matric algebra A_2 over P_2 . Then $f(x_1, \dots, x_m) = 0$ is a minimal identity of A if and only if $m \ge 2n$ and $$f(x_1, \dots, x_m) = \sum_{(i)} \alpha_{(i)} S(x_{i_1}, \dots, x_{i_{2n}})$$ where the sum ranges over all $C_{m,2n}$ combinations (i) of 2n letters out of m letters, and the $\alpha_{(i)}$ are in the underlying field. **PROOF.** Since A is a normal simple algebra over its centre C, there exists a field G containing C, for which $A \times G$ over C is the total matric algebra A_n over G. The algebra $A \times G$ is apparently neither the algebra A_2 over P_2 nor is $A \times G$ the field P_2 since A is not one of these exceptional cases. We assert first that the minimal polynomials of A are linear in all their indeterminates. Indeed suppose that A possesses nonlinear minimal polynomials. Then by Lemmas 5 and 6 of [1] we may assume that there exists a minimal polynomial $f(x_1, \dots, x_m)$ of A which is homogeneous and of degree not greater than 2 in each of the x's and of degree 2 in some of them. By the preceding lemma it follows that the identity f = 0 is satisfied also by the algebra $A \times G$. But since $A \times G$ is a total matric algebra and $A \times G$ is not one of the exceptional cases, this contradicts Theorem 5 of [1]. This implies that every minimal identity f=0 satisfied by A is a linear identity. By Theorem 4 of [1] it follows, therefore, that $m \ge 2n$, and $$f(x_1, \cdots, x_m) = \sum_{(i)} \alpha_{(i)} S(x_{i_1}, \cdots, x_{i_{2n}})$$ where $\alpha_{(i)} \in G$. One readily verifies that $\alpha_{(i)} \in F$, since f is a polynomial in F. By [1, Theorem 7] we know that the converse is true also, that is, the identities of the type $\sum_{(i)} \alpha_{(i)} S(x_{i_1}, \dots, x_{i_{2n}}) = 0$ are satisfied by the algebra A. This completes the proof of the theorem. Consider now a semi-simple algebra A over F, and suppose that A is a direct sum of the simple algebras A', A'', \cdots , $A^{(k)}$. Denote by n_1^2 the order of $A^{(i)}$ over its centre, and put $n^2 = \max (n_1^2, \cdots, n_k^2)$. It is readily verified² that an identity f = 0 is satisfied by A if and only if it is satisfied by every constituent $A^{(i)}$. Consider first the following exceptional cases: - (I) All algebras $A^{(i)}$ are isomorphic with P_2 . This implies n=1 and $F=P_2$. Hence, f=0 is a minimal identity of A if and only if f=0 is a minimal identity of P_2 , and these identities were determined in the previous section. - (II) Some algebras $A^{(i)}$ are the algebras A_2 over P_2 , and the remaining algebras $A^{(i)}$ (if any) are commutative fields of characteristic 2. This implies $F = P_2$, n = 2. By the remark at the end of the previous section it follows that all minimal identities of A_2 over P_2 are satisfied also by commutative fields of characteristic 2. This implies that in case (II) the module of the minimal polynomials of the algebra A is the same as the module of the minimal polynomials of the algebra A_2 over P_2 , and a base for the latter module was given in Theorem 2. Now we turn to the general case, that is, either n > 2 or $F \neq P_2$, or in case n = 2 and $F = P_2$, some algebra $A^{(i)}$ is a total matric algebra of degree 2 over a field $\neq P_2$. For such algebras we prove the validity of Theorem 3, that is: THEOREM 4. Let A be a semi-simple algebra not of the types (I) or (II), then $f(x_1, \dots, x_m) = 0$ is a minimal identity of A if and only if $m \ge 2n$, and $$f(x_1, \dots, x_m) = \sum_{(i)} \alpha_{(i)} S(x_{i_1}, \dots, x_{i_{2n}})$$ where the sum ranges over all $C_{m,2n}$ combinations (i) of 2n letters out of m letters, and $\alpha_{(i)}$ are in F. PROOF. We have already seen that A satisfies an identity f=0 if and only if f=0 is satisfied by every constituent $A^{(i)}$. The minimal identities of the algebra $A^{(j)}$ of order $n_j^2 = n^2$ over its centre are satisfied also by the algebra $A^{(i)}$ for which $n_i \leq n_j = n$ if either n > 2 or $F \neq P_2$, and when n=2 and $F=P_2$, the minimal identities of the algebra $A^{(j)}$ of order 4 over its centre C such that $C \supset P_2$ are also satisfied by the other constituents $A^{(i)}$. This implies that f is a minimal polynomial of A if and only if f is a minimal polynomial of that particular algebra $A^{(j)}$. Hence our theorem is an immediate consequence of Theorem 3. 4. Algebras with radical. Let r be the index of the radical N of ² See also [1, §4]. the algebra B over F, and let $n^2 = \max (n_1^2, \dots, n_k^2)$ where n_i^2 are the orders of the simple constituents of the difference algebra B - N. We prove: THEOREM 5. Denote by m the degree of the minimal polynomial of B. Then: - (1) $2n \leq m \leq 2nr$; - (2) There exist algebras B over F with the index r for which m = 2n, as well as algebras for which m = 2nr. PROOF. By [1, Theorem 9] we know that B has identities of degree 2nr. This implies that $m \le 2nr$. Since an identity satisfied by B is satisfied also by B-N, it follows that $m \ge 2n$, that is, $2n \le m \le 2nr$. Now let $B_1 = A_n + N$ denote a direct sum of a total matric algebra A_n over F and a nilpotent algebra N of index $t \le 2n$. The identity $S(x_1, \dots, x_{2n}) = 0$ is satisfied by both A_n and N and hence also by B_1 . This implies that the minimum degree m_1 of B_1 is at most 2n. On the other hand $m_1 \ge 2n$. It follows, therefore, that $m_1 = 2n$. Finally consider the algebra B_2 , defined as the algebra of all matrices (a_{ik}) of order r over F where $a_{ik}=0$ for i>k, that is, the ring of all matrices of order r with zeros beneath the diagonal. The radical N_2 of this algebra is the set of all matrices (a_{ik}) where $a_{ik}=0$ when $i \ge k$, that is, N_2 is the set of all matrices of B_2 with zeros in the diagonal, and its index is therefore equal to r. The semi-simple algebra B_2-N_2 is a direct sum of r commutative fields, that is, n=1. The minimum degree m_2 of B_2 is therefore subject to the inequality $2 \le m_2 \le 2r$. If B_2 has a polynomial identity of degree $m_2 < 2r$, then evidently it possesses also an identity of degree 2r-1. Hence, by [2, Lemma 2], it follows that B_2 possesses also an identity $f(x_1, \dots, x_{2r-1}) = 0$ of degree 2r-1, where f is homogeneous and linear in all the indeterminates x_i . We may assume that the coefficient α of the monomial $x_1x_2 \cdots x_{2r-1}$ of f is not zero. Now substitute $x_{2i-1} = e_{ii}$, $x_{2i} = e_{ii+1}$, $i = 1, 2, \dots, r-1$, $x_{2r-1} = e_{rr}$. The only monomial of f which yields under this substitution a nonzero element is $x_1 \cdot \cdot \cdot x_{2r-1}$, hence $f = \alpha e_{11} \neq 0$ which is a contradiction. This implies that $m_2 \geq 2r$. Hence $m_2 = 2r$, which completes the proof of the theorem. ## BIBLIOGRAPHY - 1. A. S. Amitsur and J. Levitzki, *Minimal identities for algebras*, Proceedings of the American Mathematical Society vol. 1 (1950) pp. 449–463. - 2. I. Kaplansky, Rings and a polynomial identity, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 575-580. JERUSALEM UNIVERSITY