
SOME REMARKS ON COMMUTATORS

OVSTEIN ORE

In a group the product of two commutators need not be a com-

mutator, consequently the commutator group of a given group can-

not be defined as the set of all commutators, but only as the group

generated by these. There seems to exist very little in the way of

criteria or investigations on the question when all elements of the

commutator group are commutators. In the following it is shown

that in the finite symmetric group Sn all elements of the alternating

group are commutators; one can extend this and show that when

w^5 all elements in the alternating group are commutators of ele-

ments in A„. For the infinite symmetric group the situation is dif-

ferent since we obtain: Any one-to-one correspondence of an infinite

set to itself is a commutator.

1. We shall begin by making a few general remarks which apply

both to the finite and the infinite cases. Any one-to-one corre-

spondence T of an arbitrary set 5 to itself can be written uniquely as

a product of cycles which operate on disjoint sets of elements

(i) t = n e~
These cycles may be finite of the type Qn = (l, 2, • • • , n) or infinite

of the type

(2) <?.-(•••,-2,-1, 0, 1,2,. ••)•

One transforms T by another correspondence U

V = UTU-1

by performing the substitutions of U in each of the cycles of T. Thus

two such correspondences T and T' are transforms or similar if and

only if they have conformai cyclic decompositions (1), that is, there

exists a one-to-one correspondence between their cycles for each order

n = \, 2, • • • , co.

Since one obtains the inverse of a correspondence by reversing the

order in a cycle, T and T~x are conformai. Furthermore, a com-

mutator has the form

K = A-BA-iB-1

so that we arrive at the following criterion which we shall use in the

following
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Lemma. A correspondence T is a commutator if and only if it can be

written as a product

(3) T=V-V

of two conformai correspondences V and V.

We shall also need the observation that if Kx and K2 are two com-

mutators

Ki = AiBiAi Bi ,        K2 = A2B2A2 B2

where Ai and Bi commute with A2 and B2, then the product

KiK2 = K2Ki = (AiA2)(BiB2)(AxA2)-i(BiB2)-i

is a commutator, and similarly for an arbitrary number of factors.

This remark makes it possible to find commutators equal to certain

parts of a product (1) in the elements which these cycles involve and

combine them to a commutator representation for T.

Let us also remark that any one-to-one correspondence T of the

set S to itself may be regarded as such a correspondence for sets S' > S,

obtained by adding to the cyclic expansion (1) the single element

cycles Qi = (a1) for the elements a' in S' — S.

2. For the symmetric group S„ of a finite set of n elements the

alternating group An is the commutator group and in this instance

we can show:

Theorem 1. Every element in the alternating group An is a com-

mutator of 2„.

Proof. Let T be a permutation in An. Its cyclic decomposition

(1) may contain cycles of odd order and an even number of cycles of

even order. Our theorem follows, therefore, if one can show that

every cycle of odd order and every pair of cycles of even order are

commutators in the elements they involve.

For a cycle of odd order

(4) Q2i+i - (1, 2, • • • , 2i + 1)

one has the representation

(5) C«+i - (1, 2, • • • , » + l)(i + 1, i + 2, ■ ■ ■ , 2i + 1)

in the form (3) of the lemma, namely, as the product of cycles of

order i+i. [All products of permutations are executed from right to

left in the following. ]

Next let
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(6) C« - (1. 2, . • ■ , 2i),       D2i = (2i + 1, • • • , 2» + 2j)

be a pair of even order cycles where we suppose that j^i. Then one

can write

e*Dti - (1, 2, • • • , 2*. 1% + 1, • • • , * +j + 1)

(2Í, ¿ + 7+ 1, Î + / + 2, ••• ,2i+ 2/)

and we have again a representation (3) as the product of two cycles

of order i+j+i.

3. Let us now turn to the infinite symmetric group 2s of some set

5. It is clear that there exist one-to-one correspondences T of S to

itself, which are commutators and actually involve all elements in S,

for instance, the elements in 5 may be paired into transpositions

with T as their product. Since the commutator group is normal it

follows from a theorem of R. Baer (Studia Mathematica vol. 5 (1934)

pp. 15-17) on the infinite symmetric group that 2 s is its own com-

mutator group when S is infinite.

An essential new element in the infinite case is the occurrence of

the infinite cycles (2). We shall now show:

Theorem 2. Every infinite cycle is a commutator in the elements it

involves.

Proof. It is clear that it suffices to show the existence of a single

infinite cycle which is a commutator in its elements. The subsequent

construction may appear relatively complicated, but I have been un-

able to find any simpler procedure.

An infinite cycle involves a denumerable set of elements and for our

purposes it is advantageous to represent them by two-way indices

(8) aij, i = 0, ±1, ±2, ■•• ;/ = 0, 1, 2, ••-,

which is also a denumerable set. In this notation we construct the in-

finite set of infinite cycles

Aj = ( • • • , «_!,,-, «o,j, «i,,-, ■ • • ), 7 = 0, 1, 2, • • • ,

without common elements; their product shall be denoted by

(9) A = f[Aj.

When the elements (8) are interpreted as lattice points in the upper

half of the coordinate plane the correspondence (9) has the effect of

moving each element one step to the right on the lines parallel to the

x-axis.



310 OYSTEIN ORE [April

Our second correspondence is also an infinite product of infinite

cycles

00

(10) B = II Bi

where the cycles Bi are defined as follows:

Bi = ( • • • , a_i,2, ff-i,i, a-1,0, ii,o, ffi.i, ai,2, • • • )i

B2 — ( • • • , "-2,2, i-2,i, i-2,o, «o,o, a2¡o, a2li, a2l2, • ■ • ),

and in general

Bi  =   ( • • •  , 1_i,2, 1-i,l, 1-i,0, «0,i-2, 1t,0, i¿,i, i«,2,  •  •  •  )•

One can describe 73< geometrically: Under it, each lattice point in

the — ith column moves one step downward and when one reaches

the x-axis it jumps to the point a0,,-2 on the y-axis and from there to

the zero-point in the ¿th column on which it moves upward again.

The cycle Bi is slightly irregular since it contains no lattice point on

the y-axis.

From these constructions it is clear that both A and B are one-to-

one correspondences of S to itself leaving no element fixed. Further-

more, the cyclic product decompositions (9) and (10) show that they

are conformai. According to the lemma the product

(11) C = BA-*

is therefore a commutator and the proof of Theorem 2 follows from

the fact that Q is actually an infinite cycle involving all elements (8).

We leave it to the reader to verify that Q is the cycle

e-(.
ff0,4,  1-1,3,  1—2,2,  1-3,1,  1—4,0,

10,3,  1-1,2,  1-2,1,   1-3,0,

10,2,  1-1,1,  1-2,0,

1o,l,  1-1,0,

10,0,

1l,0,

12,0,  1l,l,

13,0,  l2,li   11,2,

(12)
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As one sees, Q represents a diagonal progress, through the lattice

points of the two quadrants.

4. Before we can give a proof of the main theorem on infinite cor-

respondences we shall need a few other auxiliary results. The first of

these is the following theorem.

Theorem 3. A product of two cycles without common elements is a

commutator, provided one of the cycles is infinite.

Proof. When both cycles are infinite the statement is a direct

consequence of the lemma. To produce a product of an infinite cycle

and a finite cycle of arbitrary length a we notice that we need only

multiply the cycle (2) by the transposition (0, a) since

(13) e„(0, «) = (•••, -1, 0, « +1,«+ 2, •••)■(!, 2, ••• ,«).

We shall therefore multiply the cycle Q in (12) on the right by some

transposition

(14) X = («i,,, ak,i).

To obtain a product QX conformai with (13) we can even choose

üi,¡ and ak,i in the same line in (12), provided this line is taken so high

up that its length exceeds a.

When (11) is multiplied by X the result is

(15) Q-X = B-(XA)-\

According to our selection of the two elements a,-,;- and ak¡i in (14)

the multiplication XA will affect only two of the infinite cycles in

A, namely, A¡ and Ai. But one verifies that

XAjAi =(•••, «i_2,j, «i-i,/, ak,i, ak+i,i, ■ ■ ■ )

•(•■•,  «*-2,i,  «fc-l,i,  «¡,J,  «¿+l,)i   -   -   •   )

so that this product is again a product of two infinite cycles. There-

fore, XA is conformai to A and to B, and from (15) we conclude,

by means of the lemma, that (f Xand therefore (13) is a commutator.

Next we show:

Theorem 4. A correspondence is a commutator when its cyclic de-

composition is an infinite sequence of cycles of finite orders greater than

or equal to 2.

Proof. Let

(16) P - • • • («!, • • • , ah)(bi, ■ ■ ■ , bi,)icu • • • , d,) ■ ■ •
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be the given correspondence. If there should be an infinite number of

cycles of even order these may be arranged in pairs which are com-

mutators in the elements they involve. The cycles of odd orders are

already commutators in their elements so that P becomes a com-

mutator. Hence we can assume that there are only a finite number of

cycles of even order, in particular, there shall be only a finite number

of transpositions in (16).

We now multiply (16) on the right by

(17)     A = (•■■, ai, ah, bh bh, ch c,„ •••)••• (a2) • • • (b2) ■ - ■ .

According to the remark just made, A in (17) consists of one infinite

cycle and a denumerable set of fixed elements. For the product

B = PA

one finds the expression

B =(■••, i2, 13, • • • , i¿i, b2, ■ ■ ■ , bi2, c2, ■ ■ ■ , Ciz, ■ • • )

■ ■ ■ (ai)(bi)(ci) • ■ ■

which is also an infinite cycle and a denumerable set of fixed points.

We conclude that A and B are conformai and according to the lemma

P is a commutator.

Somewhat surprising at first sight is the following fact.

Theorem 5. Every finite permutation in an infinite set is a com-

mutator.

Proof. It is evident that this is not true within the finite set of

elements involved in the permutation ; however, the construction can

always be performed within a denumerable set. Let us first take the

given permutation to be a single finite cycle

P = (11, i2, • • ■ , i<).

In the basic set 5 we select two disjoint infinite sequences

Sa =   {   • • '  1 1-2, 1-1, lo, 1l, * • •  , 1<, 1«+1,  "  " '   } ' ^6 =   { &1, Ô2, •  • •   } .

Within the set Sa+Sb we form two correspondences, namely first

Qa= (• ■ ■ , 1-2, 1-1, io, 11, • • • , i.-, 1.-+1, • • • )(bi)(b2) • • •

consisting of a single cycle in the elements in Sa and having the ele-

ments in S& as fixed points and secondly

Q'a = ( • ■ • , ii+2, «<+!, ii, io, 1-1, • • • H12) • • • (ai)(bi)(b2) • • • .
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These two correspondences are clearly conformai and since

p«#e.
it is a commutator.

When the permutation is a product of a finite number of cycles

we select 2r disjoint sequences 5«' and Sf from 5 and proceed in the

same manner for each cycle.

We are now in a position to prove the main theorem.

Theorem 6. Any one-to-one correspondence of an infinite set to itself

is a commutator.

Proof. As before let (1) be the cyclic decomposition of the cor-

respondence P which we want to examine. If there exists an infinite

number or an even number of cycles of even order these may be

paired and a corresponding commutator may be constructed in these

elements according to the preceding. The infinite cycles and the

cycles of odd orders are already commutators in their elements so

that T itself becomes a commutator.

We may therefore assume that the number of cycles of even order

is finite and odd. If there is some cycle of infinite order one of the

cycles of even order may be combined with it to give a commutator

according to Theorem 3; again we conclude that T itself is a com-

mutator. When one has no infinite cycles but an infinite number of

finite cycles, these may be arranged in infinite sequences as in

Theorem 4 and T is a commutator. This leaves us finally with the

finite permutations and these are taken care of by Theorem 5.

5. A more thorough investigation whose details we shall omit here

makes it possible to establish the stronger form of Theorem 1.

Theorem 7. When »à5 every element in the alternating group An

is a commutator of elements in A„.

It is possible that a similar theorem holds for any simple group of

finite order, but it seems that at present we do not have the necessary

methods to investigate the question.

[In the previously mentioned paper by Baer all normal subgroups

of the group 2 of all one-to-one correspondences of an infinite set S to

itself are determined. They form a composition chain

1 < Ao <2o < • • • <2j$< • • • <2
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where A o is the group of all finite, even permutations, 20 the group

of all finite permutations and for each cardinal number fr$ the group

2j$ consists of all correspondences involving at most N elements.

The preceding considerations are sufficient (as pointed out by the

referee) to show that each of them consists only of its own com-

mutators with the obvious exception of So whose commutators

form A o- ]

Yale University

NOTE ON A LEMMA OF A. W. GOODMAN

E.G.-RODEJA F.

In a recent and interesting paper on /»-valent functions by A. W.

Goodman we find the following lemma.1

Lemma 1. For all integers n^k^i

» (-1)-+*2»Ä -=»       , 2 »

(1) £  ,      ,   ,w-777II (»   - « ) - *»■m-* (m + k) l(m - k) ! a=i

and for all integers w>£§;li/3 = l,

n m—1 n

(2)        e (-i)"*n (n* - a") n («» - W) = o.
m=k a=l a»m.+l

Here the empty product is unity by definition.

The identity (1), which is the first half of the lemma, has been

used in the said paper, while (2) is stated onlv as a generalization of

(1).
In this note we intend to establish the identities (13) and (14)

(where Fn and Gn are arbitrary functions of the natural number n),

including the afore mentioned as particular cases; and for their

demonstration we- shall follow a method in part similar to the one

used in the paper quoted.

Let A„m) be a function of the natural numbers n and m satisfying

the conditions (a) A^ = ^ \in<m, (b) A^^l if««».

H(p, k, n) is defined by
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