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1. Introduction. The starting point of the present investigation is

the following result of Dunford1 [3, p. 8].

Theorem (Dunford). Let G be a semi-group of bounded linear

operators on a normed linear space X where (a) G is bounded, (b) G is

abelian, and (c) the elements of G have a (common) nonzero fixed point.2

Then the semigroup G* = {T*\ TEG] of adjoints of elements in G has

a nonzero fixed point (in X*).

That such theorems, when applied to the space X of bounded func-

tions on a set S, have measure-theoretic significance was noted in

[3]. Let 77 be a semi-group of 1-1 transformations of S into S. To

each a EH we correspond the transformation T, of X into itself

where T„(f) is the function f(a(s)), sES,fEX. These transformations

form a semi-group G each element of which has norm one. Further-

more G has the unit function as a nonzero fixed point. If G* also

possesses a nonzero fixed point x*, then there is a bounded additive

set function p defined for all subsets of 5 such that

**(/)=  ff(t)dp, ÍEX,

where the integral is taken in the sense of Hildebrandt [5]. Then

using the characteristic function of the set EES in this formula,

p(E)=p(a(E)) for each a and each EES. This equality persists if

p(E) is replaced by pi(E), the total variation of p on E. Then pi

has the properties that pi(E) ¡gO for each subset E of S, pi is finitely

additive, pi(S)^0, and pi(E) = pi(aE) for each <tEH, EES. In par-

ticular the theorem of Dunford implies the existence of such a set

function when 77 is an abelian semi-group, von Neumann [7] has

shown that such a set function must exist if 77 is a solvable group or a

Presented to the Society, October 28, 1950; received by the editors January 9,

1950.
1 This result is not stated in this form in [3] but follows readily from the argu-

ments used there. The author is grateful to Professor Dunford for calling his atten-

tion to this result and suggesting the present investigation. Numbers in brackets refer

to the bibliography at the end of the paper.

3 By this we mean that there exists an element x<¡ in X, xo^O, such that T(xo) =Xq

for each T in G. We then say that G possesses a nonzero fixed point.
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finite group of 1-1 transformations of 5 onto S. This suggests that

the theorem of Dunford may be valid if (b) is replaced by the state-

ment that G is a solvable group or a finite group. We find this to be

the case. In fact, by Theorem 4, the result is true if instead of a finite

group we use any group with the property that any finite subset of

it lies in a finite subgroup.

While this motivates much of our work, we shall also be concerned

with improving Dunford's result by replacing (a) and (c) with weaker

conditions, (a) is replaced by a condition which covers some un-

bounded semi-groups and (c) is replaced by a necessary condition.

In this connection we give the following example to show that, even

in the case of a bounded semi-group G with one generator, (c) is

not necessary for the conclusion.

Let X = (/) be the space of sequences x = {£,} for which 23 ™= i I £» I

< ». Let T be the transformation defined by the rule P(x) =y where

x= {£<} and y= {0, £i, £2, • • ■ }• Let G be the semi-group generated

by T. It is readily seen that if £/(x) = x for all U in G, then x = 6, the

zero element of X. On the other hand T* is a transformation defined

on the space (w) of bounded sequences to itself where if x*= {77,}

then T*ix*)= {v2, v3, • • ■ }. Thus the element of (m), all of whose

coordinates are one, is a fixed point for G*.

2. Notation. Let G be a semi-group of bounded linear operators

on a normed linear space X. We indicate by G* the semi-group con-

sisting of all the adjoint operators T*, TEG. Also we let Gi represent

the collection of all averages of elements in G. It is clear that Gi

is a semi-group containing G, and that (Gi)i = Gi. The following

notation is convenient.

AiG) = {Tix)-x\TEG,xEX}.
BiG): the linear manifold generated by -4(G).

DiG) = {xEX\ infre G || P(x)|| > 0}.
ZiG): the complement of DiG).

We designate by £(X) the collection of all bounded linear operators

defined on X. We shall say that the semi-group G satisfies the relaxed

boundedness condition (a) if there is a number K>0 such that for

each TEGi there exists an operator UEEiX) such that UTEGi,

|| U\\ áJf, and || UT\\ gK. G will be said to satisfy the relaxed bounded-

ness condition (b) if the U of the preceding definition can always be

selected from Gi. For brevity these conditions will be referred to as

the r.b.c. (a) and r.b.c. (b) respectively. The number K>0 will

hereafter be that appearing in the r.b.c. satisfied by G.

We give an example of a semi-group which is unbounded but

satisfies the r.b.c. (b). Let X be an infinite-dimensional Banach space
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and let x*, • • • , x„* be n linearly independent elements of X*.

Consider all complexes {yi, • • • , y„} of « elements of X where

x?(yj) = 8ij, i, j = l, • • • , n. Such complexes must exist. Let G be

the collection of all transformations of the form P(x) = 2«-i x?(x)Vi-

If U, VEG, then UV= U so that G is a semi-group. Since the rela-

tion UV= U also holds for Cn, G satisfies the r.b.c. (b). But there

exists an element yo^O in X such that xf(y0) =0, i=l, ■ ■ • , n. If

T(x)= X)?-i x*(x)yi is io G, then so are the transformations Um(x)

= H"-i x?(x)[yi+my0]. Since Um(yi)=yi+my0, || î/„||-»°°.

3. Some fixed point theorems. Our aim is to obtain sufficient

conditions on the semi-group G in E(X) to insure that G* has a non-

zero fixed point. To carry out the arguments we find it necessary to

use a boundedness condition. Under the r.b.c. (b), (1) and (2) below

are sufficient, (1) being necessary. It is then shown that (3) implies

(2) and that abelian semi-groups and solvable groups satisfy (3)

(under appropriate boundedness conditions). Some other results are

also obtained.

Lemma 1. Let G be a semi-group in E(X). A necessary and sufficient

condition for G* to possess a nonzero fixed point is that B(G) 7e X. It is

necessary that

(1) D(Gi) is not empty.

It is sufficient that (1) holds and also

(2) B(G)EZ(Gi).

Proof. The first statement is an easy consequence of the Hahn-

Banach theorem [2, p. 55]. To see the necessity of (1), consider a

nonzero fixed point x0* of G*. Since x0*[P(x)] =x0*(x), xEX, TEGi,

any element x0 with the property that Xo*(x0)tîO must be in D(d).

That (1) and (2) are sufficient follows from the fact that they

imply B(G)^X.
In what follows we find sufficient conditions for (2) to hold. This

task is lightened by the fact that in all our situations the r.b.c. (a) con-

dition holds and, by the following lemma, there Z(Gi) is closed and

(2) may be replaced by the condition B(G)EZ(Gi).

Lemma 2. Let G be a semi-group in E(X) satisfying the r.b.c. (a).

Then D(Gi) is open in X. If the r.b.c. (b) is fulfilled, A(G)EZ(d).

Proof. In proving that D(Gi) is open we may assume that neither

D(Gi) nor its complement Z(Gi) is empty. Let x0£7J>(Gi), y0EZ(Gi).

Then inf ||P(x0)|| =5>0, TEGi. We take e<5. There exists ToEGi
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such that ||Po(yo)|| <t/K, and by the r.b.c. (a) there exists a Uo

EEiX),
However

Uo\\^K,   \\UoTo\\^K,   UoToEGi.   Thus   || C/0Po(yo)|| <«•

U0Toix0)\\^8. Thus

K\\xo — yo\\ è ||t/oro(x0 — yo)|| è 8 — t.

Since e>0 is arbitrary, the distance from x0 to Z(Gi) is at least 8/K.

Hence Did) is open.

Suppose that the r.b.c. (b) holds. Let T"(x) — xG-4(G), TEG and
set F=(P+ • • • +TT)/r where r is a positive integer. Now F[P(x)

—x] = [Tr+1ix) — Tix)]/r. By the r.b.c. (b) there exist operators F,-

in Gi such that || 74|| ̂ K, *-l, 2, || ViT\\ <K, and || F2Firr+1|| ^K.
Then

||V2ViV[T{x) - x]|| è iK + K2)\\x\\/r.

This shows that ¿(G)CZ(Gi).

Theorem 1. Let G be a semi-group in EiX) satisfying the r.b.c. (a).

Then (2) holds if

(3) AiG) EZiGi) and T[AiG)] EZid) for each T Ed.

Proof. Take e>0. Let y= 23"-1 7\(*t)— *< be any element in
BiG), TiEG, XiEX. By hypothesis yi = Pi(xi)—xi is in 2(Gi) and

by the r.b.c. (a) there exists an element FiGGi, || Fi|| ¿X such that

|| Fi(yi)|| <e/inKn). Suppose that transformations F< in d have

been denned for i= 1, • • • , m <n where || Vi \\ ̂ K and for each such i,

\\ViVi-i • • • Vi[Tiixi)-Xi]\\<e/inK»). Then by (3) Vm ■ • ■ Vi
■ [Tm+iixm+i) — xm+i] is in Z(Gi) and by the r.b.c. (a) there exists

Vm+iEGi such that || Vm+i ■ ■ • Fi[Pm+i(xm+1)-xm+1]|| <e/inKn).

Thus Vi, ■ ■ ■ , Vn can be defined in turn with the above properties.

Setting F= Vi ■ • ■ F„ we have VEGi and

ll^(y)Il S ¿ llCn • • • ̂ +1)(^ • • • FOtote) - **]|| < *•
t-1

This shows that P(G)C^(Gi). By Lemma 2, (2) is satisfied.

It may be remarked that the condition AiG) EZid) is fulfilled if

Tn/n—*0 for each T in G or, by Lemma 2, if G satisfies the r.b.c.

(b). Also we find it convenient to replace AiG) by A{G\) in (3). As

for the relation between AiG) and A{Gi), we have the following

lemma.

Lemma 3. If G is a semi-group in EiX), then A id) CP(G) and Bid)
= P(G).
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Proof. Let T(x)-xEA(d), T=(TX+ ■ ■ ■ +Tn)/n where each

TiEG. Then T(x)—x= XX i [Ti(x/n) — (x/n)]. The remaining state-

ment is clear.

Theorem 2. Let G be an abelian semi-group in E(X) satisfying the

r.b.c. (b). Then (3) of Theorem 1 is satisfied.

Proof. We show that T[A(Gi)]EZ(Gi) for each TEGi which

with Lemma 2 clearly implies (3). Since G is a commutative semi-

group if V(x) -xEA(Gi) and TEGi, then T[U(x) -x] = UT(x) - T(x)

is in A(Gi) and hence by Lemma 2 (for G = G{) is in Z(Gi).

We turn our attention next to the case of a solvable group G in

E(X). The main steps in the argument will be given as lemmas.

Lemma 4. Let G be a group in E(X) and 77 a normal subgroup of G.

Then if TEGi, T[B(H)]EB(H).

Proof. Let V(x) —x, VEH, be one of the summands of an element

in 5(77). It is sufficient to show that T[ V(x) -x] EB(H). Now T may

be written in the form (Ti+ ■ • ■ +Tn)/n, TiEG, and

T[V(x) - x] - ¿ TiV[x/n] - T<(x/n).
¿=i

Thus it is enough to prove that Ti[V(y) —y]EB(H), yEX. Actually

we show that this is in A(H).

Since 77"1 exists, there exists an element zEX, such that y = P,-I(z).

Then Ti[V(y)—y] = TiVTi~1(z)—z. But since 77 is a normal subgroup

of G, Ti FT,-1 is in 77 and 7\[ V(y) -y] is in A (77).
In particular this result holds if 77 = G', the derived subgroup of G.

Lemma 5. Let G be a group in E(X) and G' its derived group. If

SEGi, VEGi, xEX, then S[V(x)—x] is equal to the (finite) sum of
elements in A(G') and an element in A(Gi).

Proof. Let 7 be the identity transformation in E(X). We may write

S=CEti Si)/n, F=(XXi Vi)/m where Sit V{EG. Then we have,
setting y=x/(mn),

1      r~     n m w m ~1

SV(x) - S(x) = —    D Si £ Vj(x) - £ Si £ /(*)
mn L <=i     j=i ¿=i     ,_i        J

u      m

=   ZZ[SiVi(y)-Si(y)}.
1-1    J-l

But for each pair (t, j) we have
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SiViiy) - Siiy) = [SiViSTWj'iVjSJy - F,-5,(y)] + [F,-5,(y) - S¿y)].

We note that the first summand on the right is in A (G'). Let Q repre-

sent the sum on i and/ of these terms in AiG'). Then

n      m

SVix) - Six) = Q + 23 23 [VMy) - Siiy)]
1=1 Î-1

[l      m ~irl» "1 1"
- £ Vi   - 23 Siix) - - 23 sax).
m ,=.i     JL« i=i J      n ,=i

This completes the proof of the lemma.

Lemma 6. Let G be a group in EiX) which satisfies the r.b.c. (b) and

let G' be its derived group. If BiG{)EZiG{), then T[AiGi)]EZid)
for each TEGi.

Proof. Let y= F(x)-xG^(Gi), PGGi, e>0. By Lemma 5, P(y)

may be expressed as the sum of two elements z+w where zEBi&)

and wEAid). By the use of Lemma 2 (for d), we see that there

exists IFGGi, || Wiw)\\ <e/i2K). By Lemma 4, Wiz)EBiG') and is
thus in Z(Gi ), by hypothesis, and hence in Z(Gi). By the r.b.c. (b),

there exists PGGi, ||P||áX where ||PIF(z)|| <e/2. But then

||PWT(y)|| ;g||PJF(z)||+||PTF(w)|| <e so that P(y)GZ(Gi).
We shall let Hin) represent the wth derived subgroup of a group H.

Theorem 3. Let G be a solvable group in EiX) where G, G', G", • • •

each satisfies the r.b.c. (b). Then G satisfies (3).

Proof. Suppose P[^(GÍn))]CZ(GÍB)) for each PGGin). By

Theorem 1, BiG[n))EZiG^). Then by Lemma 6, T^iGÏ'1)]

EZiG(ru) for all TEGf-l). As G is solvable we obtain P[^(Gi)]
EZid) for all PGGi. Thus (3) is fulfilled by G.

Corollary 1. Let G be a solvable group in EiX) where G has the

property that there exists a number K>0 such that

(4) limsup ||r»|| ^ K, TEGi.

Then G satisfies (3).

Proof. The condition of the corollary insures that G(n) satisfies

the r.b.c. (b) for each n. Thus we may apply Theorem 3.

Theorem 4. Let G be a group in EiX) with the property that any

finite subset of G lies in a finite subgroup of G. Suppose that Zid) is

closed. Then G* has a nonzero fixed point if il) holds.
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Proof. We remark that by Lemma 2, Z(Gi) is closed if G satisfies

the r.b.c. (a). What we do show is that B(G)EZ(Gi) and simply

desire some hypothesis which will enable us to state the conclusion

via Lemma 1.

Let y= XXi Ti(xi)—Xi be an arbitrary element in B(G). Let

TT= Ui, • • ■ , Ur be a finite subgroup of G containing T\, • • • , Tn.

We set V=(Ui+ ■ • ■ +Ur)/r. As 77 is a group, the elements

UjTi, j=l, • • • , r, range over 77. Thus V(y) =0 and B(G)EZ(Gi).

Corollary 2. Let G be a finite group in E(X). Then a necessary and

sufficient condition for G* to possess a nonzero fixed point is that (1)

holds.

Proof. By Lemma 1, we need only consider the sufficiency. G,

being finite, is automatically bounded. Hence the hypotheses of

Theorem 4 are satisfied by G.

Mazur [6, Theorem l] has demonstrated the following. Let U

EE(X), ¡I U\\ =1. Let p be the number of linearly independent fixed

points for U, q that for U*. Then p^q. We generalize this result.

In the situation of Mazur let G be the semi-group generated by U.

The linearly independent fixed points of U are elements in D(Gi)

such that every nontrivial linear combination of them is in D(Gi).

Corollary 3. Let G be any semi-group in E(X) with the property

that B(G)EZ(Gi). Let Xi,i = l, ■ ■ • , p, be linearly independent elements

in D(Gi) such that every nontrivial linear combination of them is in

D(Gi). Then the number of linearly independent fixed points for G* is

at least p.

Proof. We note that it has been shown above that the hypotheses

on G are satisfied by all the semi-groups (and groups) considered in

Theorems 1-4. Also any set of fixed points for G has the property

demanded of the x/s. Thus we have an extension of Mazur's result

to all the situations treated above.

For the proof we note that the at/s are linearly independent

modulo B(G). Let R denote the linear manifold generated by Xi, ■ • ■ ,

xp. Then R and B(G) have only the zero element in common. The

second portion of Mazur's proof of his theorem [6, pp. 14-15] may

be applied verbatim to give the conclusion.

Alaoglu and Birkhoff [l, p. 299] have noted that if X is uniformly

convex and if || P|| = 1 for each T in a semi-group G of E(X), then if

(1) holds, G has a nonzero fixed point. We obtain here the same con-

clusion, relaxing the norm condition and that on X at the price of

specializing G.
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Corollary 4. Let G be a semi-group in EiX) satisfying (1) and

let X be a reflexive space. If G is abelian and satisfies the r.b.c. (b) or

if G is a solvable group satisfying (4), then G has a nonzero fixed point.

Proof. By Lemma 1, Theorems 1 and 2, and Corollary 1, in either

case G* has a nonzero fixed point x0*. Note that x0* satisfies (1) for

G*. In the abelian case, as the adjoint operation preserves norm,

G* also satisfies a relaxed boundedness condition. In the case of the

solvable group G, by the same argument G* satisfies (4). Also as the

adjoint operation preserves the inverse operation and is an anti-

isomorphism, G* is solvable since G is. As above, G**= { P**| TEG}

possess a nonzero fixed point. Since X is reflexive and T** — T, this

is also true for G.

4. On the problem of measure. We return to the discussion of the

application of our results to the problem of the existence of measures.

We adopt the following notation of von Neumann [7, p. 78]. Let S

be a set, P a subset of S, and H a group of 1-1 transformations of 5

into S. We say that an [S, P, H] measure y. exists if ¿u is defined for

all subsets of 5, ß is finitely additive, ju(<r£) =m(P) for all subsets

EES, aEH and m(P) = 1-3
We define X and G as in §1 and note that G is bounded and auto-

matically satisfies (1).

Theorem 5. Let G have the property that P(G)C^(Gi). Then an

[S, P, H] measure exists if and only if there exists a number e > 0 swcA

that for each finite collection of elements <ri, • • • , an of H there exists a

point s ES where

the number of i's for which s E aP
- ^ e.

n

Proof. This situation covers the cases of a solvable group or a

group with the property of Theorem 4. Suppose such a measure p

exists. Let 4>(E)is) represent the characteristic function of the set E.

Then the function /(s) = [</>("P) (s)+ • ■ • +^("»P)(s)]/m has the prop-

erty that fsfis)dp = l. Since m(P) = 1 and/(s)^0 for all s ES, it is
impossible that /(s) <l/niS) for each sES.

Conversely suppose that there is such an €>0. For each TEGi,

there_ exists vlt • • - , ffnEH such that P[<¿><«] = [<f>^T1^+ ■ ■ ■

-r-<J>K>)]/w. Then by hypothesis ||P[0(P)]|| èe so that <¡>^EDid).

3 We consider only measures p for which p(S) < ».
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Since B(G)EZ(Gi), by Lemmas 1 and 2 and the arguments of §1,

the required measure function exists.

5. On semi-groups in Banach algebras. We assume in this section

that A' is a commutative Banach algebra (normed ring) with a unit e,

e\\ = 1. Let M be any maximal ideal of X and let x(M) be the homo-

morphism of X onto the complex number system determined by M

(in the notation of Gelfand [4]). Then the set S(M)= {xGA'lx(M)

= 1} forms a semi-group in X which is also a hyperplane. We char-

acterize here all sub-semi-groups of these semi-groups which satisfy

the r.b.c. (b) suitably interpreted.

Theorem 6. Let G be a semi-group of elements in the Banach algebra

X and let Gi be the collection of averages of elements in G. Suppose that

there is a number K>0 such that for each aEGi there corresponds an

element bEGi, \\b\\ gTC, and \\ab\\ £K. Then a necessary and sufficient

condition that there exists a maximal ideal M of X such that GES(M)

is that inf ||a|| >0, aEGi.

Proof. The correspondence a<->Pa where Ta is the operation of left

multiplication by the element a takes G into a semi-group G' of

bounded linear operators on X. Furthermore, by [4], ||a|| =||P0||.

Thus under the conditions of the theorem, G' satisfies the r.b.c. (b).

Also since Ta(e) =a for each aEGi, G' satisfies (1). Hence by Theorem

2, B(G') is not dense in X. However it is readily verified that B(G')

is an ideal in X. Hence by [4] there exists a maximal ideal M of X

which contains B(G'). For each aEG, bEX, we have ab(M) —b(M).

Since (ab)(M)=a(M)b(M) (see [4]) and since b is arbitrary in X,

a(M) = l. The necessity follows from Lemma 1.
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