A NOTE ON THE SPACE L_n^*

J. SCHWARTZ

The object of the following note is to give an alternate proof of the fact that the conjugate space of the Lebesgue space L_p is the Lebesgue space $L_{p'}$, if p>1, even if these spaces are constructed on a non- σ -finite measure space. The result fails if p=1. This result has recently been proved by E. J. McShane.

In what follows, where X denotes a Banach space, X^* will denote its conjugate space. If $x \in X$, |x| will denote the norm of x. The symbol (S, F, m) will denote a measure space, that is, a set S, a σ -field F of its subsets, and a positive, completely additive, perhaps infinite, function m defined for the sets in F.

Let *n* be an integer greater than or equal to 1, *p* a real number greater than 1. Let p' be defined by 1/p+1/p'=1. Let δ_j^i be the Kronecker δ -function.

1. Let a_1, \dots, a_n all be greater than 0. Define $R(n, p, a_1, \dots, a_n)$ to be the Banach space of *n*-uples $y = [y_i]$, where the norm is defined by

$$|y| = \left\{ \sum_{i=1}^{n} a_{i} |y_{i}|^{p} \right\}^{1/p}.$$

Note that $|y+y'| = \{\sum |a_i^{1/p}(y_i+y_i')|^p\}^{1/p} \le |y|+|y'|$ follows from Minkowski's inequality; and that all the other requirements that $R(n, p, a_1, \dots, a_n)$ must satisfy in order to be a Banach space are as evidently true.

Now let $x^* \in R^*(n, p, a_1, \dots, a_n)$. If $x^*(\delta_j^i) = k_i$, it is evident that $x^*(y) = \sum_{i=1}^n k_i y_i$. If $x^* \neq 0$, we may note, putting

$$v = \left\lceil \left| \frac{k_i}{a_i} \right|^{p'-1} \overline{\arg(k_i)} \right\rceil, \qquad 1 \leq i \leq n,$$

where arg (x) is the argument of the complex quantity x, that

$$|x^*| \ge \frac{|x^*(v)|}{|v|} = \frac{\left|\sum_{i=1}^n k_i \left| \frac{k_i}{a_i} \right|^{p'-1} \overline{\arg(k_i)} \right|}{\left\{\sum_{i=1}^n a_i \left(\left| \frac{k_i}{a_i} \right|^{p'-1} \right)^p \right\}^{1/p}}$$

Received by the editors March 15, 1950.

¹ Proceedings of the American Mathematical Society vol. 1 (1950) pp. 402-408.

$$= \frac{\sum_{i=1}^{n} a_{i}^{1-p'} |k_{i}|^{p'}}{\left\{ \sum_{i=1}^{n} a_{i} \left| \frac{k_{i}}{a_{i}} \right|^{p'} \right\}^{1/p}}$$
$$= \left\{ \sum_{i=1}^{n} a_{i}^{1-p'} |k_{i}|^{p'} \right\}^{1/p'}.$$

If $x^* = 0$, the same inequality is trivial. From Theorem 1 below, the converse inequality will follow immediately.

2. Now let $L_p(S, F, m)$ be the L_p space on the measure space S, that is, the set of measurable functions f(w) defined for $w \in S$ such that

$$|f| = \left\{ \int_{S} |f(w)|^{p} dm \right\}^{1/p} < \infty.$$

Consider for the moment a fixed subset A of S such that $m(A) < \infty$, and let $B \subseteq A$. Note that if $K_B(w)$ is the characteristic function of the set B, and $x^* \in L_p^*$, $x^*(K_B)$ is a completely additive and absolutely continuous set function. Thus, as long as $B \subseteq A$, we may write, by the theorem of Radon-Nikodym,

$$x^*(K_B) = \int_B t_A(w)dm = \int_S t_A(w)K_B(w)dm.$$

Here $t_A(w)$ vanishes outside A, while if $m(A') < \infty$ also, $t_A(w) = t_{A'}(w)$ almost everywhere on the intersection of A and A'.

3. Now let A be as above, and let $A \supseteq A_i$, $m(A_i) > 0$, and let the A_i be disjoint; let G be the set of all functions constant on each of the A_i and vanishing elsewhere, and let $w_i \in A_i$. Note that G, as a subset of L_p , is isometrically isomorphic to $R(n, p, m(A_1), \dots, m(A_n))$, f in G corresponding to $(f(w_1), \dots, f(w_n))$. If $f \in G$, $x^*(f) = \sum_{i=1}^n f(w_i) \int_{A_i} t_A(w) dm$, so that, since the norm of x^* as an element of L_p^* is at least as great as its norm as an element of G^* , we may conclude, by point (1)

[*]
$$|x^*| \ge \left(\sum_{i=1}^n m(A_i)^{1-p'} |x^*(K_{A_i})|^{p'} \right)^{1/p'}.$$

Define $t_A(m, w)$ by: R.P. $(t_A(n, w)) = \min (k/n, n)$ if $0 \le k/n \le \text{R.P.}$ $(t_A(w)) < (k+1)/n$; R.P. $(t_A(n, w)) = \max (-k/n, -n)^{\infty}$ if $0 \le k/n \le \text{R.P.}$ $(-t_A(w)) < (k+1)/n$; similar inequalities hold for the

imaginary parts. Then $\lim_{n\to\infty} t_A(n, w) = t_A(w)$. Let A_i^n , $1 \le i \le W_n$, be the sets of nonzero measure on which $t_A(n, w)$ is constant and nonzero. On A_i^n we have

$$\left| R.P. \left(\int_{A_i^n} t_A(w) dm \right) \right| \ge \left| R.P. \left(t_A(n, w_i^n) \right) \left| m(A_i^n) \right|,$$

where $w_i^n \in A_i^n$; a similar equation holds for the imaginary parts. Thus,

$$\left| \int_{A^n} t_A(w) dm \right| \ge \left| t_A(n, w_i^n) \right| m(A_i^n),$$

since the absolute value of a quantity is the square-root square sum of its real and imaginary parts. From equation [*] we have

$$|x^*| \ge \left(\sum_{i=1}^{w_n} m(A_i^n)^{1-p'} m(A_i^n)^{p'} |t_A(n, w_i^n)|^{p'}\right)^{1/p'}$$

$$= \left(\int_S |t_A(n, w)|^{p'} dm\right)^{1/p'},$$

and, applying Fatou's lemma, we obtain $|x^*| \ge (\int_S |t_A(w)|^{p'}dm)^{1/p'}$. Now put $H(A) = \int_S |t_A(w)|^{p'}dm$, and let $U \le |x^*|^{p'}$ be l.u.b._A H(A), A ranging over the sets where $m(A) < \infty$. Choose A_1, A_2, \cdots in such a way that $\lim_{n\to\infty} H(A_n) = U$; where, since H(A) is an increasing function of A, we may suppose $A_1 \subseteq A_2 \subseteq \cdots$. Let $T = \bigcup_{i=1}^{\infty} A_i$, and let A_0 be such that $H(A_0) > 0$. Then A_0 cannot be disjoint from T, for since H(A) is finitely additive, this would imply $\lim_{n\to\infty} H(A_n \cup A_0) = U + H(A_0) > U$.

Now, putting $t_T(w) = \lim_{n \to \infty} t_{A_n}(w)$, if A_0 is of finite measure, and if $K_{A_0}(w)$ is its characteristic function, we may note that $K_{A_0} = K_{A_0 \cap T} + K_{A_0 - T}$. Since $H(A_0 - T) = 0$, $x^*(K_{A_0 - T}) = 0$. Thus, $x^*(K_{A_0}) = x^*(K_{A_0 \cap T})$. Since $K_{A_0 \cap T} = \lim_{n \to \infty} K_{A_0 \cap A_n}$, and $m(A_0) < \infty$,

$$\lim_{n\to\infty}\int_{S}\left|K_{A_{0}\cap T}\left(w\right)-K_{A_{0}\cap A_{n}}(w)\right|^{p}dm=0.$$

Hence

$$x^*(K_{A_0}) = \lim_{n \to \infty} x^*(K_{A_0 \cap A_n}) = \lim_{n \to \infty} \int_{S} K_{A_0 \cap A_n}(w) t_T(w) dm.$$

Since $|x^*| \ge \{ \int_S |t_T(w)|^{p'} dm \}^{1/p'}$, we have

$$x^*(K_{A_0}) = \int_S K_{A_0 \cap T}(w) t_T(w) dm = \int_S K_{A_0}(w) t_T(w) dm,$$

since $t_T(w)$ vanishes outside T. Thus we have verified the equation $x^*(f) = \int_S f(w) t_T(w) dm$ for all the functions of a fundamental set in L_p . Since both sides of the equation represent continuous functionals on L_p , the equation must hold identically. In this case, Holder's inequality gives $|x^*| \leq \{\int_S |t_T(w)|^{p'} dm\}^{1/p'}$, so that we must have equality.

Once this is established, the linearity of the correspondence $x^* \leftrightarrow t_T(w)$ is clear, so that we may state the following theorem.

THEOREM 1. The space $L_p^*(S, F, m)$, where (S, F, m) is an arbitrary measure space, and p>1, is isometrically isomorphic to the space $L_{p'}(S, F, m)$, 1/p+1/p'=1. The isomorphism $x^*\leftrightarrow t(w)$ is determined by the formula

$$x^*(f) = \int_{S} f(w)t(w)dm.$$

- 4. The following example is due to T. Botts. Consider the measure space (S^*, F^*, m^*) , where S^* is the open interval (0, 1); where F^* is the σ -field consisting of the (finite or) denumerable subsets of the interval and their complements; and where $m^*(A)$ is the cardinality of A. It may be seen that $L_1(S^*, F^*, m^*)$ consists of those functions which vanish outside a denumerable set, and whose remaining values form an absolutely convergent series. Thus, if $f(x) \in L_1$, $xf(x) \in L_1$ and $\int_{S^*} xf(x)dm^* = x^*(f)$ represents a functional on L_1 of norm 1. Since this functional takes on a nondenumerable set of distinct values on the family of characteristic functions of points, it cannot be of the form $\int_{S^*} t(x)f(x)dm^*$, where t(x) is measurable, since any measurable function must be constant except for a denumerable set.
- 5. For $L_1(S, F, m)$ the result may be stated in the following theorem.

THEOREM 2. Let J(S, F, m) be the family of all absolutely continuous, countably additive, complex-valued set functions μ defined on the sets in F of finite measure, satisfying the additional condition that

$$|\mu| = \text{l.u.b.}_{0 < m(A) < \infty} \frac{|\mu(A)|}{m(A)} < \infty.$$

Then J, with the norm indicated, forms a Banach space isometrically isomorphic to L_1^* . The isomorphism is determined by the formula $x^*(f) = \int_S f(w) d\mu$.

PROOF. If $x^* \in L_1^*$, it is evident that $x^*(K_B) = \mu(B)$ defines an

absolutely continuous, countably additive set function for the sets in F of finite measure, while

$$|x^*| \ge \frac{|x^*(K_B)|}{|K_B|} = \frac{|\mu(B)|}{m(B)}$$
.

Conversely, if μ is such a function, and $|\mu(B)|/m(B) \leq M$, and $f \in L_1$, f is the limit, in the norm of L_1 , of a sequence of countably-valued functions $f_n = \sum_{i=1}^{\infty} a_i^n K_{B_i}^n$; and we may put $x^*(f) = \lim_{n \to \infty} \sum_{i=1}^{\infty} a_i^n \mu(B_i^n)$. This limit will exist and be unique only if each Cauchy sequence in L_1 of the form $f_n = \sum_{i=1}^{\infty} a_i^n K_{B_i}^n$ corresponds to a Cauchy sequence $\sum_{i=1}^{\infty} a_i^n \mu(B_i^n)$. But

$$\left|\sum_{i=1}^{\infty} a_i^n \mu(B_i^n) - \sum_{j=1}^{\infty} a_j^n \mu(B_j^n)\right| = \left|\sum_{i,j=1}^{\infty} (a_i^n - a_j^m) \mu(B_i^n \cap B_j^m)\right|$$

$$\leq M \sum_{i,j=1}^{\infty} \left|a_i^n - a_j^n\right| m(B_i^n \cap B_j^m)$$

$$= M \left|f_n - f_m\right|.$$

It may now be seen that a functional x^* is defined, that $x^*(K_B) = \mu(B)$, and that $|x^*| = \mu$.

Using the alternate definition of the integral as the limit of the integrals of countably-valued functions converging almost uniformly to a given function, forming a Cauchy sequence in $L_1(\mu)$, and observing that almost uniform convergence with respect to the measure m implies almost uniform convergence with respect to μ , we see that the measure and functional are related by $x^*(f) = \int_{\mathcal{B}} f(w) d\mu$. Since all the required linearity relations are obvious, the theorem is proved.

6. Theorem 1 may be used to extend the following result, which is well known in the classical case.

THEOREM 3. Let (S, F, m) be a measure space, and let μ be a finitely additive complex-valued function, defined for the sets of F of finite measure. Then in order that there exist a function g(w) in L_p , p>1, such that $\mu(A) = \int_A g(w) dm$, it is necessary and sufficient that

l.u.b.
$$\sum_{i=1}^{n} | \mu(A_i) |^p m(A_i)^{1-p} < \infty$$
,

where A_1, \dots, A_n ranges over all finite disjoint collections of sets of F of finite measure.

² To avoid formal difficulty we may introduce a 0 coefficient and suppose $\bigcup_{i=1}^{\infty} B$ = S. The B_i are of course supposed to be disjoint.

Proof. Let us put

$$x^* \left(\sum_{i=1}^n a_i K_{A_i} \right) = \sum_{i=1}^n a_i \mu(K_{A_i}).$$

Then x^* is a linear function (as is evident from the finite additivity of μ) defined on a dense set of $L_{p'}$. This will be extendable to a bounded function defined on all of $L_{p'}$, which by Theorem 1 is of the form

$$x^*(f) = \int_{S} f(w)g(w)dm$$

if and only if $\mu(A)$ is of the form $\mu(A) = \int_A g(w) dm$. By a well known theorem, a condition necessary and sufficient for this extension is

$$\infty > M = \text{l.u.b.} \frac{\left| x^* \left(\sum_{i=1}^n a_i K_{A_i} \right) \right|}{\left| \sum_{i=1}^n K_{A_i} \right|}.$$

Without loss of generality, we may assume that the A_i are disjoint; in this case, the definition of the quantities involved gives

$$M = \text{l.u.b.} \frac{\left| \sum_{i=1}^{n} a_{i} \mu(A_{i}) \right|}{\left\{ \sum_{i=1}^{n} \left| a_{i} \right|^{p'} m(A_{i}) \right\}^{1/p'}}.$$

The remark at the end of (1) gives

$$M = \text{l.u.b.} \left\{ \sum_{i=1}^{n} | \mu(A_i) |^{p} m(A_i)^{1-p} \right\}^{1/p},$$

from which the theorem is evident.

YALE UNIVERSITY