
A NOTE ON THE SPACE L*

J. SCHWARTZ

The object of the following note is to give an alternate proof of

the fact that the conjugate space of the Lebesgue space Lp is the

Lebesgue space Lp<, if p>l, even if these spaces are constructed on a

non-cr-finite measure space. The result fails if p = l. This result has

recently been proved by E. J. McShane.1

In what follows, where X denotes a Banach space, X* will denote

its conjugate space. If xEX, \x\ will denote the norm of x. The

symbol (5, F, m) will denote a measure space, that is, a set S, a <r-field

Pof its subsets, and a positive, completely additive, perhaps infinite,

function m defined for the sets in P.

Let n be an integer greater than or equal to 1, p a real number

greater than 1. Let p' be defined by \/p+\/p' = \. Let 8) be the

Kronecker 5-function.

1. Let «i, • • • , an all be greater than 0. Define P(«, p, Ci, • • • , an)

to be the Banach space of »-uples y= [yt], where the norm is defined

by

y\ = \ ¿«n|y<|»|
Up

Note that |y+y'| ={E|a</y (yi+yi)! "}llpè \y\ +\y'\ follows from

Minkowski's inequality; and that all the other requirements that

P(re, p, d, • • • , a„) must satisfy in order to be a Banach space are

as evidently true.

Now let x*ER*in, p, ah ■ ■ ■ , an). If x*(5]) =A<, it is evident that

x*iy)= E"-i fc»y»- If x*5¿0, we may note, putting

[i ¡¡iip'-i_-]
arg (Ai)   , l^*á»,

I «¿I J

where arg (x) is the argument of the complex quantity x, that

x*iv) I
c*    >

EA,- — arg (A¿)
¿=i     I «»I

A, \p'~ 1\p) 1ipiÈ<m)'}
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1-J>' i  ,   tp'

t-1

( <-i      ff¿     ;

( "   i- -        ') llp'

If ;t* = 0, the same inequality is trivial. From Theorem 1 below, the

converse inequality will follow immediately.

2. Now let LP(S, F, m) be the Lp space on the measure space S,

that is, the set of measurable functions/(w) defined for wES such

that

l/l =  if \f(w)\*dm\      < oo.

Consider for the moment a fixed subset 4 of 5 such that m(A) < <x>,

and let BQA. Note that if Kb(w) is the characteristic function of

the set B, and x*EL*, x*(Kb) is a completely additive and absolutely

continuous set function. Thus, as long as BQA, we may write, by

the theorem of Radon-Nikodym,

x*(KB) =   I   tA(w)dm =   I tA(w)K.B(w)dm.
J B J 8

Here tA(w) vanishes outside A, while if m(A') < <x> also, ía(w) =ía'(w)

almost everywhere on the intersection of A and A'.

3. Now let A be as above, and let A^Ai, m(Ai)>0, and let the

A i be disjoint; let G be the set of all functions constant on each of the

Ai and vanishing elsewhere, and let w<G4,-. Note that G, as a subset

of Lp, is isometrically isomorphic to R(n, p, m(Ai), ■ ■ ■ , m(An)),

/in G corresponding to (/(wi), • • ■ , f(wn)). If fEG, x*(f) = X"-i/(w¿)

fA,tA(w)dm, so that, since the norm of x* as an element of L* is at

least as great as its norm as an element of G*, we may conclude, by

point (1)

[*] \x* | = ( Z m(Aiy-v | x*(KAx) \A

Define ía(w, w) by: R.P. (tA(n, w))=min (k/n, n) if O^k/n

= R.P. (tA(w))<(k+l)/n; R.P. (tA(n, w))=max (-k/n, -w)^if

O^k/n^R.P. (—tA(w))<(k + \)/n; similar inequalities hold for the
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imaginary parts. Then lim„^x tA(n, w) = íaÍw). Let A", 1 á* á Wn, be

the sets of nonzero measure on which ¿¿(m, w) is constant and non-

zero. On A" we have

R.P. Í   f   tAiw)dm\\ ^ | R.P. itAin, w])) | m(yl<) |,

i

where w"EA"; a similar equation holds for the imaginary parts. Thus,

1/I J A'

ÍAÍw)dm ^   ¿U(«, Wi) | miAi),

since the absolute value of a quantity is the square-root square sum

of its real and imaginary parts. From equation [*] we have

E mi^l)   P miAi)" | tAin, wi) \" J

= (   I   I Uin, w) \p'dmj

and, applying Fatou's lemma, we obtain |x*| ¿íifs\tAÍw)\ p'dm)llp'.

Now put HiA)=fs\tAiw)\p'dm, and let U^\x*\p' be l.u.b.x HiA),
A ranging over the sets where miA) < °o. Choose Ai, A2, ■ ■ ■ in such

a way that limn,,, HiAH) = U; where, since HiA) is an increasing

function of A, we may suppose AiÇ.A2Ç. ■ ■ ■ . Let T=\J*=lAi, and

let Ao be such that HiAo) >0. Then A o cannot be disjoint from T, for

since HiA) is finitely additive, this would imply lim,,.^ HiAnVJA0)

= U+H(Ao)>U.
Now, putting tr(w) = lim„..w ¿¿„(a/), if A0 is of finite measure, and

if Ka0Íw) is its characteristic function, we may note that KAo

= KAonT + KAo-T. Since HiAB-T) =0, x*(PAo_T) =0. Thus, x*(KAo)

= x*(Pj4„nr). Since Px0nr = lim„^w KA„r\An, and w(^40)< °°,

lim   I   | PAonr iw) - K-A^Aniw) | Pdm = 0.
n-»oo   •/ g

Hence

x*iKAo) = lim x*(PA„n^„)   = bm   j tfAofW«')^ «")*».
n—»» n—»oo   »/ ^

Since |x*| ^ {/s|¿r(w)| p'dm}llp', we have

x*(Px„) =   I KA,r)TÍv>)tr(w)dm =   | KA,(w)tr(w)dm,
J s J s
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since tf(w) vanishes outside T. Thus we have verified the equation

x*(f)—fsf(w)tr(w)dm for all the functions of a fundamental set in

Lp. Since both sides of the equation represent continuous functionals

on Lp, the equation must hold identically. In this case, Holder's in-

equality gives \x*\ ^{fs\tT(w)\p'dm\llp', so that we must have

equality.

Once this is established, the linearity of the correspondence x*

<r^tT(w) is clear, so that we may state the following theorem.

Theorem 1. The space L*(S, F, m), where (S, F, m) is an arbitrary

measure space, and p>\, is isometrically isomorphic to the space

Lp>(S, F, m), \/p+\/p' = \. The isomorphism x*^t(w) is determined

by the formula

**(/) =   f f(w)t(w)dm.
J s

4. The following example is due to T. Botts. Consider the measure

space (S*, F*, m*), where S* is the open interval (0, 1); where F*

is the ff-field consisting of the (finite or) denumerable subsets of the

interval and their complements; and where m*(A) is the cardinality

of 4. It may be seen that Li(S*, F*, m*) consists of those functions

which vanish outside a denumerable set, and whose remaining values

form an absolutely convergent series. Thus, if f(x)ELi, xf(x)ELi

and fs*xf(x)dm*=x*(j) represents a functional on 7i of norm 1.

Since this functional takes on a nondenumerable set of distinct values

on the family of characteristic functions of points, it cannot be of the

form fs*t(x)f(x)dm*, where t(x) is measurable, since any measurable

function must be constant except for a denumerable set.

5. For Li(S, F, m) the result may be stated in the following

theorem.

Theorem 2. Let J(S, F, m) be the family of all absolutely continuous,

countably additive, complex-valued set functions p defined on the sets

in F of finite measure, satisfying the additional condition that

i I m(4) I
\ p\   =    l.u.b.     -— < oo.

0<mG4)<.    m(A)

Then J, with the norm indicated, forms a Banach space isometrically

isomorphic to L*. The isomorphism is determined by the formula

**(/) =fsf(w)dp.

Proof.  If x*EL*, it  is evident that x*(Kb)=p(B) defines an
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absolutely continuous, countably additive set function for the sets in

F of finite measure, while

x*\ ¿.
x*(KB)

\KbV

I P(B) |
m(B)

Conversely, if p is such a function, and \p(B)\/m(B)SM, and

fELi, f is the limit, in the norm of Li, of a sequence of countably-

valued functions /„= 2Zi" i a1KB"; and we may put x*(f) =limn<00

^¡"i a"p(B1). This limit will exist and be unique only if each

Cauchy sequence in Li of the form2/„= ]^i" i o^Kb" corresponds to a

Cauchy sequence X)«" i oJlp(BX). But

£ anip(B¡) - X) Ojp(Bnj)

i=l 1=1
E(¿ aj)p(Bir\Bj)

úmZ

= *!/»

a,- — a,-1 m(Bii^ Bj )

-/«I-
It may now be seen that a functional x* is defined, that x*(Kb)

=p(B), and that |ac*| =p.

Using the alternate definition of the integral as the limit of the

integrals of countably-valued functions converging almost uniformly

to a given function, forming a Cauchy sequence in Li(p), and observ-

ing that almost uniform convergence with respect to the measure m

implies almost uniform convergence with respect to p, we see that the

measure and functional are related by x*(f) =fsf(w)dp. Since all the

required linearity relations are obvious, the theorem is proved.

6. Theorem 1 may be used to extend the following result, which

is well known in the classical case.

Theorem 3. Let (S, F, m) be a measure space, and let p be a finitely

additive complex-valued function, defined for the sets of F of finite meas-

ure. Then in order that there exist a function g(w) in Lp, p>i, such

that p(A) =fAg(w)dm, it is necessary and sufficient that

n

l.u.b.X | p(Ai) \"m(Aiy-p < =c,

where A\, ■ ■ ■ , An ranges over all finite disjoint collections of sets of F

of finite measure.

2 To avoid formal difficulty we may introduce a 0 coefficient and suppose (JU]B

= S. The Bi are of course supposed to be disjoint.
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Proof. Let us put

**(¿«<0 = E«ím(Px,).
\ t=i /      ¿=i

Then x* is a linear function (as is evident from the finite additivity

of p.) defined on a dense set of Lp>. This will be extendable to a

bounded function defined on all of Lp-, which by Theorem 1 is of the

form

x*(f) =   j fiw)giw)dm
J s

if and only if piA) is of the form niA) = jAgiw)dm. By a well known

theorem, a condition necessary and sufficient for this extension is

oo > M = l.u.b.

x*(¿«iPA¡)|

IepJ
Without loss of generality, we may assume that the .4i are disjoint; in

this case, the definition of the quantities involved gives

M = l.u.b.

E diu(Ai)

in -j   l/j>'

< El ai\p'miAi)\

The remark at the end of (1) gives

M = l.u.b. | E I M \pm(Aiy-p\   \

from which the theorem is evident.
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