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1. Introduction. In this paper we obtain all (real) two-dimensional

Weyl spaces (W2) which admit (real) continuous groups Gr of affine

collineations (A.C.). Such a collineation is defined as a point trans-

formation which changes each path of the space into a path and also

preserves the affine path-parameters [l, p. 126].1 The work is based

on the results of another paper to be published elsewhere [2]. It is

shown in [2] that there are 12 types of affinely connected spaces A2

admitting A.C. When each of these types is tested for reducibility

to a IF2 it is found that all but three are eliminated, these three ad-

mitting respectively A.C. of one, two, and three parameters. There

are four general types of W2 admitting the d of A.C. and also four

such types of W2 admitting the G2 of collineations. Corresponding to

the G3 there is only one class of IF2.

2. Weyl spaces. A Weyl space Wn is a special type of affine space

An (symmetric connection) which admits a tensor and a covariant

vector with components gi¡, <pi respectively such that

(2.1) ga.k + 2gij<pk = 0,

where a comma denotes covariant differentiation with respect to the

components rjt of affine connection of the space [l, p. 81 ]. The gtJ

are assumed symmetric. In addition the vector <j>, must not be a

gradient (as otherwise the Wn reduces to a Riemannian space) and

we must have also

(2.2) \ga\*0.

The rjt can be expressed as

(2.3) rit =  <     > + 8i<t>k + 8k<t>j — gjicg   <t>m.

The components g,-,-, <Pi of a Wn are determined to within an

arbitrary function 0(x;), that is, the tensors with components |<y, #<

given by

(2.4a) gu = e»giit (2.4b) $,- = *,■ - dO/dx^

will also satisfy (2.1). The Tjt remain invariant under (2.4) which is
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1 Numbers in brackets refer to the bibliography at the end of the paper.
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the change of gauge of Weyl. When a definite 0 is picked the space is

said to be calibrated [3].

Now the conditions of integrability of (2.1) are

h h

(2.5) ghjBikm +  gihBjkm +   2gij(<pk,m  —  4>m.k)   =   0,

from which it follows that

(2.6) *L=2(^-^) (.-2),
\dxk        dxm /

where the curvature tensor components B)tm are

i i
i dTjm       dTjk hi hi

(2.7) Bjkm =-(-  TjmThk   —   TjkThnf
dxk       dxm

It follows that we must have (n = 2)

dTa       dfn

(2'8) *—l*"Ï*"*

If then we apply the test (2.8) to the 12 types of .42 obtained in [2],

we find that the only types not eliminated are

(i) rj.-rj.ûo.withft-M,
(II) rjt = (l/y)4, with G2= [p, xp+yq],
(ni) rî1 = 2è/y2, ri2=-i/y, r22=o, v2n=a/y\ v\2=b/y2, n,

= -2/y, with G3= [p, 2xp+yq, x2p+xyq].

In (I, IJ, III) we have used the notation ( to be followed hereafter)

x, y for x1, x2, and also p=df/dx, q = df/dy. The infinitesimal gen-

erators Xaf — ̂ a\p+^a\q (a = l, • ■ • , r) will generate the GT

= [Xi, X2, • ■ ■ , Xr] (in the neighborhood of the identity transforma-

tion).

The rjt(y) in (I) are arbitrary functions of y. In (II), a)t are arbi-

trary constants, as also are a, b in (III). These three cases (I), (II),

(III) are the [l.l], [2.1], [3.1] respectively of [2].

The equations (2.5) of integrability can be reduced by means of

(2.6) to the set of (dependent) equations

(2.9a) (Bu + B2i)gn - 2Biigxi = 0,

(2.9b) 2B22gi2 - (Blt + B2i)g22 = 0,

(2.9c) Ti22^n -Bug„ = 0.

3. Determination of the W2. As the T)t components of (II) and

(III) are special cases of those of (I), it is sufficient to obtain the
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solutions for this latter case and then by suitable specializations

obtain those for (II) and (III).

We first observe that from (2.4b) and (2.6) there is no loss of

generality in assuming

(3.1) <t>i = (rii + r212)/2,     <p2 = o.

Since if Bij be skew-symmetric integrability conditions (2.9) are

satisfied identically, it is convenient to consider two cases according as

Bij is or is not skew. In case P¿y is not skew we consider further the

two subcases 1(a) Pn^O, 1(b) Pn = 0.

If Pu^O, we can find a coordinate transformation of the type

(3.2) x = x + fiy),        y = y,

such that Bi2 + B2i = 0, Bn9¿Q, and also have the F^ as functions of

y only. By a suitable change of gauge conditions (3.1) will hold in

the barred coordinates also. If then the bars be dropped, we have

from (2.9) and (2.2) that gi2 = 0, P22^0.

Equations (2.1) when expanded are (using (3.1))

d£ll ,1 2 „ 2

(3.3a) -= guiTu - Tu) + 2gi2Tu,
dx

dgu 1 2

(3.3b) -= 2£„ri2 + 2g,2iY2,
dy

dgi2 i 2
(3.3c) — = ¿urn + g22rn,

ox

dgn 1 ,1 2 „ 2

(3.3d) —— = giiT22 + gniTu + T22) + g22T12,
dy

dg22 i 12

(3.3e) -= 2g12Ti2 - g22(Tu - r„),
dx

dg22 1      ,    -      _2
(3.3Í) -= 2^12r22 + 2g22T22.

dy

The solutions of Í3.3) corresponding to case 1(a) are given in §4.

In the subcase 1(b) for which Pu = 0, we must have B^ + Bn^O,

for if not (2.9) shows P22 = 0, that is, P,y is skew.

By a (3.2) type transformation we can make P22 = 0, and (3.3) can

be easily solved. The solutions are given below.

If Bij is skew we again assume two subcases: 1(c) T^y^O, 1(d) T^

= 0. In 1(c) we can make T22 = 0 by (3.2) (still keeping T^O). In
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1(d), (3.2) is used to make r22 = 0. In addition, it is easily shown that

we must have r¡2 = 0, r22 = rl1?í0.

The solutions of (3.3) corresponding to (II) are given as 11(a)-

11(d). The form of the G2 remains invariant under (3.2).

In dealing with (III) we first reduce it to the case 1(c) of (I) by a

(3.2) transformation. Here we must have 4a — ¿>2 = 0, 6^0. The solu-

tion and transformed form of the G3 are given in 111(a).

It can be shown as in [2 ] that the three groups are complete groups

of affine collineations.

4. The solutions.

W2 admitting the one-parameter group G\= [p]

1(a). Bij now skew, BnB22^0, Bi2 + Bn = 0.

Tu = r12 * o,     r¡; * o,     rí,rí2 - rirîi = o,
2 1

(B22/7iii)' = 2(7^22/^11) (r2o — Tu),

gn = a exp l 2 1  Ti2dy ),        gi2 = 0,

£22 = b exp í 2 f Tndy) - -pgn (ab * 0),

<t>i — Tu,        02 = 0.

1(b). Bu not skew, 5,1 = 7*22 = 0, Bi2+B2Í^Q.

1122 ,1

Tu = i\2 = r„ = rï2 = o,     r„ = o,

¿n = 0,        gi2 = a exp(  j T22dyJ,        g22 = 0 (a ?¿ 0),

<Pi = rîi/2,       <t>2 = 0.

1(c). Bij skew.

rîi * o,     ri1, * o,     ru = o;     ^ = r1„/2,     <t>2 = o,

F 1
gu = g(x)F(y),       gi2 = —y- (g' - gTn),

21 11

(«" - gTÎi - 2gv\2Tn),
" 2(T\i)2

F(y) = exp hjrldyj,
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g(x) = ax2 + bx + c,       b2 - iac * O,        (rú)2 + 4rlîrîi = 0,

g(x) = aekX + be~kz + c,    c  - iab j¿ 0,    (rîj + 4rî2r2! = **,

2 2 2
g(x) — a cos kx + b sin kx + c,       c  — a  — b  ^ 0,

12 12 2
(r„) + 4ruru = - a .

1(d). Bij skew.

rj2 = r2, = i* - r?2 = o, r„ * o;*, = r}x, 02 = 0,

guiy) =   I  2g12rndy,        git =   I ^riidy,

g22 = a exp Í   I  2T~22dy\ (a ^ 0),

In all cases the Y)t are understood to be arbitrary functions of y

subject to indicated restrictions.

W2 admitting the two-parameter group G2= [p, xp+yq]

Pj*=(l/j)ö'i throughout, a)t arbitrary constants subject to indi-

cated restrictions.

12 12
11(a).      an = ai2 ^ 0,        ai2 = «22 ^ 0,

2 12rv 1211r>
on  5¿  0, 1  +  «12  —   «11  5"*  0, «22011  —   «12011   =   0,

1       1

4>i = — an,        <t>2 — 0,
y

20]'2 2o1 12

gii = ay     , gi2 = 0, g22 = by      (a¿> ¿¿ 0), ««ï2 + ban = 0.

112 2 1
11(b).      al2 = a22 = an = an = 0,        an j¿ 0,

gii = 0,        gi2 = ay \        g22 = 0 (a ?í 0),

*i = (l/2y)aîi,        4>2 = 0.

2 1 122 112
11(c).      ai2 = 0,        aJ2 = — (a22) «n ^ 0,        au = 2a22an ^ 0,

2 2     1   2
ff22   =   1   —   «11(022)   ,

<pi = (l/2y)an,       fa = 0.

20,2za.2 ¿

gii as in 1(c) withiXy) = y     ,        g(x) = ax  + bx + c
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1212 1 2

11(d).      ffi2 = au = an — #12 = 0,        an 5* 0,        a22 9¿ 0,
12 1

in = (2au/a22)gu + c,       gi2 = aan log y + b,

2<>K
g22 = ay (a ^ 0),

*i = (l/y)aiit        <t>2 = 0.

1212 1 2

Il(d').     ai2 = «a = an — au = 0,        au ^ 0,        «22 = 0,
12 2 1

gu = a(an) (log y)   + 2bau log y + c,

gi2 = aan log y + b,    g22 = 0,
1 2

<t>i = (l/y)ttn.        02 = 0,        ac — ¿>   ^ 0.

W2  admitting  the  three-parameter  group

G3=[p, 2xp+yq, (x2-4yi/b2)p+(xy-2y3/b)q\

1       3b 1 9 !       12 2        b2
111(a).    Tii = —,        Ti2 =-»        r22 = —,       r„ =->

v2 y è 4y3

r22 = 0,        r22 =- (b * 0),
y

1 2   /       36 \
in--g(x),        glt-—\¿--g),

8   / 36 9   ¿>2   \

&4y12 \ y2 2   y4   /y2 2   y4

g(x) = ax+bx + c,       b    - 4a c ^ 0,

3    6
<pi =-->        ip2 = 0.

2   y'
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