COLLINEATIONS IN WEYL SPACES OF TWO DIMENSIONS
JACK LEVINE

1. Introduction. In this paper we obtain all (real) two-dimensional
Weyl spaces (W) which admit (real) continuous groups G, of affine
collineations (A.C.). Such a collineation is defined as a point trans-
formation which changes each path of the space into a path and also
preserves the affine path-parameters [1, p. 126].! The work is based
on the results of another paper to be published elsewhere [2]. It is
shown in [2] that there are 12 types of affinely connected spaces A4,
admitting A.C. When each of these types is tested for reducibility
to a W, it is found that all but three are eliminated, these three ad-
mitting respectively A.C. of one, two, and three parameters. There
are four general types of W, admitting the G, of A.C. and also four
such types of W, admitting the G, of collineations. Corresponding to
the G; there is only one class of Ws.

2. Weyl spaces. A Weyl space W, is a special type of affine space
A, (symmetric connection) which admits a tensor and a covariant
vector with components g;;, ¢; respectively such that

(2.1) giik + 28ii¢x = 0,

where a comma denotes covariant differentiation with respect to the
components I';; of affine connection of the space [1, p. 81]. The g;;
are assumed symmetric. In addition the vector ¢; must not be a
gradient (as otherwise the W, reduces to a Riemannian space) and
we must have also

(2.2) |g,~,~| # 0.
The T, can be expressed as

i

) i i im
(2.3) Ty = {jk} + 0ipx + oxdbi — girg bm.

The components gi;, ¢; of a W, are determined to within an
arbitrary function 8(x?), that is, the tensors with components gj, &;
given by

(2.4a) gi; = e¥g;, (2.4b) $:i = ¢ — 90/9x¢
will also satisfy (2.1). The I'j, remain invariant under (2.4) which is
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the change of gauge of Weyl. When a definite 6 is picked the space is
said to be calibrated [3].
Now the conditions of integrability of (2.1) are

(2.5) ghiBiim + geBiim + 28:i(@km — Gmr) = 0,
from which it follows that
i 0pm 0Py
2.6 Bi km — 2 - = 2 ]
(2.6) gy (ax" 8x"‘> (n )

where the curvature tensor components By, are

. oTm or
(2.7) Bim = — *

dxk dxm

b b
+ Tjmlar — Tl hm.
It follows that we must have (n=2)

) DA
(2~8) B, =

dxt dx?

If then we apply the test (2.8) to the 12 types of 4; obtained in [2],
we find that the only types not eliminated are

(I) P;t‘-_-r;k(y)v with Gl= [P]r

(I1) Th=(1/y)aj, with G.= [p, xp+yq],

(III) P}l = Zb/yz» P}2= - l/yv Péz""‘o, I‘zl,l =a/y:1 P?2 =b/y?, sz
= —2/y, with Gs= [p, 2xp+yg, x*p+xyq].

In (I, 11, I1I) we have used the notation ( to be followed hereafter)
%, ¥ for x', x2, and also p=9f/dx, ¢=0f/dy. The infinitesimal gen-

erators X.f=£p+£y9 (a=1,---,7) will generate the G,
=[X1, Xs, - - -, X,] (in the neighborhood of the identity transforma-
tion).

The T'(y) in (I) are arbitrary functions of y. In (II), aj; are arbi-
trary constants, as also are @, b in (III). These three cases (I), (II),
(III) are the [1.1], [2.1], [3.1] respectively of [2].

The equations (2.5) of integrability can be reduced by means of
(2.6) to the set of (dependent) equations

(2.9a) (Bi2 + Ba1)gnn — 2Bugie =0,
(2°9b) . 2322312 - (Blz + Bel)gzz = 0,
(2.9¢c) Bosgn — Biige = 0.

3. Determination of the W, As the I}, components of (II) and
(III) are special cases of those of (I), it is sufficient to obtain the
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solutions for this latter case and then by suitable specializations
obtain those for (II) and (III).

We first observe that from (2.4b) and (2.6) there is no loss of
generality in assuming

(3.1) é1= (T + T2)/2, 2= 0.

Since if B;; be skew-symmetric integrability conditions (2.9) are
satisfied identically, it is convenient to consider two cases according as
B, is or is not skew. In case Bj;; is not skew we consider further the
two subcases I(a) B #0, I(b) B;,=0.

If B;;#0, we can find a coordinate transformation of the type

(3.2) =2+ /3, y=3

such that B+ By =0, B;i#0, and also have the T} as functions of
3 only. By a suitable change of gauge conditions (3.1) will hold in
the barred coordinates also. If then the bars be dropped, we have
from (2.9) and (2.2) that g2 =0, By 0.

Equations (2.1) when expanded are (using (3.1))

ogn 2 2
(3.3a) - = gll(F:I — I'2) + 2g12T1,
dx
0g11 1 2
(3.3b) —— = 2gulie + 2g12Ty,
ay
9g12 1 2
(3.3c) = gul'12 + g2ol'n,
dx
dg12 1 1 2 2
(3.3d) p = gul2 + g12(T12 + Ta2) + gooThy,
y
0822 1 1 2
(3.3e) = 2g12T12 — g22(T'11 — o),
ox
0822 1 2
(3.3f) 3 = 2812192 4+ 2g2oT20.
y

The solutions of (3.3) corresponding to case I(a) are given in §4.

In the subcase I(b) for which B;; =0, we must have B+ B2 #0,
for if not (2.9) shows By, =0, that is, B,; is skew.

By a (3.2) type transformation we can make Bz =0, and (3.3) can
be easily solved. The solutions are given below.

If B;; is skew we again assume two subcases: I(c) I'%=0, I1(d) T}
=0. In I(c) we can make I'},=0 by (3.2) (still keeping I'}; 0). In
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1(d), (3.2) is used to make I';,=0. In addition, it is easily shown that
we must have I'l, =0, I'}, =T}, 0.

The solutions of (3.3) corresponding to (1I) are given as II(a)-
11(d). The form of the G, remains invariant under (3.2).

In dealing with (III) we first reduce it to the case I(c) of (I) by a
(3.2) transformation. Here we must have 4a—52=0, 0. The solu-
tion and transformed form of the G; are given in I1I(a).

It can be shown as in [2] that the three groups are complete groups
of affine collineations.

4. The solutions.

W, admitting the one-parameter group G,= [p]
I(a). Bi; now skew, B;1B2»#0, Biy+ By =0.

1 2 i 1.1 1.2
I'n =T #0, T'n #0, 'y — Teel'n = 0,

(B2o/Bu)’ = 2(322/311)(1"32 - I‘iz),
g1 = a exp (2 f F:zdy), 812 = Oy
2 Ba,
g22 = bexp 2fI‘22dy = E—gu (ab = 0),
11

¢l = P:ly ¢2 = 0.
I(b) B.'j not skew, Bu—_-Bgz:O, B2+ Bay #0.

1 2 2 1
P:l =Te=Tn=T=0, Iy =0,
2
g = 0, g2 = a exp(fl‘wiy), go2 = 0 (d 7~ 0),

¢ = I‘:1/2, ¢2 = 0.
I(c). Bijskew.
Tu#0, Thw0 Thw=0 ¢é1=Tu2 ¢:=0,

F 1
gu = g(x)F(y), 812 = 3 (g — g,

2I'

1 1_2
(g" - g'Pu - 2gF12P11),

go2 = 2(1_'%1)2

F(y) = exp (2 f rbdy),



268 JACK LEVINE [April

gv) =ax +bs+c b —4dac#0, () + 4Tl =0,
g2(x) = aekz + be_“ + ¢, ¢ — 4ab # 0, (I‘:;)? + 4I‘12Pfl = kz,
g(x) = a cos kx + b sin kx + ¢, c’—az—b’¢o,
(T’ + 4MTh = — &
I(d). Bi; skew.
Me=T3 =T, —TL =0T #0;¢=T},¢:=0,

1 1
gu(y) = f2g12I‘11dy, g2 = fgzzI‘udy,

g2 =a exp(fZI‘;zdy) (a = 0).

In all cases the I'j; are understood to be arbitrary functions of y
subject to indicated restrictions.

W, admitting the two-parameter group G, = [p, xp+yq|

I, =(1/y)ay throughout, aj, arbitrary constants subject to indi-
cated restrictions.

II(2). an=a1=0, ai= as =0,

2 1 2 12 11

an # 0, 14 a12—an#0, @22@11 — @12a11 = 0,
1,

¢1 = —an, ¢: =0,
y

al 2a! 1 2
gu = a)’z *, g12=0, gnn = by * (ab = 0), a2 + ban = 0.

II(b). aig = a; = afl = afz =0, aix = 0,
gu=0 gu= ayaz’, g2 =10 (e #0),
o1 = (1/2)’)0:1., ¢: = 0.

II(c). dig =0, 0112 = — (0;2)20:1 # 0, ail = Za;gagu > 0,

ap =1-— 0211(0;2)2,
¢ = (1/2}')0:1, ¢2 = 0.

1
2852

gijasin I(c) with F(y) =y , g(x) = ax + bx + .
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11(d). 012 = ail = a]il - 0212 =0, 0:1 # 0, 022 # 0,

fu= (20:1/022)812 +¢  g= aay log y + b,
2

g2 =ay (e #0),
¢ = (l/y)ail, ¢ = 0.

1 2 1 2 1 2
II(d"). @12 = a1 = ey — @12 =0, ay # 0, az = 0,

g = a(an)’(log 5)" + 2ban log 3 + ¢,
g1 =aanlog y+ b, g =0,
2
o1 = (l/y)aix, ¢ = 0, ac — b #0.

W, admitting the three-parameter group
Gs=[p, 2xp+yg, (x*—4y"/b)p+(xy—2y°/b)q]

1 3b 1 9 1 12 2 ) b2
III(a). Fu = ;;) sz —7: F22= 7} P11 = Z;;;’
2 2 6
Iy =0, Fogp = — — (b = 0),
y
1 2 /3
gu = ;;;8(90): g1z = b2y15(8 - ?g ’
8 (. 3, 9@
gzz—rwg—;;g‘i'*z‘yg,
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