A THEOREM ON THE DERIVATIONS OF
JORDAN ALGEBRAS

R. D. SCHAFER

G. P. Hochschild has proved [2, Theorems 4.4, 4.5]! that, if ¥
is a Lie (associative) algebra over a field F of characteristic 0, then
the derivation algebra D of U is semisimple (semisimple or {0}) if
and only if % is semisimple. We prove the following analogue for
Jordan algebras of Hochschild’s results.

THEOREM. Let A be a Jordan algebra over a field F of characteristic 0.
Then the derivation algebra D of U is semisimple or {0} if and only if
A s semistmple with each simple component of dimension not equal to 3
over 1its center.

The restriction on the dimensionality of the simple components
arises from the fact that the (3-dimensional) central simple Jordan
algebra of all 2X2 symmetric matrices has for its derivation alge-
bra the abelian Lie algebra of dimension 1. However, most simple
Jordan algebras over F have simple derivation algebras, and all ex-
cept those of dimension 3 over their centers have derivation algebras
which are semisimple or {0 }, as may be seen from the listing by N.
Jacobson [3, §4] of these derivation algebras.? The “if” part of the
theorem then follows from the direct sum relationship. To demon-
strate the converse it is sufficient to show that, if D is semisimple or
{0}, then ¥ is semisimple. For then, if any simple component of %
had dimension 3 over its center, it would have an abelian derivation
algebra not equal to {0} [3, §4], which would give rise to a nonzero
abelian ideal in D, a contradiction.

To show that % is semisimple whenever D is semisimple or {0},
we use the so-called Wedderburn Principal Theorem for Jordan alge-
bras, proved recently by A. J. Penico [5]. Also Lemma 1 below is
taken from the proof of that theorem [5, §2]. Revisions have been
made in the proof of our theorem in accordance with helpful sugges-
tions of Professor Jacobson.

LEMMA 1 (PENICO). Let U be a Jordan algebra over F of character-
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! Numbers in brackets refer to the references cited at the end of the paper.

2 The paper by C. Chevalley and the present author, to which Jacobson refers for
a proof that the exceptional simple Jordan algebra has a simple derivation algebra,
is reference [1].
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istic not two, and B be an ideal of N. Then
(a) B and By=AB2+B? are ideals of U.

If we define inductively the ideals By =AB+Bi for k=1,2, - - -, then
(b) there exists an integer N such that B, < B2.

For elements x, y, 2 in any nonassociative algebra %, the associator
A(x, y, 2) is defined as
A(x, v, 2) = (xy)z — x(y3).

We shall call the subspace of % spanned by all associators the asso-
ciator subspace of U. There is an important identity relating right
multiplications

R:: a—ax = aR, for all @ in ¥
in a Jordan algebra (of characteristic not two) to associators:
(1) RA(z.v.z) = [Rur [Rr: Rz}]

where [U, V] denotes the commutator UV — VU [3, p. 867, formula
9]

The center 3 of a nonassociative algebra ¥ is the set of all z in %
satisfying

2) ¥z = zx, (xy)z = x(yz) = (x2)y for all x, y in .

In a commutative algebra %, (2) is equivalent to

3) A(x, 9,2) =0 for all «, y in .
Formula (1) implies that any sum

@) > [R., R.]

is a derivation of a Jordan algebra % (of characteristic not two);
such a derivation of ¥ is called 7nner. We denote by & the set of all
inner derivations of 9. The Jacobi identity gives

(5) [[R- R.], D] = [R., R.p] + [R.p, R.]

for any derivation D of . By (5) and the fact that [R., R.] is a
derivation, we have

(6) [[R:; Rz]; [Rz’y Rz’]] = [Rz, RA(::’.:,:')] + [RA(:r',z,z’)y Rz]

for x, 2z, x’, 2’ in .

For M <A, we denote by R(M) the set of all right multiplicatiors
R of % for x in IN. It follows from (1) and (6) that the Lie multiplica-
tion algebra R of U (that is, the enveloping Lie algebra of R(X)) is
L=R(A)+ 3. If A has a unity element, then
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) ¢ = R(YU) + & (direct sum),
since then (4) is a right multiplication R, only for y=0.

LEMMA 2. Let © be a semisimple Jordan algebra over F of character-
istic 0 with center 3 and associator subspace P. Then

(8) & = 8 + B (direct sum).

For the multiplication centralizer of any semisimple nonassociative
algebra & with a unity quantity is the set R(3) where 3 is the center
of &. This follows by the usual direct sum argument from the known
special case in which & is simple [4, Theorem 16]. If F is of char-
acteristic 0, the Lie multiplication algebra € of & is =¥ @ ¢, where
G is the center of and &' = [, 8] [3, §2]. But we have € = R(3) by the
remark above. Also it follows from (7) and (1), in case & is a Jordan
algebra, that

9) ¢ = R(PB) + & (direct sum).

Take the intersection of =2 &€ with R(S). Since R(&)=R(3) =€,
this gives R(&) =R(3)+ (R(&)NY’) (direct sum), or

R(®) = R(B) + R(P) (direct sum)

since R(&)NY =R(P) by (9). The conclusion (8) follows.

We return now to the proof of the theorem. We assume that U is a
Jordan algebra over F of characteristic 0, and that the derivation
algebra D of ¥ is semisimple or {0}. We wish to prove that ¥ is
semisimple, that is, that the radical R of U is {0}

The Wedderburn Principal Theorem [5] asserts that

(10) A =S + N (direct sum)

where @ is a semisimple subalgebra of . Since N is characteristic (that
is, M is mapped into itself by every derivation) [3, p. 869], it follows
from (5) that the set ®; of all inner derivations (4) with both x and
zin N is an ideal of D. Moreover, D, is solvable: if we define

o =0 = [Byol, BT =@,
then there exists an integer 7 such that ®={0}. For each element
of ®{ is a sum of derivations (6) with x, 2, x’, 2’ in N. Iteration gives
every element in ® in the form (4) where x and z are products of
m and n factors respectively from Mt with m+-n =2+, Thus either x
or z is a product of at least 27 factors from N. But N is nilpotent, so
there is an integer ¢ such that any product of ¢ elements from N, no
matter how associated, is 0. Choose 7 so that 27¢; then D= {0}.
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But D is semisimple or {0}, so the solvable ideal T, is {0}, and
(11) [R., R.] =0 for %, z in M.

We shall require, however, the stronger conclusion that (11) holds
for x in A and z in N.

Let ®; be the set of all inner derivations (4) with x in ¥, z in N.
Then D, is an ideal of . Any element of D, is a sum of derivations
(6) with x, ¥’ in % and 2, 2’ in N. Thus (6) and (11) imply

(12) [[sz Rz]’ [Rz’r RZ’]] = [Rﬁ RA(:’.Z.Z')]v

since A(x’, x, 2’) is in N. Thus D; contains only derivations (4) with
zin M=AN2+N2. Iteration shows that any element of DF is a
derivation (4) with z in Ry =AM+ NE. By Lemma 1(b) there is an
integer Ao such that 9\, =N2 Hence any element of DJ? is a deriva-
tion (4) with z in M2 Then DP**? consists of sums of derivations of
the form (12) with z, 2’ in N2 But then A(x', 2, 2’) is in N?, since
N3 is an ideal of ¥, and the derivations in DMV are derivations (4)
with 2z in N3.

Define NI =9, N&+1=NE)3 a sequence of ideals of A by
Lemma 1(a). Since M is nilpotent, there is an integer s such that
Ni+11={0}. Let A\ be the integer given by Lemma 1(b) for the ideal
N, By iteration of the above process we obtain the fact that, for
p=o+ - - - +\,+s+1, any derivation in D is a derivation (4)
withzin e+ ={0}. Hence D¥ = {0}, D, is solvable. Thus D, = {0},
and

(13) [R.,R.] =0 for xin %, z in N.

Equivalently, (3) holds for every z in N; that is, N is contained in the
center € of . It follows from (10) that

(14) € = 3 4+ N (direct sum)

where 3 is the center of &. Also (14) implies, with Lemma 2 and (10),
that

(15) A =P + € (direct sum)

where P is the associator subspace of &.
Let z be in N and a; arbitrary; then z4 (a,, as, a3) = A (za1, a2, a3) =0
since za; is in N. Hence

(16) NP = {0}.
Also EP=(B+N)P=3P =P since B is the center of S; we have
17) Sp =.
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Let Dg be any derivation of the associative commutative algebra €
(into itself). Since N is the radical of € and 8 a semisimple subalgebra
(a direct sum of fields), the decomposition (14) is a Wedderburn de-
composition of €, and it follows from [2, Theorem 4.3] that Dg may
be written as the sum of an inner derivation of € (that is, 0) and a
derivation which annuls 8. That is, Dg maps 8 into {0} ; it follows
that ¢Dg is in N for ¢ in €. Let D be the linear extension of Dg to A
in (15) defined by PD = {0} Then D is a derivation of %. For p, p’
in B imply (pp')D is in ©D=(8+PB)D=3Ds= {0} while (pD)p’
=p(p'D) =0 by definition. Therefore, since D induces the derivation
Dg on €, it remains only to check the rule for a product ¢p, ¢ in €, p
in B. But (¢p)D =0since cp is in P by (17), while c(pD) =0 by defini-
tion and (cD)p=(cDg)p=0 by (16) since cDg is in N. Thus every
derivation of € is induced by a derivation of 2.

Since the center € is characteristic, the restriction to € of any deri-
vation D in D is a derivation Dg of €. We have seen that D—Dg is a
mapping from D onto the derivation algebra D(€) of €. But D—Dg
is a homomorphism. Hence the homomorphic image D(€) of D is
semisimple or {0}. But by Hochschild’s result for associative alge-
bras [2, Theorem 4.5], € is semisimple. Hence its radical 2 is {0},
and ¥ is semisimple.
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