PATTERN INTEGRATION
R. E. CARR AND ]J. D. HILL

1. Introduction. Let f(x) be bounded, a x <, and let the points
of discontinuity of f(x) form a set E of zero measure. If the interval

(a, b) is subdivided by means of the points %o, x1, * - +, %, so that
a=x0<x1< -+ <x,=b, and if & is chosen from the subinterval
(%k—1, xx), B=1,2, - - -, n, then the existence of
(1.1) lim 37 f(&) (xr — k1)

No® k1

is assured by requiring that the length of the greatest subinterval
tend to zero.

If we restrict the summation in (1.1) to a prescribed subset P of
the set N= {k}{‘, the resulting limit, providing it exists, will be called
the pattern integral of f(x). In general, the existence of this limit and
its value depend upon both the manner of subdivision and P.

We shall confine our remarks to the case where the manner of
subdivision A is given by

b—a

n

Ay xp=a+ k (k=0,1,2,---,n).
In this case, with a prescribed subset P of N (P will also be referred
to as the pattern), we form the sum

(1.2) (P) 2 f(&) (21 — i),

k=1
where the summation is restricted to the subset P of N. The limit
of (1.2) as n becomes infinite, providing it exists, will be referred to as
the special pattern integral

F(A, P) = (&, P) f f(x)dx = (P) f f(5)dx.

Throughout this paper (R)[2f(x)dx will be used to denote a proper
Riemann integral, and the statement that f(x) is Riemann integrable
in the interval (a, b) will signify that the integral is proper.

2. The principal theorem. We call a pattern fixed if it can be
characterized uniquely by a dyadic number
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(2.1) t=0.aiaa3 - an- - (2),

where ay =1 if the kth term of the sum is to be taken and ax =0 if the
kth term of the sum is to be omitted. If we cut off the number (2.1)
after the first # places we shall refer to the resulting number as

1M = 0.ajaza3 + * * o, (2).

Without loss of generality we assume the interval of definition of
f(x) to be (0, 1).

PrinciPAL THEOREM. Let f(x) be Riemann integrable 0Sx<1. Let
P be characterized by a given t such that

1 »
lim — Y a; = a.

noo N k=il

Then,

@ [ s = lim 13 e

n—~o N k=)

) = a(R) f f(2)d.

Proo¥. (1) Suppose f(x) = C,0<x <1. Then lim,.,(1/7) >_p_, axC

=Clim,.,(1/n) > o, ax=aC.

(2) Let 0<a <1, and let f(x) be the step function f(x) =C;,0=x <a,
f(x) =Cs, a <x =1. Let the subinterval in which the jump occurs be the
A(#)th. Then lim,..(1/2) >t aaf(E®) =lim,.o(1/7)[C1 D28 o
+(Ci or Clanm+Cidme: ax—Ci o 2™ ax]. (Clearly a—1/n

Ss\m)—1]/n<as\(n)/n<a+1/n,and \(n)/n—a as n— ».) Hence

(P) f lf(ac)dac = Ciaa + Cra — Csaa = aR) f l F(x)dx.
0 0

Extension of this result to a step function with 7 steps follows in the
same manner.

(3) Let f(x) be continuous, 0 Sx < 1. There exists a denumerable se-
quence of step functions {S;(x)} such that, given ¢>0, one can find
an Ny(e) so that 0=f(x) —Si(x) <e for all 1> Ny(e), 0=Sx=1. Let
Ti(x) =f(x) — Si(x). Then (1/n) D_p., axT:(E™) < (L.u.b. of T) <e for
all i>N,. Since f(x)=Ti(x)+S:i(x), (1/m) Xi., auf(&”)=(1/n)
2rer o Ti(E™) + (1/n) 25, caSi(E) ;hence, 05 (1/n) D_pe i cuf ()
—(1/n) 2%, anS:(E™) <e, and for sufficiently large

12 n 1
— Y af6”) - a(R) f Si@)dx| < 2

n k=1

Now let €é—0, and hence 7— % and n— «. Then
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1 ‘ 1
P) f f(x)dx = a(R) f f(2)d.

(4) Let f(x) be Riemann integrable 0 =x <1; f(x) is then integrable
in the sense of Lebesgue. According to Titchmarsh [2],! if f(x) is
integrable in the sense of Lebesgue over a finite interval (e, b), we
can construct an absolutely continuous function 7T'(x) so that
05Y) 2' f(x)—T(x) [ dx <7, where 7 is arbitrarily small. In our case, f(x)
—T(x) and |f(x)—T(x)| are Riemann integrable, so (R)/3[f(x)
—T(x)]dx = (L) [3[f(x) — T(x)ldx, (R)[3|f(x)—T(x)|dx=(L)[3|f(x)
—T(x) | dx. Hence,

(2.2) |(R) fl [f(x) — T(x) ]dxi <, 7 arbitrarily small,

(2.3) (R) f 1 | f(x) — T(x)| dx < n, 7 arbitrarily small.

For all =, |(1/n) 2%, aw[f(E)—TE™ ]| =(1/n) 23| FEM)
—-T(Eﬁ"))l, so from (2.3) we see that by taking » sufficiently large,
the quantity (1/2) >_p., ax[fE™) — T(¢™)] can be made arbitrarily
small. Now, for all n, (1/n) D_p., afE™)—(1/n) 231 axTE™)
=(1/n) 2t a[fE™) —TE™], so for n sufficiently large,
(1/n) Db auf (E™) differs from (1/2) D a., ax T(£M) by an arbitrarily
small quantity. But lim,.,(1/2) 2 ., ax TEM) =a(R) [4T(x)dx; and
by (2.2), (R)[sT(x)dx differs from (R) [of(x)dx by an arbitrarily
small quantity. Hence, lim, ., (1/2) D 2., cauf(§™) exists and differs
from «(R)/3f(x)dx by an arbitrarily small quantity, or lims..
(1/n) D2, auf(E™) =a(R) [if(x)dx. This completes the proof.

3. Miscellaneous results. The idea of a prescribed variable pat-
tern is suggested by the elementary congruence pattern, P: ¢=» mod
2. Corresponding to the characterization (2.1) for a fixed pattern,
we assume for the variable pattern a sequence of dyadic numbers

1) (1)

t =0 (2),

2) @2 (2

t " =0.a; az (2,
......... ,

(n) (n) (n) (n)

¢ =0.0; az an (2),

! Numbers in brackets refer to the bibliography at the end of the paper.
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THEOREM 3.1. Let f(x) be Riemann integrable, 0<x<1. Let P be
characterized by a given sequence {19} such that
. 1 & (ng)
hm —_— Ak = q,
By g0 N1 kel

where 1y Sne and 0 <liMgu, nyew(1/n2). Then,

1 1 n n n
P) f f@)dx = lim — 3 o fd"

B0 N kel

) = a(R) f f(2)d.

The proof is almost identical with that of the Principal Theorem.
(Actually, the Principal Theorem may be thought of as a special case
of Theorem 3.1.)

The following results are either obvious or follow immediately from
the Principal Theorem and Theorem 3.1.

THEOREM 3.2. Let f(x) be defined, single-valued, and bounded, a S x
<b. Let =0. Then (P)[2f(x)dx=0.

We define CP as the complement of P relative to N.

THEOREM 3.3. Let f(x) be Riemann integrable, a<x=<b. Let
(P)[2f(x)dx exist. Then

CP) f f(x)dz = (R) f f(x)dz — (P) f f(5)dx.

CorOLLARY 3.1. Let f(x) be Riemann integrable, a<x=<b. Let P
be the congruemce pattern i=! mod p (I, p fixed integers). Then

(P)[af (x)dx = (1/9)(R) [af (x)dx.

COROLLARY 3.2. Let f(x) be Riemann integrable, a<x <b. Let P be
the congruence pattern 1=1, mod p (p fixed integer, L, integer dependent
on n). Then (P)[2f(x)dx=(1/p)(R)[2f(x)dx.

A classical result of Borel [1] may be interpreted as saying that
almost all sequences of 0’s and 1’s are summable Cesiro of order one
to the value 1/2. From this we conclude that, for fixed patterns, al-
most all special pattern integrals of Riemann integrable functions are
equal to 1/2 the corresponding Riemann integrals.
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