ON CONFORMAL MAPPING OF REGIONS BOUNDED BY SMOOTH CURVES ## S. E. WARSCHAWSKI 1. **Introduction.** The object of this note is the proof of the following theorem. THEOREM. Suppose C is a simple closed curve which contains the origin of its interior R and which satisfies the following hypotheses: (a) C possesses a continuously turning tangent and the tangent angle $\alpha(s)$ considered as a function of the arc length s has the modulus of continuity $\beta(t)$, that is, (1) $$|\alpha(s \pm t) - \alpha(s)| \leq \beta(t), \qquad t > 0,$$ where $\beta(t)$ is a nondecreasing function of t and $\lim_{t\to 0+} \beta(t) = 0$. (b) There, exists a constant k such that if P_1 and P_2 are two points of C and Δs is the (shorter) are between them, then $$\frac{\Delta s}{\overline{P_1 P_2}} \le k.$$ (c) The diameter of C does not exceed D, and the distance of the origin from C is at least equal to σ , $\sigma > 0$. Suppose that w = f(z) maps the circle |z| < 1 conformally onto R such that f(0) = 0. Then, for every p > 0, there exists a constant A_p which depends only on p, the constants k, D, σ , and the function $\beta(t)$ —and in no other way on the curve C—such that uniformly for $0 \le \rho < 1$ (3) $$\left\{\frac{1}{2\pi}\int_{0}^{2\pi}\left|f'(\rho e^{i\theta})\right|^{\pm p}d\theta\right\}^{1/p} \leq A_{p}.$$ An explicit expression in terms of these parameters is obtained for A_p . The fact that the integral in (3) remains bounded for $0 \le \rho < 1$ under the assumption that C has continuously turning tangents was proved in an earlier paper of the writer [4, p. 362]. The emphasis in the present note is upon the fact that the constant A_p depends only on the parameters indicated and is expressed explicitly in terms of these quantities. This result is of use when an estimate for the integral in (3) is desired which holds uniformly for the mapping functions of a family of curves C. Received by the editors January 18, 1950. ¹ Numbers in the brackets refer to the bibliography at the end of the paper. Before proving the theorem we state an application. By a theorem of F. Riesz, $f'(\rho e^{i\theta})$ has limit values as $\rho \to 1$ for almost all θ and (3) holds for $\rho = 1$. By use of Hölder's inequality we have for p > 1, $z = e^{i\theta}$, $z_0 = e^{i\theta_0}$: $$| f(z) - f(z_0) | = \left| \int_{\theta_0}^{\theta} f'(e^{it}) i e^{it} dt \right|$$ $$\leq \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} | f'(e^{it}) |^{p} dt \right\}^{1/p} | \theta - \theta_0 |^{(p-1)/p} (2\pi)^{1/p}$$ $$\leq A_{p} (2\pi)^{1/p} | \theta - \theta_0 |^{1-1/p}.$$ From this it is easily seen that for $|z| = |z_0| = 1$ (4) $$|f(z) - f(z_0)| \leq 2^{2/p-1} A_p \pi |z - z_0|^{1-1/p},$$ and by a theorem in [6, p. 669], this inequality holds also for |z| < 1. Let $\phi(w)$ denote the inverse function of f(z). Then if w_0 , w are points of C and Δs is the length of the (shorter) arc between w_0 and w, then (note that $\phi(w)$ is an absolutely continuous function along C) $$| \phi(w) - \phi(w_0) | = \left| \int_{w_0}^{(C)} \phi'(u) du \right|$$ $$\leq \left\{ \int_C | \phi'(w) |^p | dw | \right\}^{1/p} (\Delta s)^{1-1/p}$$ $$\leq \left\{ \int_0^{2\pi} | f'(e^{i\theta}) |^{-p} | f'(e^{i\theta}) | d\theta \right\}^{1/p} (\Delta s)^{1-1/p}.$$ Hence by (2), (5) $$|\phi(w) - \phi(w_0)| \le (2\pi)^{1/p} (A_{p-1})^{(p-1)/p} (k | w - w_0 |)^{1-1/p},$$ and by the theorem just quoted, this is true for all w in R (w_0 on C). Combining (4) and (5) we obtain the following corollary. COROLLARY. Under the hypotheses of the theorem there exists for every δ , $0 < \delta < 1$, a constant B which depends only on δ and on k, D, σ , and the function $\beta(t)$ such that for $|z_0| = 1$, $|z| \le 1$, $$\frac{1}{B} |z - z_0|^{1/(1-\delta)} \le |f(z) - f(z_0)| \le B |z - z_0|^{1-\delta}.$$ ² This theorem is as follows: Let R be a region bounded by a simple closed curve Γ and let f(z) be regular in R and continuous in $R+\Gamma$. If for a point $z_0 \in \Gamma$, and for all $z \in \Gamma$: $|f(z)-f(z_0)| \le M|z-z_0|^{\alpha}$, where $\alpha > 0$, then this holds also for all z in R. (If we set $\delta = 1/p$, $B = \text{Max}(2^{2/p-1}\pi A_p, (2\pi)^{1/(p-1)}kA_{p-1})$.) The existence of a relation of this form at every point z_0 and even uniformly along the circle |z| = 1 for a fixed curve C is known [5], [1], and was proved in a different way. The point of our corollary lies again in the fact that the dependence of the constant B upon the parameters which characterize C is given. ## 2. Lemmas. We shall need the following lemmas. LEMMA 1. Under the hypotheses of the theorem there exists a positive $\rho < \sigma$ which depends only on k, σ , and the function $\beta(t)$, such that any circle of radius less than or equal to ρ about any point P of C intersects C in exactly two points and that the length of the subarc of C contained in this circle does not exceed 3ρ . PROOF. Let η , $0 < \eta < k\sigma$, be so chosen that $\beta(t) \le 1/8$ for $0 < t \le \eta$. Then we may take $\rho = \eta/k$. To see this we describe a circle K of radius $r \le \rho$ about P. Since $r \le \rho < \sigma$ there are points of C exterior to K, so that K intersects C. Let P_1 be the first point of intersection of K and C, which is met when C is traversed from P in one direction, and let P_2 be the first such point which one meets in going from P along C in the opposite direction. (P_1 and P_2 are distinct, for otherwise the curve C could not have any points in the exterior of K.) Suppose now there existed a third point of intersection of K and C, say P_3 . Assume, without loss of generality, that of the two complementary arcs PP_1P_3 and PP_2P_3 of C, the length Δs of the first does not exceed that of the second. Since by (2) $$\Delta s \leq k \cdot \overline{PP_3} = kr \leq k\rho = \eta$$ it follows that for all points s of the arc PP_1P_3 (s₀ corresponds to P) $$|\alpha(s) - \alpha(s_0)| \leq \beta(\eta) \leq 1/8.$$ Hence, the arc PP_1P_3 of C lies within the angle which is formed by two straight lines through P each of which forms an angle of opening 1/8 with the tangent to C at P. Then it follows that one of the angles between the tangent to C at P and the chord P_1P_3 of C is between $\pi/2-1/8$ and $\pi/2$. There exists a point $s=s^*$ of the arc PP_1P_3 between P_1 and P_3 such that $\alpha(s^*)$ is equal to the angle of inclination of P_1P_3 . Hence $\left|\alpha(s^*)-\alpha(s_0)\right| \ge \pi/2-1/8$, which contradicts the inequality stated above. We prove now the statement concerning the length of the subarc c of C which is contained in the interior of K. Let z(s) = x(s) + iy(s) denote the parametric representation of C in terms of s. Suppose that the interval $s_1 \le s \le s_2$ corresponds to c; $z_1 = z(s_1)$, $z_2 = z(s_2)$ are the end points of c. Then $$z_2 - z_1 = \int_{s_1}^{s_2} (x'(s) + iy'(s)) ds = (s_2 - s_1)(x'(\xi_1) + iy'(\xi_2))$$ where $s_1 \leq \xi_1$, $\xi_2 \leq s_2$. Hence $$\begin{aligned} |z_2 - z_1| &= (s_2 - s_1) |x'(\xi_1) + iy'(\xi_1) + i(y'(\xi_2) - y'(\xi_1)| \\ &\geq (s_2 - s_1) \{|x'(\xi_1) + iy'(\xi_1)| - |y'(\xi_2) - y'(\xi_1)| \}. \end{aligned}$$ Since $x'(s) = \cos \alpha(s)$, $y'(s) = \sin \alpha(s)$ and $|\xi_1 - s_0| \le \eta$, $|\xi_2 - s_0| \le \eta$, $$|z_2 - z_1| \ge (s_2 - s_1) \{ 1 - |y'(\xi_2) - y'(\xi_1)| \}$$ $$\ge (s_2 - s_1) (1 - 2\beta(\eta)) \ge 3(s_2 - s_1)/4,$$ or $$|s_2-s_1| \leq \frac{4}{3} |z_2-z_1| \leq \frac{4}{3} 2\rho < 3\rho.$$ LEMMA 2 (MODULUS OF CONTINUITY). Suppose that the hypotheses of the theorem are satisfied. Let $r_0 = \exp\left[-\pi^2 D^2/2\rho^2\right]$, where ρ is the number given in Lemma 1. Then for any two points z, z_0 of |z| = 1 for which $|z-z_0| \le r \le r_0$: $$|f(z) - f(z_0)| \le \frac{\pi D}{(2 \log (1/r))^{1/2}}.$$ PROOF. Let z_0 be a point of |z|=1 and h_r the part of the circle $|z-z_0|=r$ which is contained in |z|<1. Then by a theorem of J. Wolff [7, p. 217], there exists for every r, 0 < r < 1, an r_1 , $r < r_1 < r^{1/2}$, such that the image of h_{r_1} by means of w=f(z) is a cross-cut γ_{r_1} of R whose length $l_{r_1} \le (2\pi A/\log (1/r))^{1/2}$, where A is the area of R. Since $A \le \pi D^2/4$, we have (6) $$l_{r_1} \le \frac{\pi D}{(2 \log (1/r))^{1/2}}.$$ Assume now $r \le r_0$. Then the region $\{|z-z_0| < r_1, |z| < 1\}$ is mapped onto a subregion of R which is bounded by γ_{r_1} and an arc of C. If P_1 and P_2 are the end points of γ_{r_1} , then $$\overline{P_1P_2} \leq \frac{\pi D}{(2\log(1/r))^{1/2}} \leq \rho < \sigma.$$ Hence, by Lemma 1, one of the two arcs of C between P_1 and P_2 , say c_{r_1} , is contained in the circle of radius $\pi D/(2 \log (1/r))^{1/2}$ about P_1 . Because of (6), this circle contains γ_{r_1} and hence also the region bounded by γ_{r_1} and c_{r_1} . Since $\rho < \sigma$, the origin is in the exterior of this circle, and it follows that c_{r_1} is the image of the arc $\{|z|=1, |z-z_0| \le r_1\}$. Thus, if $z=e^{i\theta}$ and $|z-z_0| \le r$, then $$|f(z) - f(z_0)| \le \frac{\pi D}{(2 \log (1/r))^{1/2}}$$ LEMMA 3 (PROPERTIES OF AN AUXILIARY FUNCTION). Suppose $0 = \theta_1 < \theta_2 < \cdots < \theta_n < \theta_{n+1} = 2\pi$ and $\tau_1, \tau_2, \cdots, \tau_n, \tau_{n+1} = \tau_1 + 2\pi$ are two sets of real numbers. Let $\beta_m = (\tau_m - \tau_{m+1})/\pi$, $m = 1, 2, \cdots, n$, and for |z| < 1 $$g(z) = \prod_{m=1}^{n} (1 - e^{-i\theta_m} z)^{\beta_m};$$ each factor is single-valued and analytic for |z| < 1 if that branch of the power function is chosen which reduces to 1 for z = 0. If this branch of arg g(z) is taken, then $\lim_{z\to e^{i\theta}} \arg g(z) = \arg g(e^{i\theta}) = \tau_m - \theta - \pi/2 - \omega, \quad when \quad \theta_m < \theta < \theta_{m+1},$ where $$\omega = \frac{1}{2\pi} \sum_{m=1}^{n} \tau_m(\theta_{m+1} - \theta_m) - \frac{3}{2} \pi.$$ Furthermore arg g(z) is bounded in |z| < 1. PROOF. We define the function $\tau(\theta)$ by the relations $\tau(\theta) = \tau_m$ for $\theta_m \le \theta < \theta_{m+1}$, $m = 1, 2, \cdots, n, \tau(\theta + 2\pi) = \tau(\theta) + 2\pi$. Then we may write³ for |z| < 1: $$\log g(z) = \frac{1}{\pi} \sum_{m=1}^{n} (\tau_m - \tau_{m+1}) \log (1 - e^{-i\theta_m z})$$ $$= -\frac{1}{\pi} \int_{\theta=0}^{2\pi} \log (1 - e^{-i\theta} z) d\tau(\theta)$$ $$= -\frac{1}{\pi} \int_{\theta=0}^{2\pi} \log (1 - e^{-i\theta} z) d[\tau(\theta) - \theta]$$ $$-\frac{1}{\pi} \int_{0}^{2\pi} \log (1 - e^{-i\theta} z) d\theta.$$ $^{^{3}}$ Cf., for this representation of log g(z) in form of a Stieltjes integral, E. Study [3]. Now $\int_0^{2\pi} \log (1 - e^{-i\theta}z) d\theta = 0$. Upon integration by parts we find $$\log g(z) = -\frac{1}{\pi} \left[\log (1 - e^{-i\theta}z)(\tau(\theta) - \theta) \right]_0^{2\pi} + \frac{iz}{\pi} \int_0^{2\pi} \frac{\tau(\theta) - \theta}{e^{i\theta} - z} d\theta$$ and since $\tau(\theta) - \theta$ has the period 2π , the integrated part vanishes. Since $$\frac{z}{e^{i\theta} - z} = \frac{z}{e^{i\theta} - z} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \cdot \frac{e^{i\theta} + z}{e^{i\theta} - z} - \frac{1}{2},$$ we finally obtain (7) $$\log g(z) = \frac{i}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} (\tau(\theta) - \theta) d\theta - \frac{i}{2\pi} \int_0^{2\pi} (\tau(\theta) - \theta) d\theta.$$ The last integral $$\frac{1}{2\pi} \int_0^{2\pi} (\tau(\theta) - \theta) d\theta = \frac{1}{2\pi} \sum_{m=1}^n \int_{\theta_m}^{\theta_{m+1}} \tau(\theta) d\theta - \pi$$ $$= \frac{1}{2\pi} \sum_{m=1}^n \tau_m(\theta_{m+1} - \theta_m) - \pi.$$ The conclusion of the lemma follows easily from the representation (7) if we take the imaginary parts of both sides. 3. **Proof of the theorem.** (i) The correspondence between C and the unit circle |z|=1 is given by $w=f(e^{i\theta})$, $0 \le \theta \le 2\pi$. Let $s(\theta)$ denote the variable arc length of C expressed as a function of θ . By Lemma 2, the subarc c of C given by $w=f(e^{i\theta})$, $\theta_1 \le \theta \le \theta_2$, where $\theta_2-\theta_1 \le r \le r_0$, lies within the circle of radius $(\pi D/(2\log(1/r))^{1/2} < \rho$ about the point $w_1=f(e^{i\theta_1})$. By Lemma 1 the length of c is $\le 3\rho < 3\sigma$. Since the total length of C is at least $2\pi\sigma$, it follows that c is the *shorter* arc of C between its end points, and thus by (2) $$0 \le s(\theta_2) - s(\theta_1) \le k | f(e^{i\theta_2}) - f(e^{i\theta_1}) | \le \frac{k\pi D}{(2 \log (1/r))^{1/2}}$$ Let $\tau(\theta) = \alpha[s(\theta)]$. Given any $\epsilon > 0$ there exists a positive $\delta_1 \le k\rho$ which depends only on the function $\beta(t)$ such that (8) $$\beta(t) \leq \epsilon$$ for $0 < t \leq \delta_1$. Let δ be so chosen that (9) $$\frac{k\pi D}{(2\log(1/r))^{1/2}} \le \delta_1 \qquad \text{for } r \le \delta.$$ Then for any θ_0 , θ , $0 \le \theta$, $\theta_0 \le 2\pi$, we have by (8), (9), and (1) (10) $$|\tau(\theta) - \tau(\theta_0)| \le \epsilon$$ if $|\theta - \theta_0| \le \delta$. Clearly δ depends only on ϵ and D, σ , k, and the function $\beta(t)$, as $\delta = \exp\left[-k^2\pi^2D^2/2\delta_1^2\right]$ where $\beta(\delta_1) \leq \epsilon$, $\delta_1 \leq k\rho$. (ii) Let $n = \lfloor 2\pi/\delta \rfloor + 1$, so that $2\pi/n < \delta$. Let $\theta_k = (k-1)2\pi/n$, $k = 1, 2, \dots, n+1$, and $\tau_k = \tau(\theta_k)$. We have then $\tau_{n+1} = \tau_1 + 2\pi$. With these two sets of numbers θ_k , τ_k we form the function g(z) of Lemma 3. Consider the quotient $F(z) = (f'(z)/g(z))e^{-i\omega}$, |z| < 1, where ω is the constant in Lemma 3. The log $F(z) = \log f'(z) - \log g(z) - i\omega$ is single-valued and analytic for |z| < 1, if the same branch of $\log g(z)$ is chosen as in Lemma 3 and if $\log f'(z)$ is so determined that $\log f'(0)$ is real. By a Theorem of Lindelöf [2], arg f'(z), which is harmonic for |z| < 1, is continuous in $|z| \le 1$ and $$\arg f'(e^{i\theta}) = \tau(\theta) - \theta - \pi/2.$$ Hence, in every interval $\theta_k < \theta < \theta_{k+1}$, by (10) $$\left| \arg f'(e^{i\theta}) - \arg \left[g(e^{i\theta})e^{i\omega} \right] \right| = \left| \tau(\theta) - \tau_k \right| \leq \epsilon.$$ Furthermore, since arg F(z) is bounded in |z| < 1, we have (11) $$\left| \arg f'(z) - \arg \left[g(z)e^{i\omega} \right] \right| \le \epsilon$$ for $|z| < 1$. (iii) Given any p>0, choose $\epsilon=1/3p\kappa$ where $\kappa=2e/\log 2$. Applying an inequality on conjugate functions⁴ [4, p. 356], we obtain from (11): For $0 \le \rho < 1$, (12) $$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{f'(\rho e^{i\theta}) e^{-i\omega}}{f'(0) g(\rho e^{i\theta})} \right|^{\pm 2p} d\theta \le \frac{e^{2p\epsilon}}{1 - 2p\epsilon\kappa} \le \frac{e^{1/\kappa}}{1 - 2/3} = 3e^{1/\kappa}.$$ Furthermore, $$\int_{0}^{2\pi} \left| g(\rho e^{i\theta}) \right|^{\pm 2p} d\theta = \int_{0}^{2\pi} \prod_{m=1}^{n} \left| 1 - \rho e^{i(\theta - \theta_{m})} \right|^{\pm 2p\beta_{m}} d\theta$$ $$\leq \int_{0}^{2\pi} \prod_{m=1}^{n} \left[\frac{4}{\left| 1 - \rho e^{i(\theta - \theta_{m})} \right|} \right]^{2p|\beta_{m}|} d\theta$$ $$\leq \int_{0}^{2\pi} \prod_{m=1}^{n} \left| 2 \csc \frac{\theta - \theta_{m}}{2} \right|^{2p|\beta_{m}|} d\theta.$$ ⁴ The theorem referred to is the following: Suppose $\phi(z) = U(z) + iV(z)$ is regular for |z| < 1, suppose U(0) = 0 and $|V(z)| \le \eta$ for |z| < 1. Then there exists an absolute constant κ , which may be taken as $\kappa = 2e/\log 2$, such that for every q, $0 < q < 1/\kappa \eta$, $(1/2\pi) \int_0^{2\pi} e^{q|\phi(\rho + i\theta)|} d\theta \le e^{\eta q}/(1 - \eta q \kappa)$, $0 \le \rho < 1$. We apply this theorem with $\phi(z) \log F(z) - \log f'(0)$, $\eta = \epsilon$, q = 2p. Since $2p |\beta_m| \le 2p\epsilon/\pi < 1/\kappa\pi$, we have (13) $$\frac{1}{2\pi} \int_0^{2\pi} \left| g(\rho e^{i\theta}) \right|^{\pm 2\nu} d\theta$$ $$\leq 2^{n/\pi\kappa} \frac{1}{2\pi} \int_0^{2\pi} \prod_{m=1}^n \left| \csc \frac{\theta - \theta_m}{2} \right|^{1/\pi\kappa} d\theta = M_n,$$ where M_n depends only on n, which in turn depends only on p, D, σ , k, and the function $\beta(t)$. Thus, if $z = \rho e^{i\theta}$, we have $$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{f'(z)}{f'(0)} \right|^{\pm p} d\theta$$ $$= \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{f'(z)}{f'(0)g(z)} \right|^{\pm p} \left| g(z) \right|^{\pm p} d\theta$$ $$\leq \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{f'(z)}{f'(0)g(z)} \right|^{\pm 2p} d\theta \right\}^{1/2} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| g(z) \right|^{\pm 2p} d\theta \right\}^{1/2}$$ $$\leq (3e^{1/\kappa} M_n)^{1/2}$$ by (12) and (13). Since by Cauchy's inequality $\sigma \le |f'(0)| \le D$, we have (15) $$|f'(0)|^{\pm p} \leq \operatorname{Max} \left[D^p, \frac{1}{\sigma^p} \right],$$ and the conclusion of the theorem follows from (14) and (15) with $A_p = [3e^{1/\pi}M_n]^{1/2p} \cdot \text{Max} [D, 1/\sigma].$ ## **BIBLIOGRAPHY** - 1. M. Lavrientieff, Sur la représentation conforme, C. R. Acad. Sci. Paris vol. 184 (1927) pp. 1407-1409. - 2. E. Lindelöf, Sur la représentation conforme d'une aire simplement connexe sur l'aire d'un circle, Compte Rendu du 4ième Congrès des Mathematiciens Scandinaves, Stockholm, 1916, pp. 59-90. - 3. E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, vol. II. Konforme Abbildung einfach zusammenhängender Bereieche, Berlin, 1913. - 4. S. E. Warschawski, Über einige Konvergenzsätze aus der Theorie der konformen Abbildung, Nachr. Ges. Wiss. Göttingen (1930) pp. 344-369. - 5. —, Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Zeit. vol. 35 (1932) pp. 321-456. - 6. —, Bemerkung zu meiner Arbeit: Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Zeit, vol. 38 (1934) pp. 669-683. - 7. J. Wolff, Sur la représentation conforme des bandes, Compositio Math. vol. 1 (1934) pp. 217-222. University of Minnesota