ON CONFORMAL MAPPINGTOF REGIONS BOUNDED
BY SMOOTH CURVES

S. E. WARSCHAWSKI

1. Introduction. The object of this note is the proof of the following
theorem.

THEOREM. Suppose C is a simple closed curve which contains the origin
of its intertor R and which satisfies the following hypotheses:

(a) C possesses a continuously turning tangent and the tangent angle
a(s) considered as a function of the arc length s has the modulus of
continuity B(2), that is,

(1) la(s £ 2) — als)| < B@), t>0,

where B(t) is a nondecreasing function of t and lim,.o, B(t) =0.
(b) There, exists a constant k such that if P, and P, are two points of
C and As is the (shorter) arc between them, then

As
—— =<
PP,

)

(c) The diameter of C does not exceed D, and the distance of the origin
from C is at least equal to o, ¢ >0.

Suppose that w=[(z) maps the circle | z] <1 conformally onto R such
that f(0)=0. Then, for every p>0, there exists a constant A, which
depends only on p, the constants k, D, o, and the function B(t)—and in
no other way on the curve C—such that uniformly for 0<p <1

3 o s} 5 4,

An explicit expression in terms of these parameters is obtained for
A4,.
The fact that the integral in (3) remains bounded for 0<p<1
under the assumption that C has continuously turning tangents
was proved in an earlier paper of the writer [4, p. 362].! The emphasis
in the present note is upon the fact that the constant 4, depends only
on the parameters indicated and is expressed explicitly in terms of these
quantities. This result is of use when an estimate for the integral in
(3) is desired which holds uniformly for the mapping functions of a
family of curves C.
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! Numbers in the brackets refer to the bibliography at the end of the paper.
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Before proving the theorem we state an application. By a theorem
of F. Riesz, f'(pe®) has limit values as p—1 for almost all § and (3)
holds for p=1. By use of Hélder’s inequality we have for p > 1,
2 = e¥ gy = efo:

| f&) — f(z0) | = I 0 f’(e“)ie“dt’

1 2r 1/p
(L e al 1o = mfomsinays

< 4,2m)V7| 6 — 6, 1117,

IIA

From this it is easily seen that for |z| =]z =1
@ | (&) = JGa0) | S 22w | 2 = 2o 120,

and by a theorem in [6, p. 669],2 this inequality holds also for |zl <1.

Let ¢(w) denote the inverse function of f(z). Then if w,, w are
points of C and As is the length of the (shorter) arc between w, and
w, then (note that ¢(w) is an absolutely continuous function along

0
© pw
f o' (u)du

{ fc | ¢/ (w) |7| dw ]} "2 syt
[ et ren )@,

| $(w) — ¢(wo) | =

IIA

IIA

Hence by (2),
(5) | () — d(wo) | < (20)117(A py) P I2(k| w — 0| )1V,

and by the theorem just quoted, this is true for all w in R (w, on C).
Combining (4) and (5) we obtain the following corollary.

CoOROLLARY. Under the hypotheses of the theorem there exists for
every 8, 0<d<1, a constant B which depends only on § and on k,
D, o, and the function B(t) such that for Izol =1, |z| <1,

1
—-B—l z— 2 |V0D < | f(z) — f(z0) | £ B|z— 2|+

2 This theorem is as follows: Let R be a region bounded by a simple closed curve T
and let f(2) be regular in R and continuous in R+T. If for a point 20T, and for all
3ET: |f(2) —f(20) | £ M|2—20|®, where a>0, then this holds also for all z in R.



256 S. E. WARSCHAWSKI [April

(If we set 6=1/p, B=Max (2¥7=xd,, (2m)"®-Vkd4,_,).)

The existence of a relation of this form at every point 2, and even
uniformly along the circle !z] =1 for a fixed curve C is known [5],
[1], and was proved in a different way. The point of our corollary
lies again in the fact that the dependence of the constant B upon the
parameters which characterize C is given.

2. Lemmas. We shall need the following lemmas.

LEMMA 1. Under the hypotheses of the theorem there exists a positive
p <o which depends only on k, o, and the function 3(t), such that any
circle of radius less than or equal to p about any point P of C intersects
C in exactly two points and that the length of the subarc of C contained
in this circle does not exceed 3p.

ProoF. Let 7, 0<n<ke, be so chosen that (¢)<1/8 for 0<t=<1.
Then we may take p=7/k. To see this we describe a circle K of
radius r <p about P. Since r <p <o there are points of C exterior to
K, so that K intersects C. Let P; be the first point of intersection of
K and C, which is met when C is traversed from P in one direction,
and let P; be the first such point which one meets in going from P
along C in the opposite direction. (P; and P, are distinct, for other-
wise the curve C could not have any points in the exterior of K.)

Suppose now there existed a third point of intersection of K and C,
say P;. Assume, without loss of generality, that of the two comple-
mentary arcs PP, P; and PP.P; of C, the length As of the first does
not exceed that of the second. Since by (2)

As S k-PPy=kr < kp =,
it follows that for all points s of the arc PP, P; (so corresponds to P)
| a(s) — also) | = B(n) = 1/8.

Hence, the arc PP,P; of C lies within the angle which is formed by
two straight lines through P each of which forms an angle of opening
1/8 with the tangent to C at P. Then it follows that one of the angles
between the tangent to C at P and the chord P,P; of C is between
m/2—1/8 and w/2. There exists a point s=s* of the arc PP,P; be-
tween P; and P; such that a(s*) is equal to the angle of inclination of
P,P;. Hence |a(s*) —a(so)I =>7m/2—1/8, which contradicts the in-
equality stated above.

We prove now the statement concerning the length of the subarc ¢
of C which is contained in the interior of K. Let 2(s) =x(s)+7y(s)
denote the parametric representation of C in terms of s. Suppose that
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the interval s; Ss=<s, corresponds to ¢; 2, =2(s1), 22 =2(s;) are the end
points of ¢. Then

22— 5 = f az(x’(S) + iy'(s))ds = (s2 — 1) (&' (§1) + iy’ (&)

where 5, <&, £2<s,. Hence
|22 — 21| = (52— s1) | #'(8) + ¥/ (&) + i(y' (&) — ¥/ (&) |
= (52— s | ¥ (&) + i}"(il)l — |y - LADIRE
Since x'(s) =cos a(s), ¥'(s) =sin a(s) and IEl—so| =<1, |‘g’2—so| <9,

22— 21| 2 (52— s) {1 = | (&) — ¥ }
2 (52— s)(1 — 28(n) Z 3(s2 — 51)/4,
or

4 4
Sz“Slé?l22—le§?2p<3p.

LEMMA 2 (MODULUS OF CONTINUITY). Suppose that the hypotheses
of the theorem are satisfied. Let ro=exp [—w2D?/2p?], where p is the
number given in Lemma 1. Then for any two points 2, 2o of lzl =1 for
which |z—zo| Sr=<r:

D
(2 log (1/r)V%

PROOF. Let zo be a point of |z| =1 and &, the part of the circle
|2—320| =7 which is contained in |z] <1. Then by a theorem of J.
Wolff [7, p. 217], there exists for every 7, 0<r <1, an r;, r <r, <rl/2
such that the image of k,, by means of w=f(z) is a cross-cut 7,, of R
whose length /,, < (274 /log (1/r))"2, where A is the area of R. Since
A =wD?/4, we have

| f(2) = f(z0) | <

xD .
(2 log (1/m))12

Assume now r=ro. Then the region {|z—z| <r, lz] <1} is
mapped onto a subregion of R which is bounded by 7,, and an arc of
C. If P, and P, are the end points of v,,, then

_— D
PP, < ™
(2 log (1/m)1

Hence, by Lemma 1, one of the two arcs of C between P; and P,, say

(6) by

A

S=p<o.
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Cry, is contained in the circle of radius #D/(2 log (1/r))Y? about P;.
Because of (6), this circle contains +v,, and hence also the region
bounded by %,, and ¢,,. Since p <o, the origin is in the exterior of
this circle, and it follows that ¢,, is the image of the arc {|z| =1,
|2—20| <71}. Thus, if z=¢* and |2—20| S7, then

wD .
(2 log (1/m)12

LeEmMMA 3 (PROPERTIES OF AN AUXILIARY FUNCTION). Suppose

| f(z) — f(z0) | =

0=01<02< LR <0,. <0n+1=27l'dnd71, Tey * * *y Toy T,.+1=7'1+27I' are
two sets of real numbers. Let Bn=(Tm—Tm1)/m, m=1,2, - - -, n, and
for | 2| <1

8@ = [T (1 = e-ina)pe;

m=1

each factor is single-valued and analytic for |z| <1 if that branch of the
power function is chosen which reduces to 1 for z=0. If this branch of
arg g(2) is taken, then

lima arg g(z) = arg g(e®) = 1w — 0 — 7/2 — w, when Om <0 <Omyy,
Z—et

where
1 & 3
w=—2 Tu(Oni1 — On) — — .

21r m=1 2
Furthermore arg g(2) is bounded in |z| <1.

Proor. We define the function 7(0) by the relations 7(8) =7, for
0,<0<0,4, m=1,2, .-, n, 71(0+27)=70)+2r. Then we may
write? for |z| <1:

1 n
— Z (Tm — Tmy1) log (1 — e7m3)

T m=1

log g(2)

1 2r
= - — log (1 — e~%z)dr(9)
7 J oo
1 2r
- — log (1 — e~i%z)d[+(8) — 0]

™ =0

1 2%
- —f log (1 — e~%z)d6.
T Jo

3 Cf., for this representation of log g(2) in form of a Stieltjes integral, E. Study

[3].
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Now [¢" log (1 —e~iz)d@=0. Upon integration by parts we find

log g() = — %[log (1~ ei%)(r(6) — o>]2'+ = f IO =0

0 n e — 3
and since 7() —0 has the period 2, the integrated part vanishes. Since

P4 z 1 1 1 e+ 3 1

e —gz e —3z 2 2 2 e —3z3 2

we finally obtain

el 4 3

e — g

1 2% 7 2r
(7) log g(z) = 2—1—1; ((8) — 6)do — ;j; ((6) — 6)do.

The last integral

1 2r 1 2 Om+1
@ -0u=—3 [T 0w
2w 0 27rm=l 0
1 n
= — Z 7m(0m+l - 0m) - m.
27r m=1

The conclusion of the lemma follows easily from the representation
(7) if we take the imaginary parts of both sides.

3. Proof of the theorem. (i) The correspondence between C and
the unit circle |z| =1 is given by w=f(e®), 0<6 < 2w. Let 5(8) denote
the variable arc length of C expressed as a function of . By Lemma 2,
the subarc ¢ of C given by w=f(e®), 6, <0=0,, where 0,—0,<r=r,,
lies within the circle of radius (#D/(2 log (1/r))2<p about the point
w, =f(e?). By Lemma 1 the length of ¢ is £3p<3¢. Since the total
length of C is at least 2rg, it follows that c is the shorter arc of C be-
tween its end points, and thus by (2)

kxD )
(2 log (1/m)1*

Let 7(8) =a[s(0)]. Given any €>0 there exists a positive & <kp
which depends only on the function 8(¢) such that

(8) B(t) < e for 0 < ¢t < 4,
Let 6 be so chosen that

0 < 5(82) — s(81) < k| f(e®) — f(e) | =

kxD
) —_— <4, for » £ 4.
(2 log (1/m)12
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Then for any 6, 8, 0 <0, 0, < 2w, we have by (8), (9), and (1)
(10) | 7(8) — 7(60) | < e if [6—60] <.

Clearly 6 depends only on € and D, o, k, and the function B(t), as 6
=exp [—k?r2D?/282] where B(8;) <S¢, ;< kp.

(ii) Let n=[27r/8]+1, so that 2r/n<8. Let 0,=(k—1)2n/n,
k=1,2,. .., n+1, and 7.=7(0:). We have then 7,4, =7,4+27. With
these two sets of numbers 8y, 7. we form the function g(z) of Lemma 3.
Consider the quotient F(2) = (f'(z)/g(2))e i, |z] <1, where w is the
constant in Lemma 3. The log F(z) =log f'(z) —log g(2) —iw is single-
valued and analytic for |z| <1, if the same branch of log g(2) is
chosen as in Lemma 3 and if log f'(2) is so determined that log f’(0)
is real. By a Theorem of Lindelsf [2], arg f’(z), which is harmonic
for | 2| <1, is continuous in |z <1 and

arg f'(e®) = 7(6) — 0 — =/2.
Hence, in every interval 8, <0 <0,,,, by (10)
| arg f'(e%*) — arg [g(e®)e™]| = | 7(6) — | < .
Furthermore, since arg F(z) is bounded in Iz[ <1, we have
(11) | arg f'(z) — arg [g(x)e*] | < e for | z] < 1.

(iii) Given any p>0, choose e=1/3px where x=2¢/log 2. Applying
an inequality on conjugate functions* [4, p. 356], we obtain from (11):
For 0=5p<1,

2 ’ 0 e—iw +2p e?pe el/x
RO I EA il g < s
2o 1 £(0)g(oe®) 1~ 2pex — 1—2/3
Furthermore,
2r 2 n
f |g(pe“) Ii?vdo = f H| 1 — pei(6—tm) ,:t%ﬁmdg
0 0 ma=1

2r InI 4 2p16ml
= T do
Jo Bl

2r =n 0 — 0, 2p(Bml
< 11 ds.
0 m=1

2 csc

4 The theorem referred to is the following: Suppose ¢(z) = U(z) +iV(3) is regular
for |3| <1, suppose U(0)=0 and | V()| <7 for |2| <1. Then there exists an absolute
constant «, which may be taken as x=2eflog 2, such that for every q, 0 <q<1/xn,
(1/2%) f§Tedl$ ' <™ /(1 —ngi), 0Sp<1. We apply this theorem with ¢(2)
log F(z) —log f'(0), n=¢, ¢=2p.
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Since 2p|ﬁm| <2pe/m <1/km, we have

1 2x
——.J~ | 8(pe®) [£20do
27 0

1 2x n
é 2n/rx —_— f H
27r 0 m=1

where M, depends only on 7, which in turn depends only on p, D, o, &,
and the function B(¢).
Thus, if z=pe?, we have

(13)

1/7x

6 — 0n
de:Mm

CsC

1 )
27f 7(0)
NI
S N A »df
a  "wdy Tom| 4@

J'(@)

1 por t22 Y12 (] por 12
_— —_ +2p

= {Za-j; f(0)g(2) dﬁ} {ZT»I; l 8@ l do}

< (3el/*M,)1)?

by (12) and (13). Since by Cauchy’s inequality a§|f’(0)| =D, we
have

(15) | £/(0) [t» < Max [Dv, ip]

['2

and the conclusion of the theorem follows from (14) and (15) with
A,=[3¢V*M,]v?».Max [D, 1/s].

BIBLIOGRAPHY

1. M. Lavrientieff, Sur la représentation conforme, C. R. Acad. Sci. Paris vol. 184
(1927) pp. 1407-1409,

2. E. Lindelof, Sur la représentation conforme d'une aire simplement connexe sur
Vaire d'un circle, Compte Rendu du 4itme Congrés des Mathematiciens Scan-
dinaves, Stockholm, 1916, pp. 59-90.

3. E. Study, Vorlesungen diber ausgewihlte Gegenstinde der Geometrie, vol. 11.
Konforme Abbildung einfach susammenhéngender Bereieche, Berlin, 1913,

4. S. E. Warschawski, Uber einige Konvergenssitze aus der Theorie der konformen
Abbildung, Nachr. Ges. Wiss. Gottingen (1930) pp. 344-369.

S. , Uber das Randverhalten der Ableitung der Abbildungsfunktion bei kon-
former Abbildung, Math. Zeit. vol. 35 (1932) pp. 321-456.

6. , Bemerkung zu meiner Arbeit: Uber das Randverhalten der Ableitung der
Abbildungsfunktion bes konformer Abbildung, Math, Zeit. vol. 38 (1934) pp. 669-683.

7. J. Wolff, Sur la représentation conforme des bandes, Compositio Math. vol. 1
(1934) pp. 217-222.

UNIVERSITY OF MINNESOTA



