A CHARACTERIZATION OF PLANE LIGHT OPEN MAPPINGS

M. K. FORT, JR.

1. Minimal functions. We are concerned with continuous functions whose domains are open subsets of the plane P and whose ranges are contained in P. In this paper the word mapping is used to designate such a function. By a disk we mean a subset of P which is a closed topological 2-cell. If S is a simple closed curve in P, we denote by S^* the disk formed by taking the union of S and the interior of S.

Let S be a simple closed curve in P and let f be a mapping whose domain contains S^* . We say that f is minimal on S^* if $f(S^*) \subset g(S^*)$ for every mapping g whose domain contains S^* and which is such that f|S=g|S (that is, which is such that f(x)=g(x) for each $x\in S$). We define f to be minimal if f is minimal on each disk contained in the domain of f.

In this paper we prove that a light mapping is open if and only if it is minimal.

2. Winding numbers. We make use of the concept of winding number or topological index. If f is a mapping whose domain contains a simple closed curve S and $p \in P - f(S)$, then we denote by W(f, S, p) the winding number of f on S with respect to p. Intuitively, as a point x travels once around S in a counter-clockwise direction, W(f, S, p) is the net number of revolutions that the vector from p to f(x) makes about p (a revolution being positive if made in a counter-clockwise direction and being negative if made in a clockwise direction).

The following facts concerning winding numbers are well known and are assumed.

- (i) If $p \in P f(S)$, then there exists a neighborhood V of p such that W(f, S, v) = W(f, S, p) for each $v \in V$.
- (ii) If $p \in P f(S)$, then $f \mid S$ is homotopic in P p to a constant if and only if W(f, S, p) = 0. (f | S is the function obtained by restricting the domain of f to S.)
- (iii) If $p \in P f(S)$, then $f \mid S$ can be extended to a continuous function on S^* into P p if and only if W(f, S, p) = 0.
- (iv) If the domain of a mapping f contains a disk S^* , then $f(S^*) \supset f(S) \cup \{p \mid W(f, S, p) \neq 0\}$.
- (v) If S_1 and S_2 are simple closed curves which have disjoint interiors, $S_1 \cap S_2$ is an arc, and

Received by the editors February 6, 1950.

$$S = \operatorname{Cl} ((S_1 \cup S_2) - (S_1 \cap S_2)),$$

then

$$W(f, S, p) = W(f, S_1, p) + W(f, S_2, p)$$

for each $p \in P - (S_1 \cup S_2)$.

THEOREM 1. If S is a simple closed curve and f is a mapping whose domain contains S^* , then f is minimal on S^* if and only if

(A)
$$f(S^*) = f(S) \cup \{ p \mid W(f, S, p) \neq 0 \}.$$

Let g be a mapping on S^* for which $g \mid S = f \mid S$. It follows from (iii) that if $p \in P - f(S)$ and $W(f, S, p) \neq 0$, then $p \in g(S^*)$. Thus, if (A) holds, then $f(S^*) \subset g(S^*)$ and f is minimal on S^* .

- If (A) does not hold, then it follows from (iv) that there exists $p \in f(S^*) f(S)$ for which W(f, S, p) = 0. By (iii), there exists an extension g of $f \mid S$ such that $g(S^*) \subset P p$. It follows that $f(S^*) \subset g(S^*)$ and hence that f is not minimal on S^* .
- 3. Plane light open mappings. A mapping is open (or strongly interior) if it takes open sets into open sets. A mapping f is light if $f^{-1}(y)$ is totally disconnected for each y in the range of f.

THEOREM 2. A light mapping f is open if and only if it is minimal.

Suppose that f is light and minimal. Let U be an open subset of the domain of f, and let $y \in f(U)$. Choose $x \in U$ so that f(x) = y. Since $f^{-1}(y)$ is totally disconnected, it can be shown that there exists a simple closed curve S in $U-f^{-1}(y)$ such that $x \in S^* \subset U$. Since $y \notin f(S)$, W(f, S, y) is defined. Since $y \in f(S^*) - f(S)$ and f is minimal, it follows from Theorem 1 that $W(f, S, y) \neq 0$. It follows from (i) that there is a neighborhood V of Y such that $W(f, S, y) \neq 0$ for each $v \in V$. Now, from (iv), we obtain $V \subset f(U)$. Thus f(U) is an open set and f is an open mapping.

Now suppose that f is light and open. Let S be a simple closed curve for which S^* is contained in the domain of f and let $y \in f(S^*) - f(S)$. It is known (see [1, p. 191])¹ that $f^{-1}(y) \cap S^*$ is a finite set. We let x_1, \dots, x_n be the points of $f^{-1}(y) \cap S^*$. Locally at each x_i, f is topologically equivalent to a mapping f_i on the disk $\{z \mid z \in P \text{ and } |z| \le 1\}$, where $f_i(z) = z^{k_i}$ and k_i is a positive integer. (In this connection see [1, p. 198].) It is now easy to see that for each i there is a simple closed curve C_i about x_i for which $C_i^* \subset S^*$ and $|W(f, C_i, y)| = k_i$. Thus the integers $W(f, C_i, y)$ are all nonzero. Interior to C_i there exist

¹ Numbers in brackets refer to the bibliography at the end of the paper.

points at which f is locally a homeomorphism. At such points f is orientation preserving if $W(f, C_i, y)$ is positive and orientation reversing if $W(f, C_i, y)$ is negative. The set L of points of S^* at which f is locally a homeomorphism is a dense connected subset of S^* . The subset M of L consisting of all points at which f is orientation preserving is both open and closed relative to L. Hence M = L or M is the empty set. It follows that the integers $W(f, C_i, y)$ are either all positive or all negative. We may obviously choose the curves C_i so that the disks C_i^* are disjoint and do not intersect S, and we assume that this has been done. We now choose a finite cellular subdivision of S^* in such a way that each C_i^* is a 2-cell of the subdivision. We let A_1, \dots, A_m be the 2-cells of the subdivision and let B_i be the boundary of A_i . Making use of (v) and induction, we obtain

$$W(f, S, y) = \sum_{j=1}^{m} W(f, B_{j}, y).$$

Unless $B_i = C_i$ for some i, then $y \in f(B_i^*)$ and $W(f, B_i, y) = 0$ by (iii). Therefore

$$W(f, S, y) = \sum_{i=1}^{m} W(f, B_i, y) = \sum_{i=1}^{n} W(f, C_i, y).$$

Since the numbers $W(f, C_i, y)$ are all nonzero and are of like sign, we obtain $W(f, S, y) \neq 0$. It now follows from Theorem 1 that f is minimal.

It would be interesting to know whether or not theorems analogous to Theorem 2 exist for higher-dimensional spaces. The author has been unable to prove such theorems.

BIBLIOGRAPHY

1. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1942.

University of Illinois