
A CHARACTERIZATION OF PLANE LIGHT OPEN MAPPINGS

M. K. FORT, JR.

1. Minimal functions. We are concerned with continuous functions

whose domains are open subsets of the plane P and whose ranges are

contained in P. In this paper the word mapping is used to designate

such a function. By a disk we mean a subset of P which is a closed

topological 2-cell. If S is a simple closed curve in P, we denote by S*

the disk formed by taking the union of 5 and the interior of S.

Let S be a simple closed curve in P and let / be a mapping whose

domain contains S*. We say that/is minimal on S* if f(S*)Eg(S*)

for every mapping g whose domain contains S* and which is such

that/| S = g\ S (that is, which is such that/(x) =g(x) for each xES).

We define / to be minimal if / is minimal on each disk contained in

the domain of/.

In this paper we prove that a light mapping is open if and only if

it is minimal.

2. Winding numbers. We make use of the concept of winding

number or topological index. If / is a mapping whose domain contains

a simple closed curve S and pEP-f(S), then we denote by W(f, S, p)

the winding number of/ on 5 with respect to p. Intuitively, as a point

x travels once around S in a counter-clockwise direction, W(f, S, p)

is the net number of revolutions that the vector from p tof(x) makes

about p (a revolution being positive if made in a counter-clockwise

direction and being negative if made in a clockwise direction).

The following facts concerning winding numbers are well known

and are assumed.

(i) If pEP-f(S), then there exists a neighborhood V of p such that

W(f, S, v) = W(f, S, p) for each vEV.
(ii) If pEP-f(S), then f\S is homotopic in P — p to a constant if

and only if W(f, S, p) =0. (f\ S is the function obtained by restricting

the domain of/to S.)

(iii) If pEP-f(S), thenf] S can be extended to a continuous function

on S* into P — p if and only if W(f, S, p) = 0.
(iv) If the domain of a mapping f contains a disk S*, then f(S*)

Df(S)KJ{p\W(f,S,p)*0}.
(v) If Si and S2 are simple closed curves which have disjoint interiors,

Sif~~\S2 is an arc, and
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5= ci «Si vj so - iSir\s2)),

then

Wif, S, p) = Wif, Si, p) + Wif, S2, p)

for each pEP~iS¿JS2).

Theorem 1. If S is a simple closed curve and f is a mapping whose

domain contains S*, then f is minimal on S* if and only if

(A) fiS*) = /(5) \J{p\ Wif, S, p) * 0}.

Let g be a mapping on S* for which g| S=f\ S. It follows from (iii)

that if pEP-fiS) and Wif, S, p)^0, then pEgiS*). Thus, if (A)
holds, then/(S*)Cg(S*) and/ is minimal on S*.

If (A) does not hold, then it follows from (iv) that there exists

pEfiS*)-fiS) for which Wif, S, p)=0. By (iii), there exists an ex-
tension g of /| S such that giS*)EP-p. It follows that/(S*)(]:g(S*)

and hence that/ is not minimal on S*.

3. Plane light open mappings. A mapping is open (or strongly

interior) if it takes open sets into open sets. A mapping / is light

if/_1(y) is totally disconnected for each y in the range of/.

Theorem 2. A light mapping f is open if and only if it is minimal.

Suppose that / is light and minimal. Let U be an open subset of

the domain of/, and let yEfiU). Choose xE U so that/(x) =y. Since

f_1iy) is totally disconnected, it can be shown that there exists a

simple closed curve S in U—f~liy) such that xES*EU. Since

yEfiS), Wif, S, y) is defined. Since yEfiS*)—fiS) and /is minimal,
it follows from Theorem 1 that Wif, S, y)^0. It follows from (i)

that there is a neighborhood F of y such that Wij, S, v)9é0 for each

vEV. Now, from (iv), we obtain VEfiU). Thus fill) is an open set

and/ is an open mapping.

Now suppose that / is light and open. Let S be a simple closed curve

for which S* is contained in the domain of/ and let yEfiS*) —fiS).

It is known (see [l, p. 191])1 that f~liy)r\S* is a finite set. We let

Xi, ■ • • , x„ be the points of f~1iy)f>\S*. Locally at each x{, f is topo-

logically equivalent to a mapping/^ on the disk {z\ zEP and \z\ ^ 1},

where/i(z) =z*' and ki is a positive integer. (In this connection see

[l, p. 198].) It is now easy to see that for each i there is a simple

closed curve d about Xi for which d*ES* and | Wif, d, y)\ =ki.
Thus the integers Wif, d, y) are all nonzero. Interior to d there exist

1 Numbers in brackets refer to the bibliography at the end of the paper.
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points at which / is locally a homeomorphism. At such points / is

orientation preserving if W(f, d, y) is positive and orientation revers-

ing if W(f, d, y) is negative. The set L of points of S* at which / is

locally a homeomorphism is a dense connected subset of S*. The sub-

set M of L consisting of all points at which / is orientation preserving

is both open and closed relative to L. Hence M = L or M is the empty

set. It follows that the integers W(f, d, y) are either all positive or

all negative. We may obviously choose the curves d so that the disks

C* are disjoint and do not intersect S, and we assume that this has

been done. We now choose a finite cellular subdivision of S* in such a

way that each C* is a 2-cell of the subdivision. We let Ai, ■ ■ ■ , Am

be the 2-cells of the subdivision and let B, be the boundary of A¡.

Making use of (v) and induction, we obtain

m

W(f, S, y) - £ W(f, Bh y).
i-i

Unless £y= d for some », then yEf(B*) and W(f, B,-, y) =0 by (iii).
Therefore

-

W(f, S,y)-jt W(f, Bh y) = ¿ W(f, d, y).
i— i ¿=i

Since the numbers W(f, d, y) are all nonzero and are of like sign, we

obtain W(f, S, y)9£0. It now follows from Theorem 1 that / is
minimal.

It would be interesting to know whether or not theorems analogous

to Theorem 2 exist for higher-dimensional spaces. The author has

been unable to prove such theorems.
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