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Preface

In an earlier paper,1 to which the present one is a sequel, we derived

rigorous error estimates in connection with inverting matrices of

high order. In this paper we reconsider the problem from a prob-

abilistic point of view and reassess our critical estimates in this light.

Our conclusions are given in Chapter IX and are summarized in §9.3.

As in the earlier paper we have here made no effort to obtain

optimal numerical estimates. However, we do feel that within the

framework of our method our estimates give the correct orders of

magnitude.

This work has been made possible by the generous support of

the Office of Naval Research under Contract N-7-onr-388. We wish

also to acknowledge the use by us of some, as yet unpublished, re-

sults of V. Bargmann, D. Montgomery, and G. Hunt, which were

privately communicated to us.

Chapter VIII. Probabilistic estimates for bounds of matrices

8.1 A result of Bargmann, Montgomery and von Neumann. We

seek a probabilistic result on the size of the upper bound of an nth

order matrix which was first established by Bargmann, Mont-

gomery, and von Neumann. Since the result is contained in an as

yet unpublished paper, we give below an outline of the proof and also

Received by the editors February 27, 1950.

1 Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. vol. 53

(1947) pp. 1021-1099. The numbering of chapters and sections in the present paper

follows directly upon those of the one just cited.
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we modify slightly the final theorem. Let

(8.1) A = («,,) (*. j = 1. 2, • • • , n)

be a matrix whose elements are independent random variables, each

of which is normally distributed with mean zero and dispersion a.

Under these assumptions it is well known2 that

(a) The  joint  distribution   function   for the elements a,y  (*', j

= 1,2, • • ■ , n) is given by

1

ff»(2r)"'*
exp

2Z an

II dau;

(b) The joint distribution function for the elements of the definite

matrix A*A =5 = (Z>¿y) (t, j = i, 2, • • • , n) is given by

Wn"(bif>^f)

(Det B)-"2

(2i'v)»V"(—i>'4n r(-)
1=1     \        2        /

exp

z »«
2^2    j

(c) The joint distribution function for the n proper values, Xi, X2|

• • , X„ of the matrix B is given by

Kn exp

Ex.

2o-2

where'

-ra/S

Km =

(8.2)

(2,,-n(r(-^i))

Pm/2

<W"-ñ(r(f))'
(m= 1,2, •••)•

! Cf. for example, S. S. Wilks, Mathematical statistics, Princeton, 1943, pp. 226 ff"

3 Cf. S. S. Wilks, op. cit., pp. 262-263. In his results n — 1 should be replaced by

», X by a2, and U by Xi (t = l, 2, •••,») to make them consistent with our nota-

tional practices.
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Next

(8.3) Assume that X=Xi is the largest proper value of B and that

<p(X) is its probability density. Then, if r ^ 1",

/ 2r Y 1
Prob (X > 2a2m) < (-IX-

Ve1-1/       4(r - \)(nnY>2

To prove (8.3) let R be the region of (»—1)-dimensional space

X¿ = 0 (i=2, 3, ■ • • , n) and for each X>0 let R\ be the sub-region of

R consisting of all (X2, X3, ■ • • , X„) such that XïîX2Sï • • • èX„èO.

We then see that

0(X) = KJr11* exp
(-^)/ÄxeXP

£x,

(8.4.a)

IT  (X< - Xi) II (* - Xi-)*}    d\i
2ái<í j-2

^ Kn\n'il2 exp

\     2W JÄX
exp

Zh

■ n (x, - x,) n x, d\j
%Si<i i=2

g XnX""3/2 exp ( - —- j f  exp

2><

2<r2

n (x.- - xf) n x, d\
2S«J

= \"-u2exp(--^AKnKníi;

the first inequality follows at once from the fact that X—Xy=X

(j = 2, 3, ■ ■ - , n), the second from the fact that R\ER and the last

equality is a known result.4 It now follows easily from (8.2) that

(8.4.b)
Kn rl/2

Kn-i      (2o-2Y-v2(Y(n/2))2

and hence summing up, we have

4 Cf. S. S. Wilks, op. cit., pp. 263-264.



195»] NUMERICAL INVERTING OF MATRICES OF HIGH ORDER. II 191

(8.5) 4>CK) <-Xn-3ne-xi2„\
(2<r2)"-1/2(r(«/2))2

With the help of (8.5) and the substitution 2a2p.=\ — 2a2rn we find

that

Prob (X > 2<rVM)

*(X)áX ^- \»-*i2e-*i2°%d\
2„V* -    i20-2)^2iVin/2))2  J 2^rn .

Tl/2e-rn

f   «-"(/* + rn) "-3'2d/n
Jo

e-» I 1 + — )       dp.
iYin/2))2      Jo \        m

(r(«/2))2 J„

(8.6) (m)"-3/2e-r"ir1/2 ("°      (        m\"~3/2

M"-3/2e---"ir1/2 Z*00

(r(«/2))!
J       e-?H-(.n-3l2)rn

Jo
Un

irny-uh-'»-*1'2 (r»)»-1'2«-'»*-1'2

(r(«/2))2(l - ((n - 3/2)/r»))      (r(«/2))2(r - 1)«

Finally we recall with the help of Stirling's formula that

/   /«NX2       x«"-1

(87) Kt/PT^        H-«.*.•■••)!
now combining (8.6) and (8.7) we obtain our desired result:

(rw)n-l/2i-rn7rl/2en.2»-2

Prob (X > 2tr2r«) <-
irwn_1(r — l)w

(8-8) ..... j

X-£)"
4(r - lXrx»)1'*

We sum up in the following theorem:

(8.9) The probability that the upper bound | A | of the matrix A

of (8.1) exceeds 2.72o-«1'2 is less than .027X2-"w-1/2, that is, with

probability greater than 99% the upper bound of A is less than

2.720-w1'2 for n = 2, 3, • • • .

This follows at once by taking r = 3.70.

8.2 An estimate for the length of a vector. It is well known that

(8.10) If ax, a2, ■ ■ • , an are independent random variables each of

which is normally distributed with mean 0 and dispersion a2 and if

\a\ is the length of the vector a = (oi, a2, ■ ■ • , a„), then
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(8.11)    P(\a\ > (a2™)1'2) = - f x'-W2*2^.6
11 2»'V»r(«/2) J c,w'2

Let n = 2N and y=x2; then (8.11) becomes

P(\a\ < (2o-2rNyi2) =- f       y"-le-*i**dy.
11 2^r2*r(A0J2,'rl/

Since the integral on the right is of the same form as the one in (8.6),

we see by the same sort of argument which led to (8.8) that

,    i (rN)N
P(\a\ > (2o-2rN)1'2) <

erNN(r - l)T(N)

/ r Y 1
<(-)   X->

\e-V       tt1'2^ - 1)(2A0"2

that is, we have

(8.12) For random vectors a, as defined in (8.10), we have

(8.13.a)      P(\ a\ > „(rn)"2) < (re1-)"'2 X -——-—>
(vn)ll2(r — 1)

(8.13.b) P(\ a\ > 1.92(rw1/2) < 0.21 X 2~".

The last inequality follows at once from (8.13.a) by setting

r = 3.70.

8.3 The fundamental lemma. To describe the result upon which

the body of the paper depends we need two definitions.

(8.14) Designate by Ui(a) the Ith convolution of the uniform distri-

bution on the interval  —a, +ct.

(8.15) Let 0 be a non-negative valued function defined on a real

Af-dimensional euclidean space and let it have the properties:

(a) <f> is continuous and convex, that is, for aj^b, <p((a + b)/2)

ú(<p(a)+<b(b))/2.
(b) <p is positively homogeneous, that is, <p(sa) = \s\ -<i>(à) for

every real number 5.

(c) <f> has bound 1, that is if |a| ^1, $(a) = l.

If M = n2 and if the point o = («i, a2, • • • , ajif) is interpreted as an

wth order matrix, then the bound satisfies the properties (a)-(c) of

(8.15). Similarly, if M = » and if a is interpreted as a vector, then the

6 Cf. for example, Cramer, Mathematical methods of statistics, Princeton, 1946, p.

236.
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length of a vector satisfies the properties (a)-(c) of (8.15). We intro-

duce the function <f> to unify the discussion of  §§8.4-8.6 below,

which  are devoted  to  probabilistic estimates  for  the  bounds  of

matrices and lengths of vectors.

Our principal result is

(8.16) Assume the following:

(a) h = ihi, h2, ■ ■ • , h)t) is a vector whose elements hm are inde-

pendent random variables such that each hm has the distribution

Uimiß~'/2) and let I be a number greater than or equal to lm

(«-1,2, • ■ -, M).
(b) a = (ai, a2, ■ ■ ■ , auf) is a vector whose elements are independent

random variables such that each am is normally distributed with

mean 0 and dispersion <r2 = (/+l)/3~2''/4. Then we have for k>0

r       (/+i)i/2 i
P\ <t>ih) > --— (k + 2M1'2/-1'2)jr'

r       (¿ + i)i/2    i
^2e*Ml*'P\ 4>ia) >-— «0-    X (logi 21).

As a first step in establishing this result we state and prove an un-

published theorem of G. A. Hunt.

(8.17) Assume the following:

(a) h is a vector having the property (a) of (8.16).

(b) g = igi, g2, ■ ■ ■ , gin) is a vector whose elements are independent

and which have the distribution Uiiß~'/2).

Then for a > 0

Pitig) > m) à Piïih) > a)/2.

Hunt's proof, which is very simple and elegant, can in this context

be given as follows: Let /be a vector whose elements are independent

and which have the distribution Ui-imiß~'/2). Then clearly g and

f+h have the same distribution. Since <b is convex we always have

Max(<£(A+/), (pih—f))^<pih); and since the distribution U¡ia) is

symmetric about the mean 0, with probability at least 1/2, we have

<t>ih+f) =<)>ih) for each vector h. Thus, by integrating over the set

4»(h)>a we find P(^(g)>o)=P(^(A+/)>o)èP(*(*)>o)/2.

With the help of (8.17) we see that in order to establish (8.16) it

suffices to show

(8.18) Let g be a vector with the properties described in (b) of (8.17)

and let a be a vector with the properties described in (b) of (8.16).

Then
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r               (¿ + 1)1/2 1
P   <t>(g) > -(« + 2M1'H-1i2)ß-'

r       (/+i)i/2    i
g e^inp  0(a) > :-Kßr.   x (jog2 21).

8.4 Some discrete distributions. To establish (8.18) we consider

a number of related distributions.

(8.19) Assume that

(a) b = (bi, b2, ■ ■ • , ¿»m)  is a vector whose elements are inde-

pendent and have the discrete distribution

/           2hc    \          1        /.<(2A+i)/a+i)"2),
P ( ß = -) =- I e-*2l2°zdx

\ (l+iy2/        (^»^J^d/c+dI/V

(A = 0, ±1, ±2, •••)•

Then we have

P(4>(b) > c(k + M1'2/"1'2))

(8.20) g P(<p(a) > ac)

= Po,

where a = (ci, a2, • • • , ait) is the vector described in (b) of (8.16).

To show this we note first that each bm is expressible in the form

2<r      f      (/ + l)1'2
Ôm  =

(/+1)

= am +

r    (i+iy2    in

^r-2^~ + TJ
a    ¡r   (i +1)1'2    in        (i + i)»'n

ipT,tLa"-i7-+¥j-a--ir-ia+D
where a = (oi, a2, • • • , oaî) has the property (b) of (8.16) and where

[x] means the integer part of x. Now, if we define a vector c

= (fti c2, • • • , caí) by

2ff   r   (J + i)i/2. i

(*+D

r    (/ + i)"2     i -i

i'2 L 2<r 2 J

then 6 = a+c and by (a), (b) of (8.15) we have <b(b) <<b(a)+<i>(c);

moreover, we have at once | cm\ áo-/(/+l)1/2 and thus by (c) of (8.15)

<j>(c)èa(M/l+\yi2.li<t>(b)>o-(K+(M/iyi2),then<t>(a)>K<j+a(M/iyi2

— ff(M/(l+í))ll2>aK; our conclusion (8.20) now follows at once.

We interrupt momentarily our chain of argument to show
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J C3/4I /. ((2A+1)/<î+1)W)ï

(8.21)

=   e3/4¡

/. UZA+1)/

/      2      V'2 fh+m

\t(Z+1)/    Ja_1/2

(A = 0, ±1, ±2, ••• , ±1/2),

where Ci,m is the binomial coefficient.

Let

/• Ä+l/2 e-tfl('+»dy
h-llî

Then clearly we have for h ̂  0

/(A + 1) //2 - h

fih) 1/2 +h+i

(/+!)- (2A + 1)

e2((/.+l)2-*i)/((+l)

(/ + 1) + (2Ä + 1)

1 - (2A + !)/(/ + 1)

C2(2A+1)/(I+1)

e2(2Ä+l)/(!+l)

1 + (2Â + 1)/(Z + 1)

=  e2(2A+l)/(i+l)+ln(l-(2A+l))/(l+l)/(l+(2A+l)/(l+l))^ J_

Thus for AèO, /(A+l) S/(A)á. ■ ■ 3/(0); but by Stirling's formula

Í! (27r)1'2e-i/!+1'2e1/12i

/(O) = C,.i„ = ——— ^
((//2)!)2      27re-!(//2)i+V"('+1>

/2\1'2
< 2!c<1-3í>'12í(¡+1>|_)

VW  '
and thus for A 3:0

1/2

/(A) ^ 2ie(1-3!)/12i(!+1)( —)

2

ifj+l),

<   2ig(»I+7)/12I(I+l)( - \

\ir(i+l)/

/       2       V'2// + IX1'2
(8.22) = 2'e<1-3i)'12!(!+1)(-)    (-)

\t(/+1)/    \    /    /

But/(A) is even for all A and thus (8.22) is valid for all A.

Next we underestimate g(A). Notice that
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/1/2 /.1/2
e-2(A+x)2/(¡+l)¿£ _ g-(4A/(!+l))i-(2/(¡+l))j:2¿;r

-1/2 J-112

I'
i 1/2

> g-l/2(í+l)    I e-{ihW+l))x¿x

'-1/2

sinh (2h/(l + 1))
=   g-l/2(!+l)    _i_Li_!_ÍL  >   g-I/2(i+l).

2h/(l + 1)

combining this estimate for g(h) with (8.22) we obtain

fW / f"+1/2       . /       2       V'2

which implies (8.21) directly.

We pick up again the thread of our previous argument in

(8.23) Assume that

(a) c = (ci, c2, ■ • ■ , cm) is a vector whose elements are independent

and have the distribution

±1/2).
/ 2ha     \       1

(8-24)    PV = J+~îyT2)= rCu,2+h {h = 0, ±1, +2, '

Then we have

P(<b(c) > o-(k + M'lH-V2)) Ú «3M/4!Po,

where P0 is defined in (8.20).

We see with the help of (8.21) that

/            2h<r    \                /            2hc    \
P[y =-I < e*'ilP[ß = -)

V      (/+1)1'2/" V        (/+1)1/2/

and thus (8.23) follows directly from (8.19).

It is of some interest to notice that the distribution defined in

(8.24) is the Ith convolution of the distribution +o-/(/-|-l)1/2 with

probability 1/2.

8.5 Continuation. The result (8.23) is true of course for a arbitrary

and, hence, is also true for a replaced by <r/2p.

(8.25) Let d^ = (d(?\ d2p), ■ ■ ■ , a*?') with p = l, 2, ■ ■ ■ , q be a
vector whose elements are independent and have as their distribu-

tions

p(8 = 2Kik+\y>) = ^Cl-m+h     (* "0| ±1, ±2, ' ' " ' ±l/2)-
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Since <p is homogeneous (cf. (b) of 8.15), Po = P(0(a) ><r/c) is seen

to be independent of <r. It then follows directly from (8.23) that

P(<Há(!,)) ><r(/c+M1/2/-1'2)2-") ^e3MlilPo. Let

(8.26) «<«> = ¿d<»>.

Now if <pid^)^2-"o-ÍK + M1'n-1i2) for all p = \, 2, ■ ■ ■ , q, then by

(8.15),<^.(e<'))<^(«+^1/^1/2). Hence if <¿>(e(,)) ><t(k+M "W), then

for some^we must have<¿>(¿(í>)) >2_po-(k-(-M1/!!/_1/2) and thus we have

(8.27) P(<He(,)) > *(* + M1'2/-1'2)) g qe*MiilP0.

(8.28) Let go be the smallest integer q' for which 2~?'gl/7 and let

the vector e = e<«o> = ^°=1 d<«>>.

Then if the g in (8.25), (8.26) is greater than q0, e<«>=e

+ Zl=í0+i¿(p)- In the event that0(e<«))>o-(K+2M1'2/-1/2), then by

(8.15)

(8.29) o-Ík + 2M1'2/-1'2) < <t>ie) + ¿ 0(¿(p)).
«o+l

To estimate <£(d(p)) we recall from the definition of ¿(p) that each of

its elements is in absolute value less than or equal to 2~"lo-/il+l)112

á2-%¿1'í and thus that |d«| ^-"o-M1'2/1'2. Hence 0(¿(p))

^2-"o-M1'2/1'2and

¿ <¿>(¿<p>) g o-M^H1'2 ¿ 2-p < 2-«o<rM1'2"'2 ^ crM1'2/-1'2

«o+l «o+l

by (8.28). From this and (8.29) it now follows that

<j>ie) > o-Ík + 2M1'2/-1'2) - o-M^H-1'2 = <r((c + M1'2/-»'2);

that is, <^)(e<«))>o-(K-(-2Af1'2/-1/2) implies that 0(e) >o-(/c+M1/2Z-1/2).

Hence by (8.27) with q = qo we have for q^qo

(8.27') PO(«(l)) > <r(/c + 2M1iH-1'2)) £ ?0e8Af/4iPo.

Next if g < go

P(tf>(e(s)) > «r(ic + 2M1'2/-1'2)) è P(<Ke(4)) > cr(K + M1'2/"1'2))

g qeiMlilPo < qoeiM'ilP0.

Thus (8.27') is valid for all q.

(8.30) If e<«> {¡mi, 2, ■ ■ ■ ) is the vector defined in (8.26), (8.25)
then
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P(<t>(eW) > o-(k + 2M"2l~v2)) < eiM'ilPo-(\o%2 21).

This follows at once from (8.28) since

ço è [log2 /] + 1 á log21 + 1 - log2 21.

Also since <p is a continuous function we see that

(8.31) If / is a vector whose elements are independent and have the

distribution Ui(<r/(l+l)112), then

P(4>(f) > "(k + 2M1'2/"1'2)) è e3W/4îPo-(log2 21).

To complete the proof of (8.18) we have only to adjust the size of

a. Let o-/(l+\yt2 = ß~'/2 and take the vector / of (8.31) to be the g

of (8.18). Then by the definition of P0 in (8.20) we have (8.18) and

also (8.16).

8.6 Two applications of (8.16). We are, of course, interested in

(8.16) primarily for estimating probabilistically the bounds of mat-

rices and norms of vectors whose elements are sums of one or more

rounding errors. Stated more precisely:

(8.32) Assume the following:

(a) H=(hij) is a matrix whose elements are independent random

variables having the distributions Uiij(ß~"/2) with Uj^un (m^I).

(b) x = (xi, x2, • • • , xm) is a vector whose elements are inde-

pendent random variables having the distributions Umi(ß~'/2), mt

^un.

Then we have for 4 à w â 1, « è 10

(c) P(|77| >(M-r-.l)1/2(1.53 + l/M1/2)«/3-')<.07X2-",

(d) P(\x\ >(u+.iyi2(iMnß-'))<.03X2-n'2.

We now apply (8.8) and (8.16) to the derivation of (c) above. In

(8.16) we take M = n2 and interpret the w2-dimensional vectors A and

a there as «th order matrices 77 and A, respectively, with <j>=\ \ ,

the bound of a matrix. Then (8.8) is applicable to A with a2

= (l + l)ß-~2,/4: and we choose l = un (4èw^l), K = (2rn)112 and recall

from §7.2 that n^ 10. Thus we have by (8.8) and (8.16)

P( | H | > (u + .iy>2((2ryi2 + 2/u"2)nß-/2)

g P( | 77 | > (un + iyi2((2my'2 + 2(n/uy2)ß-'/2)

(8.33) g 2e3n'4"P( \A\> ((un + l)(2rn)yi2ß~'/2) X (log2 2««)

< (In 8»)(2re1+3/4«-'')" X ((r - í)(rrn)li22 In 2)"1.
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To complete the argument we note that u è 1 and take r = 4.7. Then

2^1+3/4-^1/2 and for we 10, (In %n)/n"2^i\n 80V101'2.

We next apply (8.13.a) and (8.16) to the derivation of (d) above.

In (8.16) we, this time, take M = n and <f> to be the length of a vector.

Then (8.13.a) is applicable to the vector a with <r2=(/+l)/S-2s/4

and we choose l = un, k = (r»)1/2. Thus, we have by (8.13.a.) and (8.16)

Pi | x | > (w +.l)»/»((m)1" + 2/u1>2)n1i2ß-/2)

g P(| x\ > iun + l)1'2«™)1'2 + 2/ul'2)ß~'/2)

è 2e3'4«P( | a | > Hun + \)mY'2 ß~'/2 X (log2 2m»)

< (2 In ^e^'ire^Y^-Hr - lX«*)*" In 2)"1

(In 8«)
= 2e3'4- irel-r)»'2iir - l)*1'2 In 2)"1.

«1/2

To complete the argument we take r = 4 and note that (« + .1)1/2

X (1.34«) è(M+.l)1/2(n1/2+l/M1'2)n1'2 for »^10.

Chapter IX. The error estimates

9.1 Reconsideration of the estimates (6.42)-(6.44) and their con-

sequences. The decisive estimates of §§6.3-6.10 are (6.42), (6.43), and

(6.44) and they yield (6.96) and (6.102) almost directly. We proceed

now to replace the strict estimates (6.42)-(6.44) by probabilistic

ones. These replacements are all based upon (8.32) ; and since we

assume «^10 they have probabilities of at least 99.9%.

First, we apply (8.32) to the matrix of (6.33) and see by (6.29)

that the u of (8.32) can be taken to be 2. Thus with high probability
we can replace (6.34) and the equivalent (6.42) by

(9.1) \2 - B*DB\ ú 3.25nß~'.

Second, we apply (8.32) to the matrix U of (6.39) and see by (6.39)

that m can be taken to be 4. Thus we replace (6.43) by

(9.2) \ U\ Ú 4.12«j3-'.

Third, we apply (8.32) to the vectors Um and see by (6.39) that

u can be taken to be 4. Thus we replace (6.44) by

(9.3) | i/m| ^ 2.72M/3-.

Next we define

(9.4) a' = 8nß-'/ti,
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and notice that (9.2)-(9.4) imply

(9.5) I J- WOB] < A2ß<x',

(9.6) I U\ < .58/x«',

(9.7) | i/m | g .34*«*'.

Thus (9.5)-(9.7) are in form the same as (6.42)-(6.44) except that a

has been replaced by a'.

The estimate (6.65") will now be valid with a replaced by a',

provided only that (6.62) and (6.67) are valid under this same re-

placement. Using (8.32) with m = 4, we find that (6.56) becomes

(9.9) | W^ - 2-"ZA-2D-iZ* | ^ 4.12w/3-J < .91Ma'.

If now we assume that

(9.10) a' Ú -1,

then we have

(9.11) | 2q"Ä.Wo - 7| < (1.98 + 10.28XV,

where q0 is defined in (6.59).

9.2 The general AT. By analogy with (6.73) and (9.4) we define

(9.12) ai = %nß~'/ ¿.

Then with the help of (8.32) with »=1 we can replace (6.75) by

(9.13) | J - Ail* | < 2.66nß~' < ßla'i/2,

and thus (6.78') and (9.10) can be replaced by

ai ^ .095.

All the results of §§6.9-6.11 are now valid with a¡ replaced by a\

and in particular (6.102) is now

(9.14) | 2ixAiS - 71 g (5.29 + 14.55Xí)<*z,

where Ci is defined by (6.92).

9.3 Concluding evaluation. In closing it is desirable for us to

evaluate once again our conclusions in a final capitulation.

First, the requirements of §§7.2 and 7.3 are unchanged except for

(7.2), (7.2/) which are now

(9.15) a' S .1,        that is   /x è &0nß-',

(9.15r) ai è .095,    that is   /»r ̂  84.2w/T\
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Second in the light of (9.11), (9.14), (7.5'), (7.5'/) now become

(9.16) I 23lWo - l\ á 114(X/M)«/3-\

(9.16/) I 2îlJz5 - l\ S 293(X//V/)«/T\

and the conditions which are the negations of (9.15), (9.15/) are

(9.17) m < 80nß~\

(9.17/)                                    mi < 84.2»/3-s.

Thus we have either (9.16) or (9.17) for J and either (9.16/) or (9.17/)

for J/. The conditions (9.16), (9.16/) express that 2q«Wo and 2«i£ are

approximate inverses for A and Ar, respectively, while the conditions

(9.17), (9.17/) express that A and Ar, respectively, are approximately

singular.

It is perhaps worth remarking that the coefficients 114 and 293

appearing in (9.16), (9.16/) and the coefficients 80, 84.2 in (9.15),

(9.15/) are probably not optimal, but result from the crudeness of

our probabilistic techniques. However, our principal aim was not to

produce "best possible" estimates, but was merely to obtain a feeling

for the sizes of the errors likely to be encountered.

By analogy with §7.8 we conclude with some numerical evaluations

of our estimates (9.16), (9.17) for J and (9.16/), (9.17/) for 1/. Let

us accept the probabilistic estimates (7.14/.a)-(7.14/.c) for X/, nr and

(7.14'.a)-(7.14'.c) for X, n. Then (9.17), (9.17/) imply approximately

(9.18) n ^ .01/3"2;

that is, an approximate inverse will usually be found if

(9.18') n < .0l3"2.

Furthermore, the right-hand sides of the estimates (9.16), (9.16/)

become (again approximately)

(9.19) ^ 20,000»3/3-«.

(In the case of (9.16) the factor 20,000 should have been ~11,000

and in the case of (9.16/) <~29,000. Cf. the remarks immediately

succeeding (7.16); the remarks made there are substantially ap-

plicable here.)

For this to be less than one, we have

(9.18") n < (/3'/20)1'3/10 < .04/3"3;

that is, an approximate inverse will usually be found if n satisfies the

condition  (9.18").  If we assume that 0*^1O4, which is certainly
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reasonable, then condition (9.18") is more stringent than (9.18')

and we therefore regard it as the critical condition regarding the rela-

tive precision of the approximate inverse.

Considering the precisions (7.17.a)-(17.17c), we find that (9.18")

becomes

(9.19.a) n < 19,

(9.19.b) n < 86,

(9.19.c) «<400.

Institute for Advanced Study

ON SERIES OF WALSH EIGENFUNCTIONS

W. H. SPRAGENS

Walsh [4]1 considered expansions in terms of eigenfunctions satis-

fying the equation

u"(x) + [p2 - g(x)]u(x) = 0, OS irai,

and the boundary conditions

«(0) = 0,       «(1) = 0,

the function g(x) being assumed continuous on Ogxgl. He used the

asymptotic formula for the £th eigenfunction

(1) **(*) = (2)1'2[sin kirx + (\/k)$k(x)},        I <l>k(x) I è C.

Comparing series of these functions with corresponding series of

the functions

(2) uk(x) = (2)1'2 sin krx,

he proved that if a function in L2 is expanded in terms of both sets of

functions, then the series of term-by-term differences converges uni-

formly and absolutely to zero on O^xéí.

This result, as Walsh points out, is closely related to that of Haar

[l], who considered the Sturm-Liouville problem with boundary

conditions u'+Hu = 0, and compared the series of the resulting func-

tions with the Fourier cosine series. He obtained equiconvergence in

Received by the editors April 3, 1950.

1 Numbers in brackets refer to the references cited at the end of the paper.


