NUMBER OF INTEGERS IN AN ASSIGNED A, $P \le x$ AND PRIME TO PRIMES GREATER THAN x^c

V. RAMASWAMI

In the following:

x denotes any real number greater than 1; y, c, t denote real positive numbers; $l = \log(x)$;

d, m, v, k denote integers satisfying $n \ge 0$, d > 0, m > 0, $0 < v \le k$, (v, k) = 1;

A(m, v, k) denotes the set of integers m(v+nk) for varying n;

f(m, v, k, x, c) denotes the number of integers in A(m, v, k) less than or equal to x and prime to primes greater than x^c ;

 $\psi(x, k)$ denotes the number of positive integers less than or equal to x and prime to k;

 $F(x, k) = x\psi(k, k)k^{-1} - \psi(x, k)$; b(m, k), B(v, k) denote functions, to be defined in the context, of the integral variables involved;

 $\phi(y)$ and q(y) denote the functions defined on page 100 of my paper¹ entitled The number of integers $\leq x$ and free of prime divisors $> x^c$, and a problem of S. S. Pillai;

 $\pi(v, k, x)$ denotes the number of primes less than or equal to x in A(1, v, k);

 $P(v, k, x) = \sum_{p \le x, p \equiv v \pmod{k}} p^{-1}, p \text{ denoting a prime number};$

 $\bar{n}(v, k)$ denotes the least positive integer satisfying $n\bar{n}(v,k) \equiv v \mod k$ for (n, k) = 1.

[We note that $|F(x, k)| < \psi(k, k)$.]

Buchstab² has proved the result

$$f(1, v, k, x, c) = x\phi(c)k^{-1} + O(xl^{-1/2}).$$

The object of this note is to prove the following considerable improvements on this result:

- (i) $f(m, v, k, x, c) = x\phi(c)(mk)^{-1} + b(m, k)xl^{-1}q(c) + O(xc^{-1}) + O(xl^{-2})$ for $1/2 \le c \le 1$,
- (ii) $f(m, v, k, x, c) = x\phi(c)(mk)^{-1} + b(m, k)xl^{-1}q(c) + O(xl^{-3/2})$ for c < 1/2 and $c \ge 1$, where $b(m, k) = [m\psi(k, k)]^{-1} \int_{1}^{\infty} F(t, k)t^{-2}dt$, and the constant implied in each "O" is dependent only on v and k.

It will be noted that for m = v = k = 1, this result reduces to Theorem A' proved in my paper cited above.

The proof follows the lines of that of Theorem A' with appro-

Received by the editors December 24, 1949.

¹ Duke Math. J. vol. 16 (1949) pp. 99-109.

² Doklady Acadamii Nauk SSSR. N.S. vol. 67 (1949) pp. 5-8.

priate modifications, of which the less obvious are indicated below:

- (1) we replace Lemma 3 by the known results
- (a) $\pi(v, k, x) = [\psi(k, k)]^{-1} \text{ Li } (x) + O(xl^{-3}), "O" depending only on k,$
- (b) $P(v, k, x) = [\psi(k, k)]^{-1} \log \log x + B(v, k) + h(x, v, k)l^{-2}$, where

$$|h(y, v, k)| < (1/24)(1 + 1/2)^2$$
 for $y \ge \exp(l^{1/2})$ and $x > a_{10} > 1$.

(2) We replace Lemma 6 of Theorem A' by the result (i) above of this theorem. To prove this latter, we observe that on account of the unique factorisation theorem, we have, for $1/2 \le c \le 1$,

$$f(m, v, k, x, 1) - f(m, v, k, x, c)$$

$$= \sum_{1 \le n \le x^{1-c}/m; (n,k)=1} \left[\pi \left\{ \bar{n}(v, k), k, \frac{x}{mn} \right\} - \pi \left\{ \bar{n}(v, k), k, x^{c} \right\} \right]$$

$$= \frac{1}{\psi(k, k)} \sum \left[\text{Li} \left(\frac{x}{mn} \right) - \text{Li}(x^{c}) \right] + O(xl^{-2}),$$

and

$$\sum_{n=0}^{\infty} \operatorname{Li}\left(\frac{x}{mn}\right) = \int_{1-0}^{(x^{1-c})/m+0} \operatorname{Li}\left(\frac{x}{mt}\right) d\psi(t, k)$$

$$= \psi \left[\frac{x^{1-c}}{m}, k\right] \operatorname{Li}\left(x^{c}\right) + \frac{x}{m} \int_{1}^{x^{1-c}/m} \frac{\psi(t, k)}{t^{2} \log\left(x/mt\right)} dt$$

$$= \psi \left[\frac{x^{1-c}}{m}, k\right] \operatorname{Li}\left(x^{c}\right) + \frac{x\psi(k, k)}{mk} \int_{1}^{x^{1-c}/m} \frac{dt}{t \log\left(x/t\right)}$$

$$- \frac{x}{m} \int_{1}^{x^{1-c}/m} \frac{F(t, k)}{t^{2} \log\left(x/mt\right)} dt.$$

Hence it follows that

$$f(m, v, k, x, c) = (x/mk)(1 + \log c) + b(m, k)xl^{-1} + O(x^{c}l^{-1}) + O(xl^{-2}),$$

for $1/2 \le c \le 1$,

which is the desired result, since $\phi(c) = 1 + \log c$ for $1/2 \le c \le 1$, and q(1) = 0, and q(c) = 1 for $1/2 \le c < 1$.

ANDHRA UNIVERSITY