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1. Introduction. This paper is a sequel to Chow's recent results1

on algebraic homogeneous spaces. Leaving aside the Grassmann

spaces, the spaces considered by Chow are essentially those con-

sisting of the r-dimensional linear varieties in a (2r+^-dimen-

sional projective space S over a field K, which are self-conjugate

with respect to a basic correlation A of the space S, A being defined

either by an alternate nondegenerate bilinear form (null system) or

by a symmetric nondegenerate bilinear form (polar system). Now

when K has characteristic 2, both cases merge into a single one. But

within the space NT of self-conjugate varieties with respect to the

correlation defined by the bilinear form E<-o (yr+i+iXi+yiXr+i+i),

we may now consider the subspace Tr of the varieties belonging to

Nr and in which the quadratic form Ej-o *r+i+iXi vanishes; the basic

group of that space is a subgroup of the symplectic group, namely

the orthogonal group corresponding to the quadratic form just men-

tioned (or, more precisely, that group enlarged by some semi-linear

transformations). We want to show that Chow's characterization of

the basic groups of the spaces he considers extends to the basic

group of Tr. Since the proofs consist mostly of a mere translation

of Chow's proofs to the situation we are considering, we shall sup-

press most of them, referring the reader to Chow's paper for the

missing arguments.2 There is, however, one point over which we

shall go into some detail: it corresponds to Chow's long proof of his

Theorem III (see [3, pp. 46-49]), and it will be seen that this proof

may be appreciably shortened and applied to a more general ques-

tion, namely the study of the space of the "invariant" (or "totally

isotropic") linear varieties of maximal dimension corresponding to a

polar system when that dimension is smaller than r.

2. Singular subspaces relative to a quadratic form. In the follow-

ing, K will denote a field of characteristic 2, E an (w+1)-dimensional

vector space over K, n being an odd number, n = 2r + \; g will be a

regular nondefective quadratic form defined in E, and / the cor-

Received by the editors February 2, 1950.

1 See [3]; we consider only the "projective" part of Chow's paper. Numbers in

brackets refer to the bibliography at the end of the paper.

2 In order to facilitate the application of Chow's proofs to our results, we have

kept his notations as far as possible.
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responding alternate bilinear form, which is therefore nondegenerate

(see [5, pp. 39-40]). A singular3 subspace F of E is a subspace in

which g vanishes identically; such a subspace is totally isotropic

(that is, contained in its conjugate with respect to/), but the con-

verse does not hold. The maximum dimension v of singular subspaces

may take any value such that 0^v^r+l; it is called the index of

the form g; in the following, we shall always suppose that v^3, and

put v = s+l (sè2).

The following lemmas are known:4

Lemma 1. Let V and W be two singular subspaces such that every

vector of V is conjugate to every vector of W; then V+ W is singular.

Lemma 2. Let V be a singular subspace of dimension t. There exists

a singular subspace W of dimension t such that V+ W is nonisotropic

and FrMF={0}. For any such subspace W, there exists a basis

(ex)(\tkiú2t) of V+W, such that ei, e2, • ■ ■ , et constitute a basis of V,

et+i, • • • , e2t, a basis of W, and one has f(eit et+¡) = S,y (Kronecker's

index).

Lemma 3. Every singular subspace is contained in a singular subspace

of maximal dimension.

From these lemmas we first deduce the following lemma.

Lemma 4. The subspace spanned by the union of all singular sub-

spaces of E is E itself.

Let a^O be a singular vector, H the hyperplane conjugate to a

(and containing a), b a vector such that f(a, b)^0. The plane P

containing a and b is nonisotropic, and therefore (Lemma 2) con-

tains a singular vector e, such that/(a, c,) = l. Let P'EH be the

(n — l)-dimensional nonisotropic subspace conjugate to P, and let

(Ci) (2á»á«) be any basis of P'. One has/(ci, a+cî) = i, and there-

fore, in the plane determined by ei and a+d, which is not isotropic,

there exists a second singular vector c, such that /(e,, ei) — 1 ; it is

then clear that the n + i singular vectors ei, ei (for 2á*=s») and

a constitute a basis for E.

Let now S = P(E) be the projective w-dimensional space cor-

responding to E; the linear varieties in S corresponding to the singu-

lar subspaces of E will also be called singular. The proofs of Chow's

Lemmas 1, 2, and 3 may now be repeated without change (owing

3 These subspaces are called "totally singular" in [S]; we change the terminology

slightly for the sake of brevity.

4 For the proofs, see [5, pp. 40-41].
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to Lemmas 1 and 2 above) and give the similar results:

Lemma 5. If every element of a set of singular [t] (¿ás) are (/ —1)-

incident, then all the elements of the set must be incident with either one

common singular [¿+1] or one common singular [t— l]; the first case

cannot occur if t = s.

Lemma 6. // two singular [t]i, [t]2 it¿s) have a [u] as their inter-

section, then there exist two singular [s]i, [s]2 containing [t]i, [t]2

respectively, and having also [u] as their intersection.

Lemma 7. // two singular [/]„, [t]b (¿as) have a [t — u] as their

intersection, then there exists a sequence of u+\ singular varieties

[l]i=[t]a, [t}2, ■ ■ ■ , [t]u+i=[t]i, all incident with the [t — u], and

such that each two consecutive varieties are it— 1)-incident.

3. Adjacence preserving transformations of T,. We shall denote

by Ts the set of all singular varieties of maximal dimension s (à2)

in S. The "basic group" of Ps is the group of transformations induced

by all collineations of 5 defined by semi-linear one-to-one transforma-

tions m of Esuch thatg(«(x)) =X(g(x))% where X£P and <r is the auto-

morphism of the field K relative to the semi-linear transformation u.

With the same definitions of "adjacence" as in Chow's paper, we

want to prove the following theorem.

Theorem 1. Any one-to-one adjacence preserving transformation of

the space Ts (s ^ 2) onto itself is a transformation of the basic group.

Let r be an adjacence preserving one-to-one transformation of T„.

The first part of Chow's proof of his Theorems II and III may be re-

peated without change, since it relies only on his Lemmas 1, 2, and 3;

this argument extends the given transformation "downward" to all

singular varieties of 5 (of dimension ranging from 0 to its maximum

s), the extended transformation T being one-to-one and preserving

incidence relations. Still following Chow, we notice that if Y trans-

forms a singular [s] into [s]', it induces a collineation of [s] onto [s]',

and that moreover all these collineations involve the same auto-

morphism of the ground field K. There remains only the last part of

the proof which consists in showing that all these collineations are

induced by a single collineation 0 of the entire space S.

To do this, we build an ascending chain of spaces [s + A]i, starting

from a singular [s]0, and ending with 5 (for k = n — s), and we define

inductively 6 in each [s + A]* in succession. Our procedure requires a

special treatment of the two first steps of the induction.

Io. From Lemma 4, there is a singular point [0]i which does not
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belong to [s]o; we define [s+l]i as the join of [s]o and [O],. The

hyperplane conjugate to [0]i cannot contain [s]0, for there are no

(5-rT)-dimensional singular varieties (Lemma 1); it therefore inter-

sects [s]o along a singular [5—1]„. The join [s]i= [5 — l]aU[o]i is

singular; since the restrictions of T to [s]0 and [s]i coincide on

[s—1]0, we may extend T to a unique collineation 0 of [s + l]i

(onto another (s+l)-dimensional linear variety of S) coinciding with

T on [s]o and [s],. Now there are no singular points in [s+l]i other

than those on [s]0 and [s]i, for if [O] were such a point, the line

joining it to a point [0]' in [s]i but not in [5—1]„ would meet [s]o

in a third singular point [0]", hence would be a singular line con-

jugate to [s —1]„; but this would mean (Lemma 1) that [s+l]i is

singular, which is absurd. Therefore 0 and T coincide for every

singular point in [s-f-l]i.

2°. Let [0]2 be a singular point which is not in the (n — .^-dimen-

sional variety conjugate to [s— 1 ]„ (Lemma 4). The hyperplane con-

jugate to [0]2 intersects [s]o along a singular [s—1]¡, distinct from

[s — i]a, and [s]2= [s — l]t,U[0]2 is singular. Since © and F (defined

respectively on [s-r-l]i and [s]2) coincide on [5 — 1 ]&, we may ex-

tend © to a unique collineation © of [s + 2]2 = [s + l]iW[0]2 which

coincides with T on [s]2. We have to prove that it coincides also with

T on every singular point contained in [s + 2]2. Let [O] be such a point

(not in [s-f-l]i nor in [s]2), and suppose first that the hyperplane

conjugate to [O] intersects [s]o along an [s — l] distinct from

[5— 1 ]&; it intersects therefore [s]2 along an [s — l]' which is also dis-

tinct from [s — l]b', hence there is in [s — l]' a singular line [l]'

which is not in [s+l]i. The plane [2]=[0]U[l]' is then singular

and intersects [s+l]i along a singular line [l] distinct from [l]'.

Since © coincides with T on [l] and [l]', it also coincides with F

on [2], hence on [0].

To obtain a point [O] having the preceding property, consider

the intersection [s — l]i of the hyperplane conjugate to [0]2 and of

[j]i, and any point [0]c of [s]3 = [0]2W[s — l]i not on [s]2; there

are such points, for if [s]2 and [s]s coincided, the line joining any

point of [s— l]i (not on [5 —1]0) and any point of [s — l]f, (not on

[s —1]„) would be singular, contrary to what we have seen in Io.

Then [5 — l]t cannot be conjugate to [0]c, for otherwise the line

joining [0]c and [0]2 would be singular and conjugate to [5 — 1 ]&,

and its join with [s—1]& would be a singular (s-fl)-dimensional

variety, which is absurd. It is clear moreover that every point of the

singular variety joining [0]c to the intersection [j —1]„ of its conju-

gate hyperplane with [s]o has the same property as [0]c, and there-

fore © and T coincide on that singular variety [s]i.
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If now [O] is a singular point in [s + 2]2 conjugate to [s —1]&, it

cannot be also conjugate to [s —l],, (since it is not in [s]o); we may

therefore argue as before, replacing [s}2 by [s]4, and we have thus

verified that 0 and T coincide on every singular point in [s + 2J2.

3°. We now define, for A^3, [s+A]& as the join of [s+A — l]i_i

and a singular point [0]k not in [s+A — l]&_i (Lemma 4). We con-

sider the intersection [s— 1 ] of [s]o with the hyperplane conjugate to

[0]k, and then extend 0 to [s + A]4 in exactly the same fashion as in

2°. To prove next that 0 thus extended coincides with T on every

singular point contained in [s + A]*, we may also proceed exactly

as in 2° (replacing of course [0]2 by [0]*), if [s— 1] is distinct from

[s —1]„. If, on the contrary, [s—l] is identical with [s —l]OI it is

distinct from [5 — 1 ]&, and we may then replace [s]i by [s]2 in the

second part of the argument in 2° ([0]2 always being replaced by

[0]*).
The collineation 0 may thus be extended to the whole space S,

and since it coincides with T on the set of all singular points, it trans-

forms a singular point into a singular point. We want to prove that 0

commutes with the correlation A defined by /, which means that it

transforms two conjugate points into conjugate points. Now this is

clear if both points are singular, for the line joining them is then

singular, hence transformed by 0 into a singular line. Let us then

consider a nonsingular point [O] and the conjugate hyperplane

[n — l] to [0]. Let [n — 2] be a nonisotropic linear variety in [n — l]

which does not contain [O] and is conjugate to a nonisotropic line

joining [O] to a singular point [0]i not contained in [» —l]. Since

s^2, [n — 2] contains singular points (conjugate to [0]i) by Lemma

3, hence is spanned by the singular points it contains (Lemma 4).

Let [0]' be any of these points; since it is conjugate to [O], the

line joining it to [O] is isotropic but not singular, hence contains

only one singular point [0]' (see [5, p. 40]) ; it is therefore transformed

by © into a line having the same property, hence is isotropic, which

means that [o]' is transformed by 0 into a point conjugate to the

point image of [O] by 0. This, together with the preceding remarks,

shows that 0 transforms conjugate points into conjugate points.

From this property, and the fact that 0 transforms singular points

into singular points, a simple argument (see [6, §46]) yields finally

Theorem 1.

4. Transvections and rotations. It is a little known result6 that,

over a field K of characteristic 2, the orthogonal group On+i(P, g)

6 For finite fields K, this result is proved in [4, p. 206], and in [7, p. 339].
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(w = 2r-r-l) possesses an invariant subgroup ¡0%+l(K, g) which is the

exact counterpart of the group of rotations (that is, orthogonal trans-

formations of determinant +1) in the orthogonal group over a field

of characteristic not 2. We shall give in this section a simple proof of

that theorem.

Suppose first that g is a form of maximal index v = r+\, and let

V and W be two singular subspaces of E of maximal dimension.

We recall (see [5, pp. 41-42]) that a transvection in SO„+i(K, g) is

an (involutive) orthogonal transformation u such that u(x)

= x+af(x, a)/g(a), where a is any nonsingular vector of E. We are

going to prove that, if k is the dimension of VC\ W, the dimension of

Vi\u(W) is k + l or k — 1. Suppose first that a is conjugate to VC\W,

which means that aE V+W. Any vector y belonging to VC\u(W) is

then in the intersection of V with the (v + 1)-dimensional subspace

U generated by W and a. Conversely, if yEUCW and yEW, the

plane P generated by a and y is contained in U, hence intersects W

along a line D; P contains two distinct singular lines D and D'

= Ky, and a nonsingular line Ka; it is therefore a nonisotropic

plane, invariant by the transvection u. But it is clear that u may not

leave invariant any singular line not conjugate to a; therefore it

exchanges the lines D and D', which proves that UC\V = VC\u(W),

and UC\V is obviously (¿ + l)-dimensional. Next consider the case

in which a is not conjugate to Vi\W, and therefore aE V+W; then

no vector xEW which is not conjugate to a may be sent by u into a

vector of V, since the plane defined by u(x) and x would contain a

and be contained in V+ W; the intersection VC\u(W) is then identical

with the intersection of VC\W with the hyperplane conjugate to a,

and therefore is (k — l)-dimensional.

From this result we deduce at once that no product of an odd number

of transvections may be the identity in £)n+i(K, g), for if v is such a

product, the dimension of VC\v(W) differs from that of Vf~\W by

an odd number. As every orthogonal transformation is a product of

transvections, we thus see that those orthogonal transformations

which are products of an even number of transvections constitute a

normal subgroup £)t+i(K, g) of index 2 in £)n+i(K, g), which we may

again call the group of rotations.

This result may easily be extended to any quadratic form g over E.

We have only to consider a suitable algebraic extension Ki of K,

such that g has maximal index r + i over Ki; the group On+i(K, g)

is then a subgroup of 0„+i(7ii, g), and transvections in the first are

also transvections in the second; hence no product of an odd number
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of transvections in On+i(P, g) may be the identity in that group.6

Next let us study the way in which the group 0^"+1(P, g) trans-

forms singular subspaces. If V and W are two singular subspaces of

the same dimension A, it follows from Arf's theorem (see [l]) that

there is always an orthogonal transformation sending V into W. If

Argr, there is also a rotation sending V into W, for there are trans-

vections leaving invariant V (for instance, transvections correspond-

ing to nonsingular vectors conjugate to V). But if A = r+1 (which

means v=r+l), the set Tr of A-dimensional singular subspaces

splits into two subsets Ur, VT which are homogeneous spaces for the

group of rotations 0»+i(P, g); if Vo is any (r + l)-dimensional singu-

lar subspace, we may define UT (resp. U'T) as consisting of the sub-

spaces W of Tr such that the difference between the dimensions of

Vo and Vo(~\W is an even (resp. odd) number. It is then clear that

any orthogonal transformation which sends a subspace of Ur (resp.

Ur) into another subspace of Ur (resp. U'T) is a rotation, and that no

rotation may change a subspace of Ur into a subspace of U'T. This,

together with Arf's theorem, proves that if V and W are any two

subspaces belonging both to Ur (resp. U'T) the difference between the

dimensions of V and VC\W is an even number; on the contrary,

when V belongs to Ur and W to U'T, the difference between the

dimensions of Fand VÍ~\W is an odd number (this is proved simply

by sending V into V0 by a rotation).

All these results parallel closely the well known facts concerning

the space Nr of self-conjugate varieties of maximum dimension in a

polar system over a field of characteristic not 2. They enable one to

state and prove the following theorem, corresponding to Chow's

Theorem VII.

Theorem 2. Any one-to-one adjacence-preserving transformation of

the space Ur (r è 4) onto itself is a transformation of the basic group of

that space.

• For a given orthogonal transformation u, the fact that it belongs to the group of

rotations may be ascertained by computing its Dickson invariant [4, p. 206]. Suppose,

for simplicity's sake, that v = r-\-\, and (e,) is a basis of E satisfying the conditions of

Lemma 2 (for i = r-|-l). Put u(ei) = 2~L'jll «Wi+Sjli &**•<+#+> and u(eT+i+i)
= H'iíl Y./«y+ 2~L]tl *tf'r+»'+i; the Dickson invariant is then A(w) = 2~Lm H'tJ ßtilif,
multiplying u with a transvection changes A(u) into A(«)+l. Therefore, one has

A(tt)=0 for rotations, and A(m) = 1 for the other orthogonal transformations (prod-

ucts of an odd number of transvections). For quadratic forms g of any index, the

Dickson invariant may be defined similarly, by going over to an extension Ki of K,

in which g has index r + 1.
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Here of course, "adjacence" is to be understood in Chow's sense

and the basic group of Ur is simply the subgroup (of index 2) of the

basic group of TT preserving UT.

We suppress the proof, which is simply a restatement of Chow's

proof of his Theorem VII.

5. Spinors and triality. The case r = 3 is exceptional in Chow's

Theorem VII, due to the well known Study-Cartan "triality" (see

[2] and [8]) between Ur, U', and the space 5 itself when r = 3.

Now this also extends perfectly to the case in which K has char-

acteristic 2.

One of the best ways to see this is probably to carry over to that

case the classical theory of spinors. We shall give a brief outline of

that extension. We suppose g has index v=r+l; then there exists a

basis (ei) (l=i = 2r+2) of E, such that the e¿ of index less than or

equal to r + l (resp. greater than r+l) span a singular subspace F

(resp. W) of dimension r+l, and one has /(e<, er+y+i) = 5,-y for i^i

ár+1, läsjaf+l. The Clifford algebra C(g) of the form g over K is

then defined (see [l ]) as the associative algebra generated by the unit

element Co = l of K, and 2r + 2 linearly independent elements c¿

(lgt'g2r + 2) such that

e) = 0 (1 á i û 2r + 2),

Cjd = dCj = 0 (1 á i £ r + 1, 1 á j á f + 1),

(1)
Cr+l+iCr+l+j =   Cr+l+jCr+l+i   =   0        (1   <!   t <¡ f +  1,   1   ̂  /  á f +  1),

c,cr+,-+i + cr+í+ic¿ = 5,,- (1 á »ár+1, 1 áiáf+l)'

It is immediately verified that for r = 0, C(g) is isomorphic to the

total algebra of matrices of order 2 over K(ci, c2, Cic2, and c2Ci satisfying

the same relations as the canonical basis of that algebra) ; and for an

arbitrary r, C(g) is isomorphic with the Kronecker product of r+l

such algebras of matrices, hence is isomorphic to the total algebra

of matrices of order 2r+1 over K. Now, if u is any transformation of

the orthogonal group £)n+i(K, g), the fact that u leaves g invariant

implies that it may be extended in the usual way to an automorphism

of the Clifford algebra C(g); if «(«,-) = ^J¡tl on¡ej, one has merely to

define w(c,-) = ]C"*i ohjCj, and it is at once verified that the elements

u(Ci) verify the same relations (1) as the d themselves. Since this

automorphism u of C(g) leaves invariant every element of the center

K of that algebra, the Skolem-Noether theorem shows that it is an
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inner automorphism z—*s(u)z(s(u))~1, where the element s(u)EC(¿)

is determined up to a scalar factor.7

From now on, we identify d and e< (1 ^i^n+i) so that E appears

as a subspace of the algebra Cig). It is then readily verified that for

any two vectors x, y in E, one has (in (C(g)) xy+yx=/(x, y), and

x2 = g(x). From that result it follows that if a is any nonsingular

vector in E, and u the transvection w(x) =x+a/(x, a)/g(a), then the

extension of m to C(g) is the inner automorphism z-^aza-1, for this

is immediate when 2£P, and E generates the algebra Cig).

Following Cartan (see [2, p. 9]), we now define the spinors by

concretizing the elements of Cig) as particular matrices of order

2r+1. The spinor space F is a 2r+1-dimensional space over K, in which

we consider a basis (a¿) which we index with the 2T+1 subsets L

of the set of the integers 1, 2, • • • , r + 1. For 1 £ií&r+í, let Hi be

the matrix such that

Hi-aL = «luí.) if i EL,

Hi-aL = 0 ii i EL;

similarly, let Hr+i+i be the matrix such that

Hr+i+i-aL = «L-lil ii i EL,

/L+i+i• «/_, = 0 iî i EL.

Then it is readily verified that the matrices H, (1 ^i^2r + 2) satisfy

the same relations (1) as the basis ici) of the subspace E of Cig) ; since

the algebra Cig) is simple, it follows that these matrices generate the

whole algebra of matrices of order 2r+1 over K, and that the cor-

respondence Ci-^Hi defines a faithful representation of Cig) onto that

algebra. To a vector x = E"= i* a»e« m P corresponds then the matrix

X= E*-i <*<#», and one has X2=g(x)L Let í?=0 be any spinor in

F; the vectors x£P such that Xt = 0 constitute a singular subspace

in E; the spinor / is said to be simple if that subspace has maximal

dimension r + 1. For instance the spinor ai2... (r+u is simple, the cor-

responding singular subspace being generated by the e,- of index less

than or equal to r + 1 ; and it is readily proved that any simple spinor

may be deduced from that particular one by application of an orthog-

7 When K is a perfect field (which here means that every element in K is a square)

the element s(u) may be normalized in the usual way, so that u—>s(u) is a one-valued

representation of the group £>n+i(K, g) into C(g). This is in sharp contrast with the

case of spinors over a field of characteristic not 2, where the normalization of s(u)

yields only the well known double-valued spinor representation of the orthogonal

group.
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onal transformation (identified, up to a scalar factor, with a matrix

of C(g)) (see [2, p. 21]).

Consider now in F the subspaces F+ and F~~ generated by the <z¿

having an even (resp. odd) number of indices. The relations (2) and

(3) make it clear that any transvection transforms F+ into F~ and

conversely; hence any rotation (§4) leaves invariant both F+ and F~,

the elements of which are called respectively even and odd semi-

spinors. The simple semi-spinors correspond respectively to both

classes UT, U'r of singular subspaces defined in §4.

Now, when r=3, the three spaces E, F+, and F~ have the same

dimension 8, and it is easy to define, after Cartan (see [2, p. 53]), a

one-to-one linear transformation of E onto F+ (or F~) which sends

singular vector into simple semi-spinors. Using the relation between

simple semi-spinors and singular subspaces of Ur (or U'T), it is a

matter of simple computation to verify that this transformation

yields a transformation between 5 and Ur, sending singular points

on a same singular line into singular subspaces having a singular

[r —2] in common; the verification needs be done only for a particu-

lar singular line, for instance that defined by ei and e2; we suppress

the details. This is of course the Study-Cartan "triality," which is

thus extended to fields of characteristic 2.
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