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1. Introduction. In this paper we are concerned with the addition

of n arbitrary numbers expressed with the base B of numeration.

We describe a procedure for obtaining this sum to a prescribed num-

ber of places, and determine the probability that the result is cor-

rect, under the assumption that the numbers to be added are uni-

formly distributed. We also derive asymptotic formulas for the prob-

ability in the case where n becomes infinite, and where B becomes

infinite.

2. Description of the procedure. Let the sum of n numbers, known

to an arbitrary accuracy, be required only to the nearest unit in a

prescribed place. Surely the best way of obtaining this is to add the

numbers directly, and round off the sum to the desired place. This

may well be inconvenient or impossible. Instead let each addend be

rounded off to one more place than required in the final result. Let

these approximate addends be added, and their sum rounded off one

more place. This process does not always give the correct result as is

shown by the addition of 3.14, 4.14, and 5.24 with accuracy to the

nearest integer required. The correct result is 13, while the approxi-

mate process gives 12.

The procedure described includes the case of rounding off the ad-

dends to more than one extra place. Rounding to k extra places is

exactly equivalent to rounding to one extra place with the base of

numeration Bk.

3. Probability of a correct result.

Theorem 1. Let xi, x2, • • • , xn be uniformly distributed real vari-

ables expressed in the base B of numeration. Let *i, x2, ■ ■ ■ , xn be the

nearest-integer approximations to xi, • ■ ■ , x„. Let S and S be the

values obtained when the sums

n n

/. Xj   and    ¿L Xj
i=i j-i

respectively are rounded off to the nearest multiple of the base B.

Then the probability that S = S is
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(i,        2    r "/sin t\n~x sin2 Bt
(3.1) P[   =—\    (-)     -—dt

tBJo   \   t   ) t2

if B is an odd integer, and is

(2)        2    r °°/sin ty-1 sin2 Bt
(3.2) Pn-I    (-)     -cos id*

tBJo  \   t   ) t2

if B is an even integer.

Remarks. The above theorem is stated for the case that the final

result is desired to the nearest integer in the place two to the left of

the point. All other places are included, however, since they merely

correspond to a change of scale in the variables which does not alter

the probability.

Proof of Theorem 1. We consider (xx, • • • , x„) as coordinates

in Euclidean «-space. We shall be particularly concerned with «-

cubes of side one unit, with edges parallel to the axes, and centered

at points with integral coordinates. In such an «-cube, hereafter

called a cube, the sum ^xy is constant. The sum ^Xy will not be

constant in such a cube. With each cube is associated the residue-

class (modulo B) to which the sum ^Xy within it belongs. The

measure of the portion of each such cube for which S = S will depend

on the residue class associated with the cube, and on no other prop-

erty of it. This is because S — S is a periodic function of the x's with

period B. The B types of cubes are equally distributed in space.

Therefore to determine the probability that 5 = 5 we consider a set

of B cubes, one associated with each residue class, and compute the

probability that 5 = 5 for this set.

If B is an odd integer, we select as our set of B cubes the portion of

space

- 1/2 = Xi = 1/2,   j = 1, •••,»- 1,    - JB/2 á *» Si B/2.

For each cube, 5 = 0, so we seek the probability that 5 = 0 within

them. That is that

- #/2 ^ £ xi = B/2.

We introduce the distribution functions Fy(x) for the x's and their

associated characteristic functions

d>j(t) =  f  eitxdFj(x).
J -00

The characteristic function for the sum J^xy will be the product
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*(*) = <t>iit) • • • *»(*),

and the distribution function will be determined to within a constant

by

1
Fib) - Fia)  =   lim —

A->» 2ir £

We find that for/ =1, 2,

fO,
F,(*)

while

FÁx) =

x + 1/2,

U,

0,

x/B + 1/2,

1,

■A — it

■ ■ , n — 1

* á - 1/2,

-1/2 á xá 1/2,

x ^ 1/2,

x á - Tí/2,

-B/2 á * á 5/2,

x = 5/2,

■ <¿(<)d/.

2 /
4>¡il) = — sin —

t 2

2        Bt
*.(/) = - sin T

Thus

2"
0(í) =-sin"

Btn

and the required probability is

Bt
sin —»

to 1   rA   2
Pn   = FiB/2) - Fi-B/2) =   lim — I      — si

A—** 2x J —a    t

Bt
— <l>it)dt.

Making the change of variable ¡ = 2iiwe obtain

1    rA /smu\n-1 sin2 Bu
lim - f     (-)      -—
a—* irB J-a\   u   / u2

.(i)
du.

Since the integrand is an even function, this reduces to (3.1).

The case for which B is an even integer is different because of the

question of rounding off when the last digit is B/2. It is customary

to form S so that it equals an even multiple of B if 2~2xi 1S con"

gruent to B/2. For our purposes it is simpler to make S equal the

next higher multiple of B in such a case. The probability of correct

result is the same with either convention.

We choose for the B cubes the portion of space

-1/2 = Xj = 1/2,/ = 1, • • • , n - 1, -B/2 - 1/2 ¿ï»a B/2 - 1/2.

We have again that S = 0 in each of the B cubes, so we seek the prob-
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ability that 5 = 0, or that

-B/2 = 2>yáS/2.

The characteristic functions and distribution functions for the xy

are the same as before except that

0, x = - B/2 - 1/2,

Fn(x) = • x/B + 1/2 + 1/25, -B/2 - 1/2 = x = 5/2 - 1/2,

.1, * á B/2 - 1/2.

2        5/
</in(0 = e~il/2 — sin — •

73i        2

The other calculations are as before, and we obtain

(2) 1    rx       /sin íA"-1 sin2 Bu
Pn   =- I    e~iu (-)     -du.

irB J_M       \   u   J u2

Since the integration is over a symmetric range, only the real part

of the integrand contributes, and the integral reduces to (3.2).

4. Asymptotic behavior as n—* <x>.

Theorem 2. If Pn is either of the probabilities found in Theorem 1,

we have

(4.1) lim »i/*Pn - B(6/Tr)1'2,
n—.»

so that as n—► °o,

(4.2) Pn~B(6/wnyi2.

Proof. Let Kn(t) represent the integrand in either (3.1) or (3.2).

If 8 is any number satisfying 0<ô<7r,

(4.3) lim   f nli2K„(t)dt = 0.

We verify (4.3) by considering the integrals from ô to -k, and from

■k to <». The former tends to zero because the maximum of its inte-

grand is less than B2n112 ((sin 5)/S)n_1. The latter tends to zero be-

cause its integrand is dominated by «1/2/~n_1.

As a consequence of (4.3) the limiting behavior of nll2P„ is exactly

the same as the limiting behavior when the integration in the formula

for P„ is over the range from 0 to 5. Also the behavior in this latter

case is independent of 5. Thus the asymptotic behavior depends only
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on the values of 7C„(/) in an arbitrarily small neighborhood of t = 0.

By consideration of Maclaurin series, it can be verified that for

any sufficiently small positive f there exists a number 5 (0<5<7r/2)

for which

2              sin t ,
(4.4) e-<2/(6-«) =-g e-i2/6

t

for O^t^ô. We carry through the details only for the case that B is

odd. The details for B even involve merely the introduction of cosine

factors at appropriate places and do not alter the result. In view of

(4.4)

2 sin2 Bh( (6 - e)«y/2 f *<C»-i>/<«-«»1

- I   e-<»-i><,/<«-«>¿/
J n

sin2 55/ (6 - e)«\1/2 r «((»-D/(6-0)1'2
-(-) e-" aw
t£52    \   «- 1   /    Jo

2«1'2 sin2 Bo  r 5

tB       5

2n112 r 8 /sin ¿X"-1 sin2 £<
(4.5) á-       (-)     -dl

icB J o   \   t   ) t2

2Bn1'2 rs
e-in-i)i2iedt

2B /   6«  \1/2  /•«((«-i)/«)1'2

:1/2 rs/sin t\r

BJo\t)

J„X/2   j.«

T Jo

25 /   6«   V'2  #« *((«-»/«)*"
=-(-) e-"du.

it \n — 1/     Jo

As a result of (4.5) the upper and lower limits as n—><x> of the middle

term lie between

sin 2 235/6 - eV'2

BÔ

/6 - A1'2 /6Y'2
(—) and SU •

The above is true for arbitrarily small S and e, so that a limit is

actually approached. (4.1) and (4.2) follow from the remarks following

(4.3).  '

5. Asymptotic behavior as B—><».

Theorem 3.

1. If B is odd, and B = (« —1)/'2, formula (3.1) has the form

(5.1) ^-1-7'

where
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1   r °°  ¿"_1 - sin"-11
(5.2) c„ = —-it.

T J 0 tn+1

2. If B is even, and B^n/2, formula (3.2) has the form

(2) «71

(5.3) PÍ=l--,

where

1   ¡"° tn~l - sin"-1 /

(5.4) dn = —\      -costdt.
IT Jo tn+1

3. As n becomes infinite, both cn and dn have the asymptotic formula

(5.5) («/ox)1'2.

Proof. We consider in detail only the case of odd B. For fixed «,

the integral in (3.1) considered as a function of B is found to be a poly-

nomial in B which changes its analytical form at unit intervals of B

with the final change at B = (n —1)/2. To see this we expand the

numerator of the integrand of (3.1) as a sum of first powers of sines

or cosines. We have the cosines (sines) of (2B—n + l)t, (2B—n + 3)t,

and so on, if n is odd (even). We integrate by parts « times, in the

course of which the numerator is differentiated « times and the power

of / in the denominator is reduced to one. The numerator is then a

sum of the sines of the above quantities, each multiplied by a poly-

nomial in B. The asserted form of P„ then follows from

/.

00   sin Vt ir
-dt = —- sgn V,

at 2

the changes in analytical form being due to the discontinuity of this

integral at v = 0.

The proof of Theorem 1 shows that as B becomes infinite, the

probability (3.1) must approach unity. Therefore for 7J^(w —1)/2

the polynomial in B must be linear, and (3.1) must assume the form

(5.1). No higher degree in B would be allowable since a probability is

always less than one, and is thus bounded.

The exact form (5.2) for c„ is found by determining the constant

term of the polynomial in B for B = (n—l)/2. This involves a some-

what extended calculation with trigonometric identities and integra-

tions by parts. The asymptotic formula (5.5) is found by a method

analogous to that used in Theorem 2.

Exactly the same reasoning is used to derive the results for even
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B. In this case the last change of form of the polynomial occurs at

B=n/2. The calculations are parallel with those for odd B.

6. Conclusion. For w=l or n — 2 the probabilities (3.1) and (3.2)

can be easily evaluated. For B odd we have Pi=l, and P2 = l

— 1/473. If B is even, we have the interesting result that Pi is not

equal to 1. In fact Pi =P2= 1-1/25.

Using the results of Theorem 3 together with the remarks of §2,

we may give an answer to the question of how many extra places

must be retained to insure a high probability of correct result for a

given number of addends. From the remark in §2, retaining k extra

places with base B is the same as retaining one extra place with base

Bh. Thus to determine probability we replace B by Bk in our results.

From Theorem 3 if « is large, and k is chosen so that Bh = n/2, the

probability of correct result is asymptotically

P ~ 1  -  (2/37T»)1/2,

while if k is larger than this special value, the probability will be still

closer to unity. For example if « = 2000 with 23 = 10, using the

asymptotic formula we find for k = 3, P = .99, and for & = 4, P = .999.
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