
A THEOREM FOR KERNEL FUNCTIONS
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Let B be a domain lying in the complex z plane and KB(z, t) its

kernel function. A number of relationships exist between the kernel

and the geometric properties of the domain. (See, for example, [l].)1

It is the purpose of the present note to relate the successive deriva-

tives of the kernel with the domain B.

If z is interior to B, we shall denote by rB(z) the shortest distance

from the point z to the boundary of B. Furthermore, we introduce

the abbreviation

(1) K¡T,n\z,í)=-z-KB(z,t).
dzmdt"

Theorem 1. Let the domain B be such that at every boundary point

Zi there exists2 a circle exterior to B and passing through 81. Then,

(2) l/rB(z) = lim sup (e/n) [Kb^ (z, z) f'2".

Proof. It obviously suffices to prove the theorem for z = 0, it

being supposed that B contains this point in its interior.

Let r = rB(0), and suppose that Zi is a point which simultaneously

lies on the boundary of B and on the circle \z\ =r. In the bicylinder

|z|^r*<r, \t\^r*<r, KB(z, t) is an analytic function of the two

complex variables z and / and hence has an expansion of the form

(3) KB(z, t) =  ¿ KBm'n)(0, Q)zmf/mln\

m,n=0

converging absolutely and uniformly there. If, then, X is a real vari-

able with |X| <r/r*, then

(4) AB(Xz, XI) =  £ *r,n,(0, 0)zmt\m+n/mlnl.
m,n=0

With X in the above range, (4) converges absolutely and uniformly in

z\, \t\ ^r*. The circle \z\ =r* will be designated by C*. Thus, for

A| <r/r*,

Received by the editors September 25, 1950.
1 Number 1 in brackets refers to the bibliography at the end of the paper.

2 The theorem may be established for a wider class of boundaries. Moreover, a

similar result holds for several complex variables.
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F(\) =  f fKB(Kz,\z)dxdy

(5) -   ¿ ^"""'(O, 0)\m+n/mln\ f f   z'idxdy
m,n-0 J J C*

= Z^r)(O,O)r*2"fV7(»0(«+l)!.

The function F(\) is therefore analytic for |x| <r/r*.

We shall prove, moreover, that F(\) has a singularity at the point

\ — r/r*. If this is admitted momentarily, then by the familiar

Cauchy-Hadamard formula for the radius of convergence of a power

series, we shall have

r*/r = Hm sup [KBn"\o, 0)r***%.1(« + I)!]1'2"

(6)

= r*limsup(e/W)[^n'n>(0,0)]1/2B
n-»oo

from which (2) follows.

We shall show that

(7) lim   F(X) = ».
\~r¡r'~

Suppose that Ci designates a circle of radius ri which is exterior to B

but whose circumference passes through s%. Designate the exterior of

the circle by D. By the monotonicity of the kernel function

(8) KbÇKz, Xz) ̂  KD(\z, Xz).

Therefore,

F(X) ̂   f' {kd(\z, \z)dxdy

(9)

= X-2 f f    £D(z, z)¿x¿y s /(X).

In the above equation, XC* designates the circle \z\ ^Xr*. To esti-

mate the integral /(X), it is convenient to introduce new coordinates

z' = x'+fy as follows: Zi shall be the new origin, and the center of

G shall lie on the negative x' axis. In the new system, Kd is given by

1 / z'z'Y2       1 / x'2 + /V2
(10)    KDiz',z')=-(z' + -z' +-)    =-(2x' +-—)   .

v \ ri / x \ ri      I



688 PHILIP DAVIS AND HENRY POLLAK [October

For values of X sufficiently near to r/r*, the ray x' =y' will inter-

sect the circle XC* in two points whose abscissas x[ (X), x2 (X) have

the property

(11) lim    x{(\) = 0; lim    *j'(X) - r,
\-,r/r'- \~rlr'-

Designate  by  TÇK)   the  trapezoid  bounded  by y' = 0, y' — x', x'

= xi (X) (i=l, 2). TQi) is contained in the circle XC*. Now,

(12) x'2KD(z', z') = — (2 + x'/n + y'2/x'ri)-2
IT

so that if (*', y') is confined to T(X), then Og,x' gr, 0 à/ gr, 0 gy'/x'

^1, and hence

1
(13) x'2KD(z', z') è — (1 + (r/ri))-2 = k > 0

47T

for z' in TÇK). Combining our inequalities we have

(14) I(\) ^\~2 f f     k/x'Hx'dy' = X-2 log [s2'(X)/*i (X)J.
J J TO,)

The assertion (7) now follows from (9) and (11), and the proof is

complete.

As an application of Theorem 1, we show how, for the case of a

simply-connected domain, the quantity rB(0) may be expressed in

terms of the coefficients of the mapping function of the domain onto

the unit circle.

Theorem 2. Let w(z)=aiZ+a2z2+ • • • map the simply connected

domain B onto the unit circle in the w-plane, z = 0 corresponding to

w = 0. Then,

^   (n-j+l) /d'w'\ |2) 1'2n

7¡
(  " »    (n-j+l) /d>W\\2)

(15)   l/r= lim sup \ £ («4-1)   E .,        a^A~T^)    (

Proof. If C designates the unit circle in the ro-plane, then by the

conformai invariance of the kernel function we have

dw /dw \
(16) Kb(z, z) = Kc(w, w) — ( —- )      .3

dz \ dz /

Now,
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d" " /dw\     d'Kciw, w) dn~'+lw
(17) -KB(z, z) = 2Z Cn.A — )     ——.-—

dzn $á        \dzj dz' dzn~'+l

Furthermore,

(18)

dn //dw \      d'Kciw, w)

dzn\\ dz)

l(w, w)\

dz'      )

p_o dz'dz"

d'+pKc(w, w) /dn-p+1w/dn-p+lw\

\ dz*-»*1 )

so that

Kb     (z, z)

(19) n d^-'^w / dn-p+lw\      d'+pRciw, w)

iJti-o dz"-'+1 \dzn-p+l) dz'dz'

Again,

(20)

Thus

(21)

Hence

Kciw, w) = — 2^/ i" + i)Ww".
IT   v=0

d'+P 1  A d'w" /d"w"\
Kciw,w)=-2Z^+i)-7~(-J~)     •

V \ dzp Idz'dz" IT   v=0 dz'

kT (0,0)

1      " / dn~i+1w\  /dn-"+1w\

= 7 ,ho Cn"Cn-p U^AWW.

minfp.,) / d'W\  /d"W'\

,_o \ dz' /o\ dzp /o

(ra!)2   " n

-¿L("+ !) 2~L (w - J + !)(w - P + l)an-i+i(an-p+i)

(«0s

T      ,=0
Ed'+D

/ 1 \ / 1 \ /¿>V\ /d"w\~

\jl ) \pl) \dV)o\dz^)o

/ d'w"\  I2

\ dz' AI '
»    (n-j+1)

2-, -T,- <**-!+!
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An application of Theorem 1 now yields (15).
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REMARK ON THE HURWITZ ZETA FUNCTION

T. M. APÓSTOL

The Hurwitz zeta function, defined for 0<aiïl, 9î(s)>T, by

1
(1) Us, a) = D ->

„=o   (a + »)*

is given [2 ]1 in the negative half-plane by means of

2r(s) /     TS  "   cos (2wan)

f(1 " *• a) = 77^lC0ST ¿- —;—
(2ir)*\        2  n-\ »

(2) + sin
7TS   "   sin (2wan)\

~2~hi~ ~n~'       /
2r(s)   -   cos (irs/2 - 2iran)

-j^iZ-   m)>D.
(2v)' „»i n'

The functional equation for the Riemann zeta function is obtained

from (2) upon setting a = 1.

The more general function

oo ¿¿Tinx

(3) d>(x, a, s) = £
»=o  (a + n)'

reduces to f (s, a) when x is an integer. Lerch [l ] derived the trans-

formation formula

r(s)  ,
4>(x, a,l-s)=-   e"<'/2-2«)^(-û!, x, s)

(4) VV (2x)« l V '

+ e»«-»/*H«(I-*))0(flf i _ », ,)},
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