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1. Introduction. A loop G is a system with a binary operation

(•) such that: (i) in the equation xy=z, any two of x, y, z uniquely

determine the third; (ii) G has a unit 1. The concept of subloop

should be clear. A permutation U of G will be called a pseudo-auto-

morphism of G provided there exists at least one element m of G

such that

(1.1) (xy)Uu = xU-(yU-u)

for all x, y oí G. The element u will be called a companion oí U. It

is readily verified that the pseudo-automorphisms of a loop G form a

group under composition. Indeed, U~l has p as a companion, where

pU-u = l. And, if Vhas companion v, then VU has companion vU-u.

A Moufang loop is one which satisfies the identity

(1.2) xy-zx = x(yz-x).

An extensive study of Moufang loops is given in [2].1 One defect of

that study is that it assumes Moufang's associativity theorem [6],

the only published proof of which involves a complicated induction.

Using pseudo-automorphisms along with recent methods of Kleinfeld

and the author [S], we shall give simple noninductive proofs of three

associativity theorems, one of which (Theorem 5.1) generalizes that

of Moufang. As shown in [3], still simpler proofs of Moufang's

theorem are possible in the commutative case. And, indeed, the fol-

lowing corollary of Theorem 5.3 can be obtained directly from

Lemmas 2.1, 2.2: Every associative subset of a commutative Moufang

loop G is contained in an associative subloop of G.

The present methods represent a considerable improvement over

those of [2] (in particular, pseudo-automorphisms have displaced

the cumbersome autolopisms) and the paper should serve as an

introduction to the theory of Moufang loops. There is little over-

lapping, except possibly in §2, but we have added (Theorem 4.1) a

more aesthetic proof of the fact that the nucleus (previously called

the associator) of a Moufang loop is a normal subloop.

2. Elementary properties. Henceforth let G be a Moufang loop.

From (1.2) with 2 = 1,
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(2.1) v xy- x — x-yx.

Defining the inverse x_1 of x by xx_1 = l, we set y = x_1 in (2.1) and

find x = x-x_1x, l=x-1x. Thus, also, (x-1)-1=x. Setting z = x-1 in

(1.2), we have xy = x(yx-1-x), yx-1-x = y. Again, from (1.2), (2.1),

zx=xx~1-zx = (x-x~1z)x, z=x-x~xz. Therefore

(2.2) x_1-xy = y = yx-x"1.

If z=xy, then, by (2.2), zy~1=x, z~lx=y~l, y-1x_1 = 2-1; thus

(2.3) (xy)'1 = y-1*-1.

Setting y=pz~l in (1.2), and using (2.2), (2.1), we get (x-pz~v)(zx)

= xp-x, whence, by (2.2), (2.3), x-pz~1 = (xp-x)(x~1z~1). From this,

with z~1=xq, x(p-xq) =(xp-x)q. Therefore, in view of (2.3), we have

the Moufang identities,

(2.4) x(y-xz) = (xyx)z,        (zx-y)x = z(x-yx).

As Bol [l] was first to show, each of the identities (2.4) implies (1.2).

For each a of G, define permutations L(a), R(a) of G by xL(a) =ax,

xR(a)=xa. In view of (2.2),

(2.5) L(x)-1 = ¿(x-1),       R(x)~l = ^(x-1).

In this notation, (1.2) becomes

(2.6) yL(x)-zR(x) = (yz)R(x)L(x).

Again, setting x=p~1, y = q~1, z = qr in (1.2), we have (p~1q~1)(qr-p~1)

= p~1-rp~1 and hence (qp)(p~1rp~l)=qrp~1. Equivalently,

(2.7) yR(x)-zR(x-1)L(xr1) = (yz)R(x~1).

Let ® be the permutation group generated by all the L(x), R(x),

and let 3 be the subgroup consisting of those U of ® such that 1U = 1.

An element of 3 is known as an inner mapping of the loop G. We are

ready to prove a basic lemma.

Lemma 2.1. Every inner mapping of a Moufang loop G is a pseudo-

automorphism of G.

Proof. In view of (2.5), every element U of ® has the form

U= UiU2 ■ • ■ Un where î/,=L(a.) or R(ai) for an element a¿ of G.

We see from (2.6), (2.7) that for each i there exist elements F,-, Wi

of ® such that xt/ryF, = (xy)IF,- for all x, y of G. Thus, if V

= ViV2 ■ ■ ■ Vn, W=WiW2 ■ ■ ■ Wn,

(2.8) xU-yV = (xy)W



68 R. H. BRÜCK [February

for all x, y oí G. If U is in 3, IU=1, so that (2.8) with x = l gives

V=W. Now set u = lV. Then (2.8) with y = l gives xU-u = xW, so

that (2.8) becomes (1.1). We shall use this proof as a method of

computing a companion of an inner mapping.

A better result holds for commutative Moufang loops:

Lemma 2.2. Every pseudo-automorphism of a commutative Moufang

loop G is an automorphism of G.

Proof. If G is commutative, interchange of x and y in (1.1) gives

xU-(yU-u)=yU-(xU-u). Setting xU = p, yU = qu~l in this, we get

pq = (qu~l)(pu) = pu qu~l, whence, by (2.4), pq-u = (puqu~l)u=p-uq

= p-qu for all p, q, of G. Therefore (1.1) yields (xy) U-u = (xU-yU)u,

(xy)U=xU-yU.
If h(xi, ■ • • , xn) is a single-valued function from G to G, and if At

(i = l, • • • , n) are subsets of G, h(Ai, ■ ■ ■ , An) denotes the set of

all elements h(ai, • ■ • , a„) with a< in Ai. Subsets consisting of one

element will usually be denoted by that element. Note the meanings

of A-\ A2, AA.

3. Invariant elements of pseudo-automorphisms. In (1.1) set x = y

= 1 and get lUu = lU-(lU-u), 1=IU. Then set y=x~x and get

u=xU- (x~lU-u),

(3.1) 1*7= 1,       x-W = (xU)-\

Next replace y in (1.1) byyxand use (2.1), (1.1), (2.4) to get (xyx)U-u

= xU ■ ((yx)U -u) =xU ■ (yU ■ (xU -u)) = (xU -yU -xU)u,

(3.2) (xyx)U = xU-yU-xU.

The identity (3.2) states that every pseudo-automorphism of a Moufang

loop G is a semi-automorphism of G. And it is easily seen that (3.2)

implies (3.1). In the following theorem, we could use semi-auto-

morphisms, but pseudo-automorphisms seem more natural.

Theorem 3.1. Let © be any set of pseudo-automorphisms of a

Moufang loop G. Let F= F(@) be the set of all x of G left fixed by ©,
and let M=M(<5) be the set of all m of G such that mFEF. Then: (i) 1

is in F; (ii) F-1 = F and xFx = F for x in F; (iii) M is a subset of F and

a subloop of G; (iv) mF= F = Fmfor every m of M.

Corollary. If G is also commutative, M=F.

Proof, (i), (ii) reflect (3.1), (3.2). By (i), F contains 1-1 = 1,
If m is in M, x in F, x~1m~1 = (mx)~l is in F~1 = F, and thus m~lx

= x(x~1m~1)x is in xFx = F. Hence M~l = M. Moreover, F = m-m~1F
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EmFEF, so that mF = F, and, similarly, Fm = F. If also m! is in M,

mm'■x = (mm')(xm~1-m) =m(m'-xm^m is in mFm = F. Hence MM

EM. This is enough to show that M is a subloop of G. If G is com-

mutative, Lemma 2.2 shows that FFEF, M = F, proving the corol-

lary.

4. Some basic lemmas. The commutator (x, y) and associator

(x, y, z) of a loop G are defined by

(4.1) xy = (yx)(x, y),        xy-z = (x-yz)(x, y, z).

Lemma 4.1. In a Moufang loop G, the equation (a, b, c) = 1 implies

all of the equations obtained by permuting the elements a, b, c and re-

placing any of these elements by their inverses.

Proof (cf. [6]). We give a proof which illustrates the use of

Theorem 3.1. Assume that

(4.2) (a, b, c) = 1,        ab-c = a-bc.

Clearly (4.2) can be written in the form aU — a where U

= R(b)R(c)R(bc)-\ IU=1. By Lemma 2.1, U is a pseudo-auto-

morphism. Thus, by Theorem 3.1 (ii), (4.2) implies (a-1, b, c) = i.

Similarly, (4.2) implies (a, b~l, c) = (a, b, c_1) = l. Also (4.2) implies

c-1-b-1a~1—c-1b~1-a~1 and hence (er1, ¿r1, a_1) = l = (c, b, a). Next,

from (ar1, b, e) = l, we get a~1b-c = a~1-bc, be■ a = a(a~l■ bc)a

= a(a~1b-c)a = b-ca, (b, c, o) =1. This completes the proof.

Lemma 4.2. Let a, b, c, d be elements of a Moufang loop G, each three

of which associate (satisfy (x, y, z) = l). Then the following equations

are equivalent: (i) (a, b, cd) = l; (ii) (c, d, (a, b))=l; (iii) (c, d, (ab)2) = 1 ;

(iv) (c, d, ab) = 1 ; (v) id, a, bc) = \. Hence (i) is equivalent to each of the

equations obtained by permuting the elements a, b, c, d and replacing

any of these elements by their inverses.

Proof (cf. [5, Lemma 2.1]). By Lemma 4.1, the equation (a, b, x)

= 1 is equivalent to (6_1, a"1, x) = l. The latter may be written as

xU = x where ¿7 = L(a_1)L(ô_1)L(a&). Using the proof of Lemma 2.1,

we see that U has companion u = lR(a~1)R(b~1)R(ab) = (a, ô).

Then ab = bau, aba = (ba-u)a = b(aua). Therefore b(aua)b = aba-b

= (ab • a) (a-1 • ab) = (ab) (aa~l) (ab),

(4.3) biaua)b = (aô)2.

Now (i) is equivalent to cd-u — (cd)U-u=cU- idU-u) =cdu, (c, d, u)

= 1, or (ii). Since (c, d, x) =1 is equivalent toxF=xfor an inner map-

ping V, (4.3) and Theorem 3.1 (ii) show that (ii) is equivalent to
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(iii). Hence (i) is equivalent to (iii). Similarly (iv) is equivalent to

(a, b, (cd)2) = l. However, since xl -x=x2, (i) implies (a, b, (cd)2) = l

and (iv). Conversely (iv) implies (i); together they imply (abc)d

= (abc)d=ab-cd=a(b-cd) =a(bc-d), (a, be, d)=l, or, (v). And if (i)

implies (v), then, equally, (v) implies (i). This, together with Lemma

4.1, suffices for the proof of Lemma 4.2.

If A is any subset of a Moufang loop G, we define the adjoint A'

of A in G as the set of all c in G such that (A, c, G) =1. We define the

closure A* of A in G by A* = (A')'. In view of Lemma 4.1, the closure

has the usual properties: (i) AEA*; (ii) A**=A*; (iii) if AEB,

A*EB*.

Lemma 4.3. The adjoint A' and closure A* of a subset A of a Moufang

loop G are subloops of G, and AEA*. Moreover, (A, A, G) = 1 implies

(A*,A*,G) = l.

Proof (cf. [8]). Let B=A'. By Theorem 3.1, B~lEB. For a in A,

b, b' in B, x in G, we have, by three uses of the definition and two uses

of (2.4), ((a-b'b)x)b = ((ab'-b)x)b = (ab')(bxb)=a(b'-bxb)=a((b'b-x)b)
= (a(b'b-x))b. Therefore (a-b'b)x=a(b'b-x), (A, BB, G)=l, BBEB.
Hence B is a subloop. Since A * = B', A * is also a subloop. lí (A, A, G)

= 1, then AEA'. Hence (A, A*, G) = l, A*EA'. Thus, finally,
(A*,A*,G) = l.

The nucleus N oí a Moufang loop G is the set of all n of G such

that (n, G,G)=l. (In [2, 4] and elsewhere, N is called the associator.)

Theorem 4.1. If G is a Moufang loop with nucleus N, every pseudo-

automorphism of G induces an automorphism of N. In particular, N

is a characteristic normal subloop of G.

Proof (cf. [2]). Since N = G', N is a subloop. If m is in TV, and U is

any pseudo-automorphism, let a=nU, V=U~l. Then (ax)V-v = n

■ (xV-v) =(n-xV)v or (ax) V = n-xVior every xoiG. Hence (ax-y) V-v

= (ax) V- (yV-v) = (n-xV)(y V-v) =n(xV-(yV-v)) = n- ((xy) V-v) = (n

■(xy)V)v = (a-xy)V-v,ax-y = a-xy,aEN, NUEN.Then N=(NV)U
ENUEN, NU = N. And, for n, n' in N, (nU-n'U)V=n-n'UV
= nn', or nU-n'U= (nn') U. This proves the first sentence. Since NQ

= N, A7, is normal. (See Lemma 2.1 and the theory of normality in

[2].) And since automorphisms are pseudo-automorphisms, TV is

characteristic.

5. Associativity theorems. In view of (2.1) and Lemma 4.1, we

have (x, x, G) = 1 for every element x of the Moufang loop G.

Theorem 5.1. Let A, B, C be subsets of a Moufang loop G such that
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(A, A, G) = (B, B, G) = (C, C, G) = (A, B, C) = l. Then the subset
D =AVJBV)C is contained in an associative subloop H of G.

Corollary. Any two elements a, b of a Moufang loop G (or any

three elements a, b, c such that ab-c=a-bc) are contained in an associa-

tive subloop of G.

Proof (cf. [3, 5, 6, 7, 8]). Let F be the set of all elements x in

G such that (D, D, x) = (AB, C, x) = 1, and let M be the set of all m

in G such that mFEF. By Theorem 3.1, M is a subloop of G such

that (D, D, M) = \. In view of Lemmas 4.1, 4.2, A, B, and C play

symmetrical rôles in the definition of F. We now use Lemma 4.2 four

times along with Lemma 4.1. Since (A, A, D) = (A, A, F) = (A, A ,D F)

= 1, then also (AA, D, F) = (AD,A, F) = (DA,A, F) = l. From this,
and by symmetry, (DD, D, F) = l, and hence (DD, A, F) = 1. Since

(D, D, D) = (D, D, F) = (DD, D,F) = \, then (D, D, DF) = 1. In par-
ticular, (D, D, AF) = (D,A,AF) = l. Since (A, A, DD) = (A, A, F)
= (DD, A, F) = (A, A, DD, F) = l, also (DD, A, AF) = t. And, since
(D, D, A) = (D, D, AF) = (D, A, AF) = (DD, A, AF) = l, then
(AD, D, AF) = 1. In particular, (AB, C, AF) = l. Thus (D, D, AF)
= (AB, C, AF)=l, A EM. By symmetry, DEM, and we may take
H to be the closure of D in M. For the corollary, set A = a, B = C = b

or A =a, B =b, C = c according to the case.

A subset A of the Moufang loop G is called associative if (A, A, A)

= 1. An associative subset (subloop) A is called a maximal associa-

tive subset (subloop) provided A is contained in no associative sub-

set (subloop) of G distinct from A. On the basis of Zorn's Lemma, it is

clear that every associative subset (subloop) is contained in at least

one maximal associative subset (subloop).

Theorem 5.2. Let A be an associative subloop of a Moufang loop G,

and let B be a subset of G such that (A, A, B) = (B, B, G) = 1. Then the

subset D=A\JB is contained in an associative subloop H of G.

Corollary. Every maximal associative subloop of a Moufang loop G

is a maximal associative subset of G.

Proof (cf. [5]). Let F be the set of all x in G such that (D, D, x) = 1,
and let M be the set of all m in G such that mFEF. By Theorem 3.1,

Mis a subloop of G such that (D, D, M) = l. Since ^4^4 =A, (A, A, D)

= (A, A, F) = (A, D, F) = (AA, D, F) = l, and hence (A, D, AF)
= iA, A, DF) = l. Since (B, B, AF) = l, we have (D, D, AF) = i,
A EM. Since (B, B, D) = (B, B, F) = (B, D, F) = (B, B, DF) = \, then
iB, D, BF) = \. Since (A,A,DF) = 1, then (A, A, BF) = 1. Therefore
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(D, D, BF) = 1, BEM. Hence DEM, and we may take H to be the

closure of D in M. If A is a maximal associative subloop, the relations

A ED EH imply D=A, BEA; the case 5 = 6 shows that A is a

maximal associative subset.

Theorem 5.3. Let G be a Moufang loop such that (G, G, (G, G)) = 1.

Then every maximal associative subset A of G is a maximal associative

subloop of G.

Remark. If G has nucleus N, the condition (G, G, (G, G)) = 1 means

that (G, G)EN, or that the quotient loop G/N is commutative. As

M. F. Smiley has pointed out (private communication), there exist

Moufang loops G for which the conclusion of Theorem 5.3 is false.

Proof (cf. [3, 5]). By Lemma 4.2, for a, b, c, d in A, the valid

equation (c, d, (a, b)) = l implies (a, b, cd) = 1. Hence (A, A, A A) = 1.

Thus, for x in AA, AKJx is an associative subset, xEA, AAEA.

Similarly, by Theorem 4.1, A~1=A. This completes the proof.
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