PSEUDO-AUTOMORPHISMS AND MOUFANG LOOPS
R. H. BRUCK

1. Introduction. A loop G is a system with a binary operation
(+) such that: (i) in the equation xy =3, any two of x, ¥, 3 uniquely
determine the third; (ii) G has a unit 1. The concept of subloop
should be clear. A permutation U of G will be called a pseudo-auto-
morphism of G provided there exists at least one element % of G
such that

(1.1) (29)U-u = 2U-(yU-u)

for all x, y of G. The element # will be called a companion of U. It

is readily verified that the pseudo-automorphisms of a loop G form a

group under composition. Indeed, U—! has p as a companion, where

pU-u=1. And, if V has companion v, then VU has companion vU - %.
A Moufang loop is one which satisfies the identity

1.2y xy-2x = x(yz-x).

An extensive study of Moufang loops is given in [2].! One defect of
that study is that it assumes Moufang’s associativity theorem [6],
the only published proof of which involves a complicated induction.
Using pseudo-automorphisms along with recent methods of Kleinfeld
and the author [5], we shall give simple noninductive proofs of three
associativity theorems, one of which (Theorem 5.1) generalizes that
of Moufang. As shown in [3], still simpler proofs of Moufang’s
theorem are possible in the commutative case. And, indeed, the fol-
lowing corollary of Theorem 5.3 can be obtained directly from
Lemmas 2.1, 2.2: Every associative subset of a commutative Moufang
loop G s contained in an associative subloop of G.

The present methods represent a considerable improvement over
those of [2] (in particular, pseudo-automorphisms have displaced
the cumbersome autolopisms) and the paper should serve as an
introduction to the theory of Moufang loops. There is little over-
lapping, except possibly in §2, but we have added (Theorem 4.1) a
more aesthetic proof of the fact that the nucleus (previously called
the associator) of a Moufang loop is a normal subloop.

2. Elementary properties. Henceforth let G be a Moufang loop.
From (1.2) with z=1,
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(2.1) . Ty x = x-yx.

Defining the inverse x~! of x by xx~1=1, we set y=x"11in (2.1) and
find x=x-x"'x, 1=x"'x. Thus, also, (x~!)~!=x. Setting z=x"! in
(1.2), we have xy=x(yx!-x), yx~1-x=y. Again, from (1.2), (2.1),
zx=xx"1-zx=(x-x"12)x, 3=x-x"13. Therefore

(2.2) xlay=y=yx- 2L

If z=xy, then, by (2.2), zy~'=x, z7x=y"1, y~lx~1=2"1; thus

(2.3) (xy)7t = y7la7L

Setting y=pz! in (1.2), and using (2.2),>(2.1), we get (x-pz7)(2x)
=xp-x, whence, by (2.2), (2.3), x-pg~1=(xp-x)(x~'2~!). From this,
with z71=xq, x(p-xq) = (xp-x)q. Therefore, in view of (2.3), we have
the Moufang identities,

2.9 x(y-x2) = (xy- )3, (zx-y)x = 2(x- yx).

As Bol [1] was first to show, each of the identities (2.4) implies (1.2).
For each a of G, define permutations L(a), R(a) of G by xL(a) =ax,
xR(a) =xa. In view of (2.2),

(2.5) L(x)™! = L(x7Y), R(x)~* = R(x™Y).
In this notation, (1.2) becomes
(2.6) yL(x)-2R(x) = (yz)R(x)L(%).

Again, setting x =p~!, y=¢"1, 2=¢r in (1.2), we have (p~1g~V)(gr- p~?)
=p~1-rp~1 and hence (gp)(p~-rp~") =gr-p~". Equivalently,

2.7 yR(x)-2R(xY)L(x7Y) = (yz)R(z7Y).

Let @ be the permutation group generated by all the L(x), R(x),
and let & be the subgroup consisting of those U of ® such that 1U=1.
An element of & is known as an inner mapping of the loop G. We are
ready to prove a basic lemma.

LEMMA 2.1. Every inner mapping of a Moufang loop G is a pseudo- ‘
automorphism of G.

Proor. In view of (2.5), every element U of ® has the form
U=UU, - - - U, where U;=L(a;) or R(a;) for an element a; of G.
We see from (2.6), (2.7) that for each 7 there exist elements V;, W;
of ® such that xU; yV;=(xy)W; for all x, y of G. Thus, if V
=WV, -- Vm W=wW; - - - Wm

(2.8) U yV = (zy)W
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forall x, y of G. If Uisin &, 1U=1, so that (2.8) with x=1 gives
V=W. Now set u=1V. Then (2.8) with y=1 gives xU-u=xW, so
that (2.8) becomes (1.1). We shall use this proof as a method of
computing a companion of an inner mapping.

A better result holds for commutative Moufang loops:

LeEMMA 2.2. Every pseudo-automorphism of a commutative Moufang
loop G 1s an automorphism of G.

Proor. If G is commutative, interchange of x and y in (1.1) gives
xU-(yU-u)=yU-(xU-u). Setting xU=p, yU=gu"! in this, we get
pg=(qu=")(pu) =pu-qu=?, whence, by (2.4), pg-u=(pu-qu=")u=p-uq
=p-qu for all p, ¢, of G. Therefore (1.1) yields (xy) U-u=(xU-yU)u,
(xy)U=xU-yU.

If h(xy, - - -, %,) is a single-valued function from G to G, and if 4;
(¢=1, - - -, n) are subsets of G, k(44 - - -, 4,) denotes the set of
all elements &(a;, - * -, @,) with a; in A4;. Subsets consisting of one

element will usually be denoted by that element. Note the meanings
of A-1, A2, AA.

3. Invariant elements of pseudo-automorphisms. In (1.1) setx=y
=1 and get 1U-u=1U-(1U-u), 1=1U. Then set y=x"1 and get
u=xU-(x"1U-u),

3.1) 1U =1, 27U = (xU)™L

Next replace y in (1.1) by yx and use (2.1), (1.1), (2.4) toget (xyx) U-u
=xU-((yx)U-u)=xU-(yU-(xU-u))=(xU-yU-xU)u,

3.2) (xyx)U = xU-yU-2U.

The identity (3.2) states that every pseudo-automorphism of a Moufang
loop G 1s a semi-automorphism of G. And it is easily seen that (3.2)
implies (3.1). In the following theorem, we could use semi-auto-
morphisms, but pseudo-automorphisms seem more natural.

THEOREM 3.1. Let & be any set of pseudo-automorphisms of a
Moufang loop G. Let F=F(&) be the set of all x of G left fixed by &,
and let M = M(S) be the set of all m of G such that mFCF. Then: (i) 1
is in F; (ii) F-'=F and xFx=F for x in F; (iii) M s a subset of F and
a subloop of G; (iv) mF = F = Fm for every m of M.

COROLLARY. If G is also commutative, M =F.

Proor. (i), (ii) reflect (3.1), (3.2). By (i), F contains M-1=M.
If misin M, x in F, x"'m~1=(mx)"!is in F-!'=F, and thus m~x
=x(x~"m1)x is in xFx=F. Hence M~'= M. Moreover, F=m-m~'F
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CmFCEF, so that mF=F, and, similarly, Fm=F. If also m' is in M,
mm'-x=(mm')(xm=t-m) =m(m'-xm~)m is in mFm=F. Hence MM
CM. This is enough to show that M is a subloop of G. If G is com-
mutative, Lemma 2.2 shows that FFCF, M =F, proving the corol-
lary.

4. Some basic lemmas. The commutator (x, y) and associator
(x, ¥, 2) of a loop G are defined by

(4'1) xy = (yx)(xr y)r xy-z = (xyz)(x’ Y z)'

LeEMMA 4.1. In a Moufang loop G, the equation (a, b, c) =1 implies
all of the equations obtained by permuting the elements a, b, ¢ and re-
placing any of these elements by their inverses.

Proor (cf. [6]). We give a proof which illustrates the use of
Theorem 3.1. Assume that

4.2) (a, b,¢) =1, ab-c = a-bc.

Clearly (4.2) can be written in the form aU=a where U
=R(®)R(c)R(bc)™Y, 1U=1. By Lemma 2.1, U is a pseudo-auto-
morphism. Thus, by Theorem 3.1 (ii), (4.2) implies (a7, b, ¢)=1.
Similarly, (4.2) implies (a, b7, ¢) =(a, b, ¢c!)=1. Also (4.2) implies
c1-b7lg7 =¢"%1-¢7! and hence (¢, b7}, a~)=1=/(c, b, a). Next,
from (a7%, b, ¢)=1, we get a~'b-c=a"1lbc, bc-a=ala bc)a
=a(a-c)a=b-ca, (b, ¢, a) =1. This completes the proof.

LeMMA 4.2. Let a, b, ¢, d be elements of a Moufang loop G, each three
of which associate (satisfy (x, y, 2) =1). Then the following equations
are equivalent: (i) (e, b, cd) =1; (ii) (¢, d, (e, b)) =1; (iii) (c, 4, (ab)?) =1;
(iv) (¢, d, ab) =1; (v) (@, a, bc) =1. Hence (i) is equivalent to each of the
equations obtained by permuting the elements a, b, ¢, d and replacing
any of these elements by their inverses.

PrOOF (cf. [5, Lemma 2.1]). By Lemma 4.1, the equation (a, b, x)
=1 is equivalent to (b7}, a7}, x) =1. The latter may be written as
xU=x where U=L(a"')L(b-')L(ab). Using the proof of Lemma 2.1,
we see that U has companion u=1R(a")R(b-Y)R(abd)=(a, b).
Then ab=ba-u, aba=(ba-u)a=b(aua). Therefore b(aua)b=aba b
=(ab-a)(a!-ab) =(ab)(aa=")(abd),

4.3) b(aua)b = (ab)2

Now (i) is equivalent to cd-u=(cd) U-u=cU- (AU -u) =c-du, (¢, d, u)
=1, or (ii). Since (¢, d, x) =1 is equivalent to x V =x for an inner map-
ping V, (4.3) and Theorem 3.1 (ii) show that (ii) is equivalent to
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(iii). Hence (i) is equivalent to (iii). Similarly (iv) is equivalent to
(a, b, (cd)?) =1. However, since x-1-x=x2, (i) implies (a, b, (cd)?) =1
and (iv). Conversely (iv) implies (i); together they imply (a-bc)d
=(ab-c)d=ab-cd=a(b-cd) =a(bc-d), (a, bc, d) =1, or, (v). And if (i)
implies (v), then, equally, (v) implies (i). This, together with Lemma
4.1, suffices for the proof of Lemma 4.2.

If 4 is any subset of a Moufang loop G, we define the adjoint A’
of A in G as the set of all ¢ in G such that (4, ¢, G) =1. We define the -
closure A* of A in G by A*=(A4")". In view of Lemma 4.1, the closure
has the usual properties: (i) A CA*; (ii) A**=A4%*; (iii) if ACB,
A*CB*.

LEmMA 4.3. The adjoint A’ and closure A* of a subset A of a Moufang
loop G are subloops of G, and A CA*. Moreover, (A, A, G) =1 implies
(4% 4%, G)=1.

Proor (cf. [8]). Let B=A’. By Theorem 3.1, B-'!CB. For a in 4,
b, b’ in B, x in G, we have, by three uses of the definition and two uses
of (2.4), ((a-b'b)x)b=((ab’-b)x)b=(ad’) (bxb) =a(b’-bxb) =a((b'd-x)b)
=(a(b'b-x))b. Therefore (a-b'b)x=a(b’b-x), (A, BB, G)=1, BBCB.
Hence B is a subloop. Since A*=B’, A* is also a subloop. If (4, 4, G)
=1, then ACA’. Hence (4, 4* G)=1, A*CA’. Thus, finally,
(4% 4% G)=1.

The nucleus N of a Moufang loop G is the set of all # of G such
that (n, G, G) =1. (In [2, 4] and elsewhere, N is called the associator.)

THEOREM 4.1. If G is a Moufang loop with nucleus N, every pseudo-
automorphism of G induces an automorphism of N. In particular, N
s a characteristic normal subloop of G.

PRrooF (cf. [2]). Since N=G’, N is a subloop. If # is in N, and U is
any pseudo-automorphism, let a=nU, V=U"' Then (ax)V-v=n
~(xV-9)=(n-xV)vor (ax) V=n-xV for every x of G. Hence (ax-y) Vv
=(@)V-V-o)=(m-xV)yV-0)=nV-(yV-0))=n-((xy) V-0)=(n
(xy) V)v=(a-xy)V-v,ax-y=a-xy,aEN, NUCN. Then N=(NV)U
CNUCN, NU=N. And, for n, n’ in N, aU-v'U)V=n-0'UV
=nn', or nU-n'U=(nn')U. This proves the first sentence. Since N
=N, N is normal. (See Lemma 2.1 and the theory of normality in
[2].) And since automorphisms are pseudo-automorphisms, N is
characteristic.

5. Associativity theorems. In view of (2.1) and Lemma 4.1, we
have (x, x, G) =1 for every element x of the Moufang loop G.

THEOREM 5.1. Let A, B, C be subsets of a Moufang loop G such that
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4, 4, G)=(B, B, G)=(C, C, G)=(A, B, C)=1. Then the subset
D =A\UBC is contained in an associative subloop H of G.

COROLLARY. Any two elements a, b of a Moufang loop G (or any
three elements a, b, ¢ such that ab-c=a-bc) are contained in an associa-
tive subloop of G.

ProoF (cf. [3, 5, 6, 7, 8]). Let F be the set of all elements x in
G such that (D, D, x) =(4B, C, x)=1, and let M be the set of all m
in G such that mFCF. By Theorem 3.1, M is a subloop of G such
that (D, D, M)=1. In view of Lemmas 4.1, 4.2, 4, B, and C play
symmetrical rdles in the definition of F. We now use Lemma 4.2 four
times along with Lemma 4.1. Since (4,4, D)=(4,4, F)=(4, 4,DF)
=1, then also (44, D, F)=(4AD, A, F)=(DA, A, F)=1. From this,
and by symmetry, (DD, D, F)=1, and hence (DD, A, F)=1. Since
(D, D, D)y=(D, D, F)=(DD, D, F)=1, then (D, D, DF)=1. In par-
ticular, (D, D, AF)=(D, 4, AF)=1. Since (4, A, DD)=(4, A, F)
=(DD, A, F)=(4, A, DD, F)=1, also (DD, A, AF)=1. And, since
(D, D, A)=D, D, AF)=(D, A, AF)=(DD, A, AF)=1, then
(AD, D, AF)=1. In particular, (4B, C, AF)=1. Thus (D, D, AF)
=(AB, C, AF)=1, ACM. By symmetry, DC M, and we may take
H to be the closure of D in M. For the corollary, set A =a, B=C=b
or A=a, B=b, C=c according to the case.

A subset 4 of the Moufang loop G is called associative if (4, 4, A)
=1. An associative subset (subloop) 4 is called a maximal associa-
tive subset (subloop) provided A4 is contained in no associative sub-
set (subloop) of G distinct from 4. On the basis of Zorn's Lemma, it is
clear that every associative subset (subloop) is contained in at least
one maximal associative subset (subloop).

THEOREM 5.2. Let A be an associative subloop of a Moufang loop G,
and let B be a subset of G such that (A, A, B)=(B, B, G) =1. Then the
subset D =A\JB 1s contained in an associative subloop H of G.

COROLLARY. Every maximal associative subloop of a Moufang loop G
is @ maximal associative subset of G.

ProoF (cf. [5]). Let F be the set of all x in G such that (D, D, x) =1,
and let M be the set of all m in G such that m FC F. By Theorem 3.1,
M is a subloop of G such that (D, D, M)=1. Since A4 =4, (4, 4, D)
=(4, A, F)=(4, D, F)=(44, D, F)=1, and hence (4, D, AF)
=(A4, 4, DF)=1. Since (B, B, AF)=1, we have (D, D, AF)=1,
ACM. Since (B, B, D)=(B, B, F)=(B, D, F)=(B, B, DF) =1, then
(B, D, BF)=1.Since (4, A, DF) =1, then (4, A, BF) =1. Therefore
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(D, D, BF)=1, BCM. Hence DC M, and we may take H to be the
closure of D in M. If 4 is a maximal associative subloop, the relations
ACDCH imply D=4, BCA; the case B=5b shows that 4 is a

maximal associative subset.

THEOREM 5.3. Let G be a Moufang loop such that (G, G, (G, G)) =1.
Then every maximal associative subset A of G is a maximal associative
subloop of G.

REMARK. If G has nucleus N, the condition (G, G, (G, G)) =1 means
that (G, G) CN, or that the quotient loop G/N is commutative. As
M. F. Smiley has pointed out (private communication), there exist
Moufang loops G for which the conclusion of Theorem 5.3 is false.

Proor (cf. [3, 5]). By Lemma 4.2, for a, b, ¢, d in 4, the valid
equation (¢, d, (a, b)) =1 implies (e, b, cd) =1. Hence (4, 4, AA)=1.
Thus, for x in 44, A\Ux is an associative subset, x4, AACA.
Similarly, by Theorem 4.1, A—'=A4. This completes the proof.
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