
A NOTE ON EVERYWHERE DENSE SUBGROUPS

B. J. PETTIS1

In the first issue of these Proceedings [l]2 Hsien-Chung Wang

has shown that in any separable nondiscrete locally compact and

metric group there is always an uncountable everywhere dense

proper subgroup. Since any countable subset of a nondiscrete Pi-

space is first category, this result is implied by each of the following

conjectures, in which X is an arbitrary topological group and G

any proper subgroup of X: (O) if X is uncountable, G lies in some un-

countable proper subgroup ; (C2) if X is second category, G lies in some

second category proper subgroup. Using Wang's methods we here

verify these conjectures for certain special cases and also establish

his theorem with "locally compact and metric" replaced by "second

category and Hausdorff."

Let X be any group with e the identity element and let $ be a

family of functions on I to I including the identity function

#(x) =x. Let ® denote the class of all non-null proper <i>-subgroups

G in X, "<P-subgroup" meaning a subgroup G such that <p(G)CG for

every (f>E&. For each G£® take Yi(G) to consist of all pairs (1; g)

with g£G, and for n = 2 let Yn(G) be composed of all 2w-tuples y of

the form y = (n; gh ■ • ■ , gn; fa, • • • , <p„_i) with g,£G and <£,£$>.

Set Y a = Ur Yn(G) and let $0 on IX Ya to X be defined by 4>0(x, y)
= g when y = (l; g) and \p0(x, y)=gi4>i(x)g2<p2(x) ■ ■ • gn-i4>n-i(x)gn

when yE Yn(G) for n = 2. For fixed G in ® and x in X we write G(x)

for the set $o(x; Yo) and note that G(x) is always a semigroup in X

and thatG(x)3x since YG3(2; e, e; $). Moreover, G(x)D^G(x, Fi(G))

= G; hence G(g) =G when gEG, since <pi(g)£G for g£G and <bi£$.

For each q£X set SG(q) = [x | G(x)3q] and define Sq(Q) for any

set Q in X to be U[Sg(<z) | çEQ]- Finally, for any fixed element G0

of © and any non-null subset P of the complement X — Go of Go,

let ®(Go, P) be all G in ® which contain Go and are disjoint to P.

We note that by an obvious application of the Hausdorff Maximality

Principle ©(Go, P) always contains at least one maximal element.

Theorem 1. Let G0£® and PEX — Go be fixed. Suppose that 5DÎ is a

non-null class of maximal elements of ®(G0, P) such that (i) M(x) is a
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^-subgroup for every MEWl and every xEX. Then SM(P) =X— M for

each ME'SSl- If P is countable and @ is a class of subsets of X such that

(ii) (5 is closed under countable unions and (iii) Sm(P) G@ for every

MEW and every pEP, it follows that X-ME® for each MEW,
and hence ZG6 if 9DÍ contains an element of S.

Fix M in SD? and consider any q not in M. From (i) we know that

M(q) is a 4>-subgroup and, as noted above, that M(q)Z)MZ)Go and

M(q)3q. From the maximality of M in ®(G0, P), M(q) is not in

®(Go, P) and hence M(q)3po for some p0 in P. Thus qESM(po)

ESm(P), so that MKJSM(P) =X. On the other hand, M and SM(P)
are disjoint; for if mEM, then M(m) =M, while if mESu(P), then

M(m) and P intersect; since M and F are disjoint, so are M and

Sat(P). Thus X-M = SM(P). H P is countable and (ii) and (iii)

hold, obviously SM(P) = UpSm(P) must be an element of S, so that

X-M&&.
In the next two theorems X is a topological group, S is the class

of countable subsets of X, and @ consists of the first category sets.

The following condition on $ will be considered: (0.1) G(x) is a

^-subgroup for each G in ® and each x in X.

Theorem 2. Suppose that X is second category nondiscrete and

Hausdorff, that $> is countable and satisfies (0.1), and that each 0 is

continuous. If GoE® is everywhere dense in X, then GoEM for some

element M of ® that is uncountable and everywhere dense in X.

Choose any countable non-null subset P of X — Go and let M be a

fixed maximal element of &(G0, P). It suffices to show that M is un-

countable. To do this we assume that ilfCS and arrive at a contradic-

tion via Theorem 1. Let 9JÎ= {M}. We first note that M is in both

SDÎ and (S, since GO<S due to X being a nondiscrete Fi-space; if the

hypotheses of Theorem 1 are verified, it will then follow that X is in

©, contrary to X being second category. But (i) of Theorem 1 results

from (0.1), and (ii) is obvious. Concerning (iii) we observe that YM

is countable since M and i> are, and hence for any p in P the set

Sm(P) is the countable union of sets Sm(P, y)—[x \ 0m(x, y) =p].

Since X is a Fi-space and 0 m is continuous in x for fixed y (each 0

being continuous), each SM(p, y) is closed in X. By the first part of

Theorem 1 we have SM(p, y)ESM(P)EX — Go', hence SM(P, y), being

closed and in the complement of everywhere dense Go, must be

nowhere dense. This clearly implies that Sm(P)EiS. for every p in P,

ending the proof.

The next theorem involves this condition on <ï>: (0.2) for each

choice of A, of <pi, ■ ■ ■ , <pk in 4>,  and of QE& with eEQ, the set
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[x | <bi(x) ■ • • <bk(x)£Q] is in @.

Theorem 3. Suppose that X is second category and Abelian, and that

<£ is countable and satisfies (0.1) and (0.2). Then for any Go in ©

there is some second category element M of & such that AOG0.

As in the proof of Theorem 2 we choose P to be any countable

non-null subset of X — Go, M to be any maximal element of ©(Go, P),

and 9JÍ to be {M} ; this time we have only to prove that M is second

category. Assuming the contrary, we have M in both SDÎ and (S, and

if the hypotheses of Theorem 1 are fulfilled, we can conclude that

XE&, contrary to assumption. Since (0.1) holds for «i», we again

have (i) of Theorem 1 satisfied. To verify (iii) we observe that since X

is Abelian and Mf\P is null, we can, for each p£P, write Sm(P)

= [x | m<pi(x) ■ ■ ■ <bk(x) =p for some mEM and some <pi, • • • , <bk

in <f> with k^l]. Thus Sm(P) is the union of sets [x | <pi(x) • • ■ <pk(x)

EM~lp] for varying k and varying $< in <£. Since eEM~lp and M~xp

ES, we can apply (0.2) and the countability of 4> to conclude that

SmÍP)E<& for each p£P, which completes the proof.

As an application of Theorems 2 and 3 let f> consist of $ and <p'

where <p'(x) =x-1. Here © consists of all proper subgroups of X, and

(0.1) is satisfied. Any function <pi(x) • • • <bk(x) with <t>iE& is con-

tinuous and has the form xr for some integer r; recalling that any

continuous function mapping non-null open sets into somewhere

dense sets has its inverse function sending first category sets into

first category sets [2], it follows that (0.2) is satisfied by this <P if xr

sends non-null open sets into somewhere dense sets whenever xr is

not identically e and r > 0. We thus have the following theorems.

Theorem 4. An everywhere dense proper subgroup Go of a second

category nondiscrete Hausdorff group X must lie in some uncountable

everywhere dense proper subgroup M.

Theorem 5. Suppose that X is second category and Abelian and

that for each integer r>0 such that x'^e the map xr sends non-null

open sets into somewhere dense sets. Then any proper subgroup of X lies

in some second category proper subgroup M.

From Theorem 4 we have the following.

Theorem 6. Let X be a second category nondiscrete Hausdorff group

containing a countable everywhere dense subset D. Then any proper

subgroup G of X lies in an uncountable proper subgroup M of X; if G

is countable, M can be taken to be everywhere dense as well.

When G is uncountable, take M=G. When G is countable, let
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Go be the countable subgroup generated by G^JD; then Go is every-

where dense, and Go^X holds since X is uncountable. Theorem 4

now yields the desired M.

Taking G to be the trivial subgroup in Theorem 6 provides the

previously stated extension of Wang's result.

We note in Theorems 3 and 5 that the second category subgroup

M will be uncountable if X is Hausdorff, and that if X is connected,

M will be everywhere dense and, by a theorem of Banach [4], also

non-Baire. From this and from Theorem 5 and a result of Gleason

[3, Theorem 3 and corollary] we have the following theorem.

Theorem 7. When X is Abelian and locally Euclidean, any proper

subgroup G of X is contained in some uncountable second category

proper subgroup M; if X is also connected, M must be everywhere dense

and non-Baire.

Theorem 5 and the remark preceding Theorem 7 also show the

following: (a) in the algebra of Lebesgue measurable sets in »-dimen-

sional space any proper subalgebra is contained in a proper second

category everywhere dense non-Baire subalgebra, and (ß) in any

second category real linear topological space any proper subgroup

(and hence any proper linear subspace) is contained in a second cate-

gory everywhere dense non-Baire proper subgroup. We remark also

that in (ß) we can, by Theorem 3, replace "subgroup" by "rational

subspace"; thus, for example, any proper additive subgroup of the

reals (for example, the rationals) is contained in a subgroup of the

same sort that in addition is second category, everywhere dense,

non-Baire, and closed under multiplication by rationals.

For another application of Theorems 2 and 3 let X be a ring with

unit 1 and let Z be any countable additive subgroup that contains

1 and is also a multiplicative semigroup. Set i> = [<j>¡] where 0*(x) =zx

and zEZ. Here <ï> is countable and contains 0, and (0.1) is satisfied.

By the same remark (preceding Theorem 4) that justified Theorem 5

it follows that (0.2) is satisfied if this is true: (0.3) for any fixed z in

Z either zx = 0 for all x or else z V is somewhere dense whenever V is

non-null and open. From Theorems 2 and 3 we have the following

theorem.

Theorem 8. Suppose that the additive group of X is a second category

topological group and that zx is continuous in x for each fixed z in Z.

Let Go be a proper additive subgroup with zG0EGo for every zEZ. (I)

// the additive group of X is a nondiscrete and Hausdorff and Go is every-

where dense, there is an uncountable everywhere dense proper additive

subgroup M containing G0 and having zMEM for each zEZ. (II)
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If Z satisfies (0.3), there is a second category proper additive subgroup

M containing Go and with zMEM holding for every zEZ.

The following example shows that in the above theorems any lack

of assertion that M can be chosen to be everywhere dense is a neces-

sary lack. Let X be the product of the reals with the integers mod 2,

and let G= [(r, 0); r real]; here X satisfies all the hypotheses in

these theorems, and G is a second category (in X) uncountable

maximal proper subgroup that is not everywhere dense.

In conclusion we remark that much of the above can be carried

through with groups replaced by semigroups with units, since

Theorem 1 holds when this substitution is made.
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