ON PRODUCTS OF SUMMABILITY METHODS
OTTO SZASZ

1. At the recent International Congress I. M. Sheffer asked me
the following question: Given a sequence {s,.}; form the sequence
{a‘;,} of the Cesiro means of order & (&> 0) corresponding to {s,}. If
{s.} is summable Abel, is it true that {2} is also summable Abel?

A more general question is: Suppose that 4 and B are two regular
summability methods for sequences { s,.}. Denote by AB the itera-
tion product which associates with a given sequence the 4 transform
of its B transform; when does 4 summability imply A B summability?

We shall show in §2 that the answer is affirmative when B is (C, a)
and 4 is Abel summability.! In §3 we generalize this result to Laplace
transforms and Riesz summability. In §4 we discuss the iteration
product of Cesiro and Borel summability, and also Euler and Borel
summability.

2. Let f(x) = 2_¢ anx"=(1—x) 2_s,x" Abel summability of D a,
to s is
Alims, = lim (1 — 2) D s.2" = 5.

-1
We define s by the identity

flx) = (1 — x)wl s:x”,

0

and v5 by
1—#"" = X,
0
so that
« TMNa+n+1)
(2°1) Yn = Corap = ————
a0« + 1)
We now have
a S: a d a—
(2.2) O = —) S = Z s.,'yn-,l,.
'Yz v=0
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! For the case a=1 see [4, p. 189]; [3, p. 258]. Numbers in brackets refer to the
literature at the end of this paper.
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Furthermore
1 1

(2.3) —= f p"(1 = p)="1dp,
Yo 0

hence

) 1
Sed=af (-0 T slen)"
0 0

1

« f (1 = 9" (1 = px) " f(px)dp.?

The transformation
px =1 — ¢, xdp = 1%t

yields

© «n 1/(1—2z) t — 1 a—1
Doax = % f (t - ——x—) f(1 = ).
0 1

Putting x=1—(y+1)"! (y—> =) yields
) « 1 n
(1-—)
;a ( y+1
1 a y+1 t — 1 a—1
= a(l + —) f (1 - —) f(1 — tY)dt.
¥ 1 y

Now set t=u-+1; then

ik

1 1
ea 2T y+

() (- ) e

where ¢(u) =f(1— (u+1)"1). Now

. %j;”(l - -S-)a—ltb(u)du

is the integral (C, a) transform of the function ¢(u); denoting it by
(C, &) we have from (2.4)

* The same formula appears in [2, p. 200]. See also E. C. Titchmarsh, The theory
of functions, Oxford, 1932, p. 242, example 8.
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1\ _
A(C, @) s} =(1+;) C, o) {ow)},

from which our assertion follows, as the right side tends to s for y— .

3. Abel summability has been generalized to Dirichlet series
D) = Y a,e ™, where 0 S Ng <A < -+, Ay — .
0
If the Dirichlet series converges for ¢>0, and if D(t)—s as t—0,

then we write D, Y_a,=s. The method is regular. To Abel summabil-
ity corresponds the case N, =#, e~*=x. Furthermore

0 An+1
D) =t) s, e tdu.
0 A
Introducing the stepfunction
Sny for v, Su<Ny,n=012---,
3.1 s(u) = .
0, for 0w <N, if N >0,
we get
3.2) D@) =t f s(u)evtdu.
0

If s,—s, then s(u)—s, u— o, and lim,.o D(t) =s defines the general-
ized limit of s(u).

In general (3.2) is a regular transform of the function s(u), the
Laplace transform for which we write L {s(x), t}. The (C, @) means
of s(u) are

Cqlx) = ax"“f (x — w)=s(u)du, a>0.
0
In the case of (3.1) if A\a £x <N,y1, then Cu(x) reduces to

n—1 Not1 z
0

Ay An
n
=22) a,(xr — N\~
0

These are Riesz's typical means of order a (see [1, chap. 4]). If
R.(x)—s, then the series ) _a, is called summable to s(\, @). It is
known that [1, p. 39]if Za,. is summable (\, &), then it is summable
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D) to the same value. Similarly if C,(x)—s (x— ), then L{s(x), t}
—s (t—0). We have [1, p. 39]

ta+l ©
D(t) = —I‘(a n 1)1; se(w)e *tdu,
where sq(x) = [§(x — u)*'s(u)du. Now

Cao(x) = x7%54(%),

hence
la'H 0
D(t) = ——-—f u°Co(u)e *tdu.
a4+ 1)Jo
We have
I'(a) = u"f p*"le**dp, a>0,
0
so that

L{Ca(u), t)} = tf”Ca(u)e‘“‘du

" T@J,

¢ ® ®
=——1 po1 f sa(w)e~ P dudp
F(a) 0 0

0

u°Co(u)e vt f p* e **dpdu

0

= ot f P21t + p)~*'D(t + p)dp.
0

Suppose that L{s(x), t} —s as t—0. Now at[Zp*1(t + p)~="tdp = 1,
hence

0

L{Ca(), t} — s = atf p*(t + p)~={D(t + p) — s}dp.

0

But it is easily shown that this expression tends to 0. Thus the
theorem: If

L{s(u), t} —s as t — 0,
then
L{Ca(x), t} — s as t—0.
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4. We now consider the product of Borel and (C, «) summability.
The Borel transform of a sequence {s.} is

©0 s"
B{sa, ) ==Y, — an,
0 n!

We say that (B) lim s, =s, if lim,., B {s,., x} =s. The product B(C, )
is the transform

a -z a X®
B{a,., x} =e Zan—”
n!
Employing (2.1) and (2.2) we have

a—1
n—_r 1 - . vYn—v
,.z.;," = Mt )Er(a+ +1)§”

_I‘(a+1)°° x» 2 T(a+n—1v)

2 S

P(Ol) n=0 I‘(a +n+ 1) =0 (n - 9)!

SR I(a + n — )
avz.:os",gx (n—)Tat+n+1)

The interchange of summation is legitimate if the double sum is
absolutely convergent. From (2.3)

vIl(a+ n —9) f‘
—_— = a+n—v—1 1 — vd X
Tatnt 1) op (1 —p)vdp
hence
hed MNa+n—9) 1 .

n - a— 1 — n—-vd
P n—o)Tatntl) ol ( "),.‘i:,,(n—v)' P
x? 1

=— | p=(1 — p)ver=dp.
9! 0
It follows that

levlz T(a+n—19)

v=0 ne=p n - v) !I‘(a +n+ 1)

=35 —f p= (1 — p)*er<dp

v=0

<[ (&1 )
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By assumption the sum El s,.I x*/n!is an entire function, hence the

double sum on the left is convergent for all x>0; this proves that
D 02 x"/n!is an entire function, and

1
Z a,. — = az S» —f p Y1 — p)ver=dp

n=0 . v=0
1 0 x? 1 — v
= af a—lepz Z §y ( P)
0 !
1
= af p““e’”e““‘)’B{sn,(l - p)x}dp.
0
Finally
1
B, x} = af p*'B{sa, (1 — p)x}dp
0
z t a—1
= if (1 - —) B{sw t}dt,
X 0 X
or

B(C, @) {s.} = (C, @)B{sn, t}.

It follows that (B) lim s,=s implies (B) lim o5 =s. For a=1 this
result (with a simple proof) was communicated to me by J. Barlaz
at the summer meeting, 1949, in Boulder, Colorado.

"We finally consider the product of Borel and the generalized Euler
transform. The Euler transform E, is defined by

¢n(r) = ch.vf"(l — )",
=0

It was shown by K. Knopp that this transform is regular if and
only if 7 is real and 0 <7 <1. Now

o n

"Z ¢,,(r) — =¢® Z ? ZC,, 721 — )7,

n=0 n! vm=0
o x"(l —_ f)"

= -’Esu—(l -

v=0 n=v ('ﬂ - v) !

=Ty s, (rs) e4-nz = Bls,, rx}.
0 9!

B{¢u(r), x}

The interchange of summation is legitimate, the double series being
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absolutely convergent. Hence
B{éa(r), 2} = B{s,, rz}.
It follows that (B) lim s,=s implies (B) lim ¢,(r) =s.
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A NOTE ON INDEFINITE INTEGRALS
J. D. HILL

I. Throughout the paper f(x) will denote a given function, real-
valued and Lebesgue integrable on the interval X=(0=<x=<1). We
denote by E the generic measurable subset of X and introduce the
following definitions.

(1.1) F(E) =F(E; f) = [&f(x)dx.

(1.2) Bi(a)=Bx(a; f) and B*(a)=B*(a; f) are, respectively, the
greatest lower and least upper bounds of F(E) taken over all sets E of
measure | E| =a (0=a=1).

Regarded as a function of E, F(E) is called a generalized indefi-
nite integral of f(x) [4] or simply an indefinite integral of f(x) [1].
In this section we develop the principal properties of the functions
B« (o) and B*(a), and then obtain as a main result (see (1.9)) the
fact that the values of F(E) for | E| =a comprise the closed interval
from Bx(a) to B*(a). This is an extension of the known fact that
F(E) assumes all values between its optimum bounds, where no
restrictions are placed on the measures of the sets involved [4]. In the
second section the results of the first are applied to the problem of
defining a mean value for F(E) as E ranges over the measurable
subsets of X.
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