
ON A CONVERSE OF ABEL'S THEOREM

AMNON AMIR (jAKIMOVSKl)

1. Introduction. It is known that if the real power series X^T=oan ■ x"

is of radius 1 and X^n-o an is summable (C, a), a> —1, to s, then

limr,i 2"-o ctn-xn = s. This theorem is generalized and stated for

the (A, a) methods of summability, which are defined in this paper.

The following general converse of Abel's theorem was given by

R. Schmidt: If   2¿°«,0 a» is summable Abel and

lim lim  inf    min    (s„ — sm)^0,
X|l n->oo    m^nú\'m

then (sn) is convergent. A converse of the generalization of Abel's

theorem is proved here. This theorem contains Schmidt's theorem as

a special case.

Hardy and Littlewood proved that if the sequence (sn) is sum-

mable Abel and for some a, a> — 1, the (C, a) means of (sn) are

non-negative, then (sn) is summable (C, a+l). We shall refer in

this paper to the special case a = 0 of this theorem as Theorem H.

We shall see that Hardy and Littlewood's theorem follows from

Theorem H and some general theorems for the (A, a) methods of

summability. If we suppose in Hardy and Littlewood's theorem the

two-sided boundedness of the (C, a) means, then we have more in-

formation about the (C, ß) means.

We shall see that a tauberien theorem for the Nörlund methods of

summability follows from Schmidt's theorem.

The author of this paper would like to remark that the results of

the original manuscript were less general than those given here. The

results of the present paper are an outgrowth of modifications sug-

gested by the referee of the original manuscript.

2. The (A, a) methods of summability. Let (sn), n = 0, 1, 2, • ■ • ,

be an infinite sequence of real numbers. {oia)} will be the (C, a)

means, a> — 1, of the sequence (s„). That is,

(0) _ <a) _ in        T1   V r
0*„      — Sn, <Tn      —   \yn+a,n)      ' ¿_, ^n-l+a-l,n-l ' S I,

1=0

c„....(1 + f)...(1 + -î-)--r
T(n + a + 1)

a > — 1.
r(«+i;)-r(a+i)

We shall define s^ by
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(a)   _ (a)

Sn Cn+o,Ti' 0"n

It is easy to see that if  ^".0 sn-xn is convergent for 0^x<l, then

(1 — x)- 2~1 s„x   = (1 — x) • 2 sn   ■ x ,     a > — 1.
n=0 ;i = 0

We shall prove the following theorem:

Theorem 2.1. If for somea,a> —1, lim^u (1—x) • 2~Lñ=o a„a)-xn=s,

then for any ß, ß>a, limIti (1 —x) • X)"=0 o-(„s)xn = 5.

The special case a = 0 of Theorem (2.1) is used and proved, with-

out mentioning it explicitly, in proving Hardy and Littlewood's

theorem, mentioned in the introduction. The proof of this special

case of Theorem (2.1) is given in Titchmarsh's The theory of functions,

p. 242, example 8.

For the proof of Theorem (2.1) we shall need the following lemmas :

Lemma 1. Let fix), <p(x) be real integrable functions defined for

0 g x < 1, <b(x) > 0. Let g(x, /) be a real integrable function with a constant

sign, defined for 0^t<x<l. If fix) = o{<b(x)}, lim^u f%<p(t) ■ g(x, t)dt
= + oo or — oo , then flf(t)-g(x, t)dt = o{Jl<b(t)-g(x, t)dt} for x Î 1.

Proof. We may suppose that g(x, t) is positive. For any e, e>0,

there exists a number x0, 0^x0<l, so that for any /, xoúKi, we

have |/(<)| úe-<b(t). Nowforx0 = x<l

nz ( r x°     rx)

J   f(t)-g(x, t)-dt= |J      +J    jf(t)-g(x,t)-dt.

Therefore

I     /• x I     /• xo /• x

if    f(t)-g(x,t)-dt\^\\    f(t)-g(x,t)-dt\+ j     \f(t)\-g(x,t)-dt

g¿+€-    j      <P(t)-g(x,t)-dt.
J 0

Since fo<b(t) ■ g(x, t)-dt-*«> for x Î 1, there exists a number Xi,

Xo á Xi < 1, so that for any x, Xi^x<l, A^e- fl<b(t) ■ g(x, t)-dt, and we

have

/* z /» z
f(t)-g(x,t)-dt   = 2e    J    <b(t)-g(x,t)-dt

0 *^ 0

for xi ^ x < 1.

Q.E.D.
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Lemma 2. Let a and ß be real numbers such that ß>a> — 1. If

X^-o ffna) -xn is convergent in the unit circle, then there exists a real non-

negative function g(x, t'.a, ß) defined for 0;£f <x<l, such that we have

E„"-o <r?-x^=flg(x, f.a, ß) ■ £«% of > ■/»+«•*; g(x, f.a, ß) is given

by:
(i) Let a be a non-integral real number greater than —l. m is an

integer defined by m>a>m — l. If ß is any real number such that

ß>a,ß>0, then

g(x, f.a, ß) = (-l)m-ß-T(m - a)~í-T(a+ l)"1

dmdm   rx

-(u- t)m-"-1-(x - uy~l-(l — u)a-l>-du

T(ß + 1)

(BJT(ß- a)-T(m-a)T(a+ 1)

1        "   T(n + m - a)  /x - /\"+í-»

' x - t   ¿      Y(n+l)       \1 - //

(ii) Let a be a real number such that 0>a> — 1. If ß = 0, then

g(x,f.a,ß) = r(-a)-!-r(a+ 1)~»-(1 - x)"-(x- t)'^1.

(iii) Let a be a real number such that 0>a> — 1. If for ß we have

0>ß>a>-l, then

g(x,f.a,ß) =T(a+ l)-i-r(-a)-1

d rx
— I    (u - t)-a~ï-(x - uY(l - uy-t-du
dxJ t

T(ß + 1)

T(a+ l)-T(-a)-T(ß-a)

"    T(n -a)   (x- ty+t-"-1

„tí r(»+i)    (i-t)»+f>-»

(iv) Let a be a non-negative integer. If ß>a, then

d"
g(x,f.a,ß) = (-l)°-ßT(a+ l)-1— {(x - ty-i(l - t)"-?}

dt"

ros + i)
T(ß-a)-T(a+ 1)

/l - x\"   /x - tV-"      1

\1 - l)    \l - t)     "x~^

Proof. We shall prove (i). The proof of (ii), (iii), and (iv) is similar.

By the transformation u = x — v we have
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j    (« - fl"'"""1-(* - «)^-(l - uy-t-du

pz-t I V        \"~ß
=   (l-t)a^-J (X -  I - »)0-l.t,™-«-l.i 1-j        .¿»

oo /* x—t

=   2ZCn+ß-a-l,n(l -   t)"-^n-     I (* -  / -  r)í"l .»«+-—1 .rf»
n-0 •' 0

_ -     r(» + /3- a)-rC8)-r(«i + n-«)

~ ¿£ V(n + l)-T(ß - a)-T(m + n + ß - a)

■(1   -  /)"-"-"•(* - i)«H-»W-cr-l

We have

dm   1(X  -  /)"ri-"+0-«-l|

A» I    (1 - O""""    /
m ¿k dm~k   111

¿J       a* a—* l(i - /)"+^-a)

r(w + « + 0 - a)      1      /x - A»+«+0-«       « /     1 - t\k(X   -   tY+m+ß-a » / 1   —   ¿\A

r(n + 0 - a)       x - / \1 - tf k-o

T(m + n + ß- a)
=  (-1)»-(1 - x),

T(n + ß- a)

1      (x - /V+0-« 11      (x - t\

x - t\\ - t) (i -o
so that

dm   ^zdm  r-
- I    (u - t)m-"-1-(x - m)«-»-(1 - u)"-»du
dtmJt

/ »   r(n + |8 - «) • T(ß) T(m+n + ß-a)- Y(m + n - a)
= (-1)™- 2J-■-

¿To T(n+ l)-T(ß - a)-V(m+n + ß- a)-T(n + ß - a)

1 (x - /)»+*-«
(1 - *)r"

x - / (1 - *)»+<»+/»-«

riß)
= (-i)

/l - x\ "'       1

a)   \1 - //     x - /r(/3 - a)

"    r(w + m - a)   (x - tY+f>-a

„_„       Tin + 1)

By partial integration it follows now that
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/{  «—\     (a)     n+ai

0       V n=0 /

dm ( rx )
-1        (« - ¿)m-a-1-(* - «)^»-(l - «)«-í-á«Wí

dtm \Jt )

,      ., f^m   / A     (a)     „+a\

•if   (h - O"-*"1^* - «^-(l - «)<"-"■<*«} ¿i

= (-i)mr(w - a)-r(o + i)

•   f    (X-  «)<>-»■ (1   -  M)-"- i ¿¿,a)-/l<*«
•^ o v „=o /

= (-l)mT(m-a)T(a+l)-   f   (x - u)*-1 ■ ¿ s? • u • du
J 0 n-0

= (-1)--|ff->• r(a + 1) • r(m - a)• £ aT ■ s"**.
„-0

Q.E.D.
Proof of Theorem 2.1. We may suppose that 5 = 0, so that

Y,n°=0o-„")-xn+a = o(xa/(l -x)). If s„ = l,for « = 0, 1, 2, • • • , then for

any a> — 1, of = 1. By Lemma 1 and Lemma 2 follows now Theorem

2.1.

It is natural now to define the following methods of summability:

Definition. The sequence (s„) is summable (A, a) for some a > — 1,

if  the  power  series   2™-o sn-xn  is  convergent  for  0^x<l  and

lim*,! (1-x)- XX o o-i")xn = j.

From Theorem 2.1 follows:

Theorem 2.2. If the sequence (sn) is summable (A, a), then it is

summable (A, ß) for any ß greater than a.

Theorem 2.3. If the sequence (sn) is summable (C, ß) for some

ß > — 1, then it is summable (A, a) for any a > — 1.

Proof. If a=ß, then the theorem follows from the corresponding

theorem for Abel's summability. If a>ß, then (sn) is also summable

(C, a) and the theorem follows from the first part of the proof. If

a<ß, then by a well known theorem the sequence (of) is summable

(C, ß—a), and the theorem follows from the first part of the proof.



1952] ON A CONVERSE OF ABEL'S THEOREM 249

I have not yet found a sequence which is summable (.4, ß) and is

not summable (.4, a) if a<ß, but we have the following theorem:

Theorem 2.4. If for some a, a>—l, a^'èO, ra = 0, 1, 2, ■ • • ,

and isn) is summable iA, ß) for some ß > — 1, then (s„) is summable

iA, y) for any y > — 1.

Proof. Let 5 be equal to max (a, ß), then by a well known theorem

it follows that o-^'^O for w = 0, 1, 2, • • • . Since isn) is summable

iA, 5), it follows from Theorem H that ioH5)) is summable (C, 1),

so that isn) is summable (C, 5 + 1), and from Theorem (2.3) the proof

of this theorem follows.

As a corollary of Theorem 2.4 we have:

Corollary. If for some a, a> —1, oia)> —K, n = 0, 1, 2, • • • ,

and isn) is summable iA, ß) for some ß > — 1, then isn) is summable

iA, y) for any y > — 1.

Theorem 2.5 iHardy and Littlewood's theorem). Let a be some real

number such that a> — 1. If (j„) is summable Abel and o-J,a)> —K,

for n=0, 1,2, •••, then the sequence (sn) is summable (C, a + 1).

Proof. By the corollary of Theorem 2.4 it follows that (s„) is sum-

mable iA, a). By Theorem H we see that (o-J¿a)) is summable (C, 1),

so that (s„) is summable (C, a+1). Q.E.D.

3. Tauberian theorems for the iA, a) methods of summability.

Theorem  3.1.  If the sequence  (s„)   is  summable  A  and

limliminf   min   (oia) -a^)^0
XJl      m—»w     m£n^\'m

for some a, 0=a> — 1, then the sequence (5„) is summable (C, a).

In order to prove this theorem we shall need the following lemmas:

Lemma 1. If Nix), Mix) are non-negative integers and limIti (1 —x)

• Nix) =0, lim^ti (1— x)- Mix) = + oo, then for any a, 0^a> — 1,

(i) limIfl (1-*)•+!. 2Zn¿¡ Cn+a,„x» = 0,

(Ü)    Hm,,!  (1-X)°+1-  2Zñ-M(z)   Cn+a.nXn = 0,

(iii) limItl (1-*)•"• ES(I) Cn+.,„x» = l.

Proof. Since
1

n~a-Cn+a,n—*- for   » î   00,
r(a + 1)

we have
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N(x) M(x)

(I   -   X)<**-   YCn+a,n-X»   ÚA(l~   X)*»-    £«»
„_1 „=1

g B{(í - x)-N(x)}«+i

and (i) follows.

We shall write a =0-1 so that 1 ̂ /8>0. Now

oc 00

(1 - *)•"•    Z     Cn+a,n-x* =A-(l-xy-    £     na-xn
n=M(x) n~M(.x)

A-(l- xY- ¿

By the inequality nß~i = Ci(n — M)ß~1 = C2C„-M-ß+i,n-M for n> M

and Mß~1<C2-Ci-ß,o it follows that

oo 00

(1  -*)•«■       £        Cn+a,n-X»   £D-X"-(1-Xy-   T,.Cn-ß+l.n- X»
n—M(x) re=0

= D xM è Dtrull-x)

and (ii) follows.

By (i) and (ii), (iii) follows immediately.

Lemma 2. For any positive integers m, n such that n>m>2 and for

any positive x, such that m(l—x)>2, we have In (n/m) <(l/x1/2)n.

Proof. From w(l-x)>2 it follows that 0<x<l-2/w

<(l-l/w)2, so that 0<x1/2<l-l/m. Now l/x^Xl-l/m)-^!

+ l/mand (l/xli2)n>(l + l/m)n>n/m>ln (n/m). Q.E.D.

Lemma 3. 7/ OS a > — 1, 0^x<l, and M(x) is an integer such that

M(x) ■ (1 — x) > 2, and lim»»i (1 — x) ■ M(x) = + oo , then

lim (1   -   »)«+»■       £      (in— )Cn+a.n   x" = 0.

Proof. By Lemma 2 we have

°° n
(I-X)«*1-       X)        lu-Cn+a.n-X»

n=M(x) m

g(l- x)<"+1-¿Cn+<,,„-(x1'2)»

= 2«+1-(l - x1'2)^1-    £    C„+a,„-(x"2)\
„-Af(i)
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For0^x<l we have (l-x1/2) • (1 -x)-»>l/2 so that limIti (1-x1'2)

• Mix) = + oo and the proof follows by (ii) of Lemma 1.

Lemma 4. Let (sn) be a sequence of real numbers such that

limxti lim infm^oo minmg„gx.m {s„-i™}^0, then for any positive

constant c there exists a non-negative constant k(c) such that for any

positive integers m, n, m<n, we have

sn — sm> —(A In n/m+c).

Proof. If sn — sm> — c for any n>m, then A(c) = 0. If this does not

happen, then there exists a constant a = a(c), a>0, so that for any

positive integers m, n such that m>m0(c) and Í <n/m^l+2a, we

have sn — sm > — c.  Let r be a non-negative integer defined by m

• (l+a)r<n^m- (l+a)r+1, then

Sn   —  Sm   =    {sn  —  Sm.(l+a)'}   +   {Sm.(l+o)r  ~   Sm. (l+a)r_1 }   +  • • ■

+   |^m-(l+<i) Sm\

where sm.a+a)" stands for sim.{i+af). Let m be greater than (l+2a)

a-1,  then   [m- (l+a)"+1]/[m- (l+a)p] =T+2a,  and  from  the  in-

equality m-(l+a)r<n follows the inequality r + K(l/ln  (i+a))

•In in/m) + l, so that for m>max ((l + 2a)/a, m0) we have

(        c n       \
sn — sm > — (r + 1   c > —  <-—-In-\- c>

Un (1 + a)       m        )

and the lemma is true for «>w>max ((l+2a/a), m0). It is easy to

see that for a suitable change in the value of the constant c/ln (1+a)

the lemma will be true for any n>m.

Proof of Theorem 3.1. In the first part we shall show that the

sequence (o-^) is bounded, and in the second part that the same

sequence is convergent.

Let us suppose that (oia)) is not bounded, that is, we have

lim sup™.,« | o-k")| = + co. We cannot have lim»,..,,, <r^ = + oo or — oo

since then we shall have limx,i (1 — x) • ^T-o Sn-x"= + «> or — »,

so that (aia)) oscillates between + » and — ».

We shall write Si(ra) = maxrSno-^; i2(»)=maxrsn (— aTa)). It is easy

to see that for Si(n), s2(n) we may have either

(a) There exists an infinite sequence of positive integers n„ n,—* »,

such that Si(ny) ^ s2(nr) ;

or

(b) For any positive integers n greater than some no, si(n) <s2(n),

and there is no other possibility.
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Case (a). The functions Si(n), s2(n) are nondecreasing, so that by

(a) we have Si(n)—»oo for n—>». Let H>0, then there exist positive

integers N such that of =si(N) > 2H. N will be the smallest integer

with this property. Then N = N(H). For N we have of =si(iV) > 2H,

and for any integer p such that p<N we have Si(p) ^2H. If Tí is

great enough, then there exists an integer m, m>N, such that of

g (1/2)-of. M=M(H) will be the smallest of these integers m.

That is, of ^(l/2)-of, and for N<p<M, of > (1/2)-a*/?. We
shall choose x by x = x(H) = l-l/(M■ N)ll2<l. M, N->«> with

H—»cc, so that x—»1 with H—+&>. By Lemma 4 we have of— of

>-(¿-ln (Ar/A0 + 1) orof-of <,4-ln (M/N) + l. We also have

^'-4'^Sí' - (1/2) -of = (1/2) -of >i7, so that M/N>eW-»iA-K*
for ii—» oo. Now we have

/MY'2
(1) M-(l-x)=l — J    -+oo for #->• oo.

/ivy/*
(2) TV (1 - x) = Í — J   ->0 for H^> oo.

By (a) there exists an infinite sequence (ni) such that Si(ni) =s2(ni).

We may suppose that for n,, of = si(ni) and Si(«„ — 1) <of. We

also have lim»,« si(«„) = + oo. Let e„ be bounded and defined by

0<e,<si(nr)-si(n,-l). We shall define H, by H = (l/2)-{si(ni)

— €„}. Then for this sequence (Ni) we have H,—><x>, because Si(nr)

->oo, and o$>2Hr, af = 2HV for r<N,. By (a) and the definition

of N we have, for the sequence (Hi), | of | ?£of for r<N. Now

°° M fa)       „
I  =   (1   -   *)•    Z^n-X"   =   (1   -   X)a+1-   X)C„+a,„-0-„a   "X"

n=»0 n—0

[N-l M-l oo \

= (i - *)>+*• \Z+ H+ Z\ =ii + h + h-
\     0 N M J

For the sequence (Hi) we have

tf-i (Œ)    n

ii = (1 — x)a+1- X) Cn+a,n-a-„    -x
n=0

> -5i(A0-(l-s)«+i-¿C„+a,„-x»;
w«0

by Lemma 1 and (2) it follows that Ii= —b(H)-Si(n) where b(H) is

a function which has the limit zero for H—»oo. For any integer n

such that Nûn<M, we have of > (1/2) -Si(N), so that
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M-l

I2  =   (1   —   X)a+1- 2~2Cn+a,n-<rn     'X
n-JV

J M-l

>-5l(A)-(l   -   x)<"+1-  2~lCn+a.n-Xn
2 n=N

and by Lemma 1 it follows that I2=(i/2)-si(N). For any integer n

such that « = Af, we have cr^-a's'y -(A -In (n/M) + l). We also

have o&-</$.!>-(A-In (Af/(Af-l)) + l). From the inequality

<fâ-i>H, «t follows that </&>H-A -In (Jlf/(M-1)) > 1 if LTis large
enough. Now we have

00

It  =   (1  —   X)a+1- 2  Cn+a.n-O-n     'X
n=M

00

.. .     , ,     ^-\   _ (     (a) (a) («) >        n

=   (1   —   X)a+1- ¿j Cn+a.n- {(¡M    +<Tn       —  <TM   j • X

>(1 - *)-1-1-¿C.+...Y-4-ln-^Yíe"
n-Jtf \ M/

and by Lemma 3 and (2) we have 73>S(H), so that I = Ii+Ii+I3

—* » for H,—* », and the case (a) cannot happen.

Case (b). We have lim»« (1— x)- 2^1n=o ( — sn)-xn=—s. We shall

defineSnby Sn= —s„, and Si(n) =maxrg„5r; S2(n) = maxrg„ ( — Sr). It

is easy to see that Si(n) =s2(n), and S2(n) =Si(n), so that by (b) we

have for any integer n greater than n0, Si(n)>S2(n). Thus the case

(b) for the sequence (sn) is reduced, but for one reversed inequality,

to the case (a) for the sequence (Sn). As in the first part of the proof

it follows, by some trivial changes, that (b) is impossible.

It follows now that lim sup,,..« |oia)| =L< + », so that the se-

quence (oia)) is bounded. By Hardy and Littlewood's theorem it

follows that (sn) is summable (C, a + 1). By Theorem 2.3, (sn) is

summable (A, a), and the proof follows by Schmidt's theorem.

Theorem 3.2. // the sequence (sn) is summable (A, a) for some

a> — 1, and limxu lim infm_M minmgngx-m {o^ — a$} ^0 for some

ß^a, then (s„) is summable (C, ß).

Proof. By Theorem 2.1 the sequence (o-^) is summable Abel, and

the proof follows by Schmidt's theorem.

As a corollary of Theorems 3.1 and 3.2 we have the following

corollary :

Corollary. If (sn) is summable Abel and for some a> — 1, limxn

lim infm_M minmg„gxm {<r¡¿a> — a^} S;0, then (s„) is summable (C, a).
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Theorem 3.3. If (sn) is summable Abel and for some a, a> — 1, the

sequence (of) is bounded, then (s„) is summable (C, a+e) for any e>0.

Andersen proved that if (sn) is summable (C, ß) for some ß> — 1,

and of = 0(1) for some a> — 1, then (sn) is summable (C, a+e) for

any e>0. From Theorem 2.3 it follows that Andersen's theorem is

contained in Theorem 3.3.

In order to prove Theorem (3.3) we shall need the following lemma:

Lemma 5. If for some ß, ß = Q, the (C, ß) means of (sn) are bounded,

then limxu lim sup,„,M maxmS„Êxm |of — of | =0 for any a>ß.

Proof. We have

(a) _   (a) - ir      f1 fr <3) _ (c       r1
ö"n Gm       ~   \^n+a,n)      ' ¿^ *-■ a—ß+n—v—l,n—v ' Sp \^m+atm)

* ¿_^ La—ß+m—y— l,m—v' S y

»=0

=   (Cn+a,n)      ' JLl C a-ß+n-r-1 ,n—y ' Cß+y,y- (7,
r=w»-|-l

-1      m

- r \ r w>
t-'a—(S-j-fn—f— l,m—p |    K^ß+vjV ' (Ty

V^n+a.n)       '  {^n+a.n (-'m-fa.mj '\\^m+-a,m)

yf r w
* / . l'a—ftA-m—v— 1 .m—»* t-.fl-ly.y' O"»      .

Since |of | =A ior n = 0, I, 2, • ■ • , and from the identity

La+n—m—1,„—to—l'^ß+m+l.m—1 "T   '   '   *     1    U+0,lW."

=  La+/3+n+l,n        ^ a+ß+m+l,m

we have

'  0„ Cm     I    =   2a ■ (C„+or,„)       ' {C„-(-ain Cm+a,m j   "T A • (Cn+a,n)

" *\ Í        ¿_, C a-ß+n-r-1,n-y'Cß+y,y

¿^ La—ß+m—y— l,*n—r ' ¡--ß+v.v  \f

y=0 -1/

(+ for a-ß-l=Q,  - for 0>a-/3-l>-l)
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ä   ¿A ' \\>n+a,n)       ' |^n+a,n ^m+a,m\

i    ■"■ * \S-,n+a,n)       '^a+n—m— l,n—*n— 1

= 34- -Il -»"•w-°Cm+a,m(Cn+a,n)-1-i—j >

~T*  \Cn+a,n/       ' t^a+n—m—l.n—m.—1«

For X>1 and m<n^\-m we have now

i      (a) (a),

max       | <Jn      — Om    I
m<n^X.m

á-34-{l-     min     [««■»»-«■CBH.0l„-(C„+a.„)-1-X-«]}
m<n^X-m

+ A •       max       (Cn-i-a.n)       • C n+n—m— l,n—m—1.
m<n^X-m

Since lim,,..«, w~a- Cn+a,n = l/r(a+l), it follows that

hm sup    max     \o-n    — cm   \
m—»oo       m<n$X-m

/ TO IV
^34'(1- \~") + Ai- lim sup    max    (1-1

m->oo       m<n£\m  \ M W /

£3A-(l- X-") + ^i-(l - X-1)«,

therefore

v       v I     (a) (a> I        r,
hm hm sup    max     | <rn    — <rm   \ = 0.
Xil       m—»oo       m^n^X.ff,

Q.E.D.
Proof of Theorem 3.3. By the corollary of Theorem 2.4 it fol-

lows that the sequence (sn) is summable (A, a+e) for any e>0. Now

by Lemma 5 and Schmidt's theorem (s„) is summable (C, a+e) for

any e > 0.

4. A tauberien theorem for the Nörlund methods of summability.

Let (pn), » = 0, 1, 2, • • • , be a non-negative sequence such that

po>0, Pn = po+pi+P%+ • • • +£*->» and p„/P«-»0, then we shall

say that the sequence (s„) is summable (N, pn) if lim„^M (pn-s<>

+pn-i-Si+ • • ■ +po ■ Sn) ■ Pñ1 exists. We shall define Sn by S„ = (p„So

+ • • • +po-5n)-P„_1.

We shall prove the following tauberien theorem for the Nörlund

methods of summability:

Theorem 4.1. // the sequence (sn) is summable (N, pn) to s and
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limxu lim supm<00 maxmánáx-m |s„ — sm| =0, then limn-.=o sn = s.

Proof. By Lemma 4 of §3 it is easy to see that \sn\ ^A+B

•In (ra + 1), so that 2~ln=o sn-xn is convergent in the unit circle. By

Cauchy's criterion for the convergence of series and the fact that

limn-.« P„+i/P„ = l, it follows that the power series 2^1n-o Pn-xn

= (1—x) • y,r=n PnXn has the radius of convergence 1. It is easy to

see now that 2~ln-o Pn-Sn-xn is convergent in the unit circle, so that

in the unit circle we have 2 »=o sn • xn • 2~2n-o Pn • x" = ]C"-o Pn-Sn- x".

Now for 0 ̂  x < 1, we have

00

/  . *n ' à n ' X
00 *~*

(1   -   X) ■ 2Z Sn ■ X" = —-
00

n=0 ^^

¿P.'ï»
n-0

It is easy to see that

00

/   . -Tn ' O n ' X

n=0

hm —■- = s

2JP»x"
n=0

so that (sn) is summable Abel and the proof follows from Schmidt's

theorem.

Let A be some non-negative integer, and (h„l)) will be the Holder

means of order A of the sequence (sn). It would be interesting to note

that by using Theorem 2.1 for a = 0, ß — l A times it follows that if

(sn) is summable Abel, then limin (1— x) • 2~2ñ=o A*)-xn = s. From

Schmidt's theorem it follows that Abel's summability of (sn) and

limxu lim infmn.«, minmg„áx-m (h£> — h%>) è0 are sufficient for the

(H, k) summability of (s„).
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