ON A CONVERSE OF ABEL’S THEOREM
AMNON AMIR (JAKIMOVSKI)

1. Introduction. Itis known thatif the real power series Y m o2, x"
is of radius 1 and Z:-o a, is summable (C, &), a> —1, to s, then
limgy Yo @n-x*=s. This theorem is generalized and stated for
the (A4, &) methods of summability, which are defined in this paper.

The following general converse of Abel’s theorem was given by
R. Schmidt: If D> =, a. is summable Abel and

lim lim inf min (s,—sm) 20,

A1 noo mSns\'m
then (s.) is convergent. A converse of the generalization of Abel’s
theorem is proved here. This theorem contains Schmidt’s theorem as
a special case.

Hardy and Littlewood proved that if the sequence (s,) is sum-
mable Abel and for some a, a> —1, the (C, a) means of (s,) are
non-negative, then (s,) is summable (C, a41). We shall refer in
this paper to the special case @ =0 of this theorem as Theorem H.
We shall see that Hardy and Littlewood’s theorem follows from
Theorem H and some general theorems for the (4, o) methods of
summability. If we suppose in Hardy and Littlewood’s theorem the
two-sided boundedness of the (C, ) means, then we have more in-
formation about the (C, ) means.

We shall see that a tauberien theorem for the Norlund methods of
summability follows from Schmidt’s theorem.

The author of this paper would like to remark that the results of
the original manuscript were less general than those given here. The
results of the present paper are an outgrowth of modifications sug-
gested by the referee of the original manuscript.

2. The (4, ) methods of summability. Let (s,), =0, 1, 2, - - -,
be an infinite sequence of real numbers. {o} will be the (C, @)
means, a> —1, of the sequence (s,). That is,

® (@) —1
On = $ny On = (Cn+a,n) . Z Cn—l+a—1.n—l'sl’
=0

a o I'(n+ a+1)
Citan=(14+—)- -1+ —)= ) —1.
e ( + 1) ( + n> frt )Tt &7

We shall define s& by
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(a) (a)
S = C,.+,,,,.'an .

It is easy to see that if Z.:-O sa-x™ is convergent for 0 =x <1, then

(1 — %) Esn-x“ =(1- x)(““)- }:s,(.a)-x”, a>—1,
n=0 n=0
We shall prove the following theorem:

THEOREM 2.1. If for somea,a> —1,limzy (1—%) - Do 0@

then for any 8, B>a, limg; (1—x)- Z:=o o® . xn=ys.

-x"=s,

The special case @ =0 of Theorem (2.1) is used and proved, with-
out mentioning it explicitly, in proving Hardy and Littlewood’s
theorem, mentioned in the introduction. The proof of this special
case of Theorem (2.1) is given in Titchmarsh’s The theory of functions,
p. 242, example 8.

For the proof of Theorem (2.1) we shall need the following lemmas:

LeMMma 1. Let f(x), ¢(x) be real integrable functions defined for
0=x<1,¢(x)>0. Let g(x, t) be a real integrable function with a constant
sign, defined for 0=St<x<1. If f(x) =o{¢(x)}, lim.y [ip(¢)-g(x, t)dt
=+ or — oo, then [3f(t)-g(x, t)dt=0f[20(t) g(x, t)dt} for x T 1.

Proor. We may suppose that g(x, ¢) is positive. For any €, ¢>0,
there exists a number xy, 0 Sx0<1, so that for any ¢, x¢<t<1, we
have ]f(t)] <e ¢(). Now for xpSx <1

j;zf(t)-g(x, 1)-dt = {fozo +fz:}f(t).g(x, £)-dt.

Therefore

[ 108, M} <| [0 g t)-dt{ + 150 gt -
0 0 zy

<d+e f’¢(z>-g<x, 0)-d.
1)

Since [ip(t)-g(x, t)-dt—w for x 11, there exists a number x,
x9=x,<1, so that for any x, x;Sx <1, 4 Se- [5p(t) - g(x, t) - dt, and we
have

fzf(t)-g(x, t)'dtl < 2 fzq)(t)'g(x, t)-dt form = x < 1.

Q.E.D.
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LEMMA 2. Let o and B be real numbers such that B>a> —1. If
o 0 0. xn 45 convergent in the unit circle, then there exists a real non-

negative functwn g(x, t:a, B) defined for 0 <t <x <1, such that we have
Z,,_o 0@ . xntb = [Tg(x, tiar, B) Do 0@ trFa.dt; g(x t:a, B) 1s given

(1) Let o be a non-integral real number greater than —1. m is an
integer defined by m>a>m—1. If B is any real number such that
B>a, B3>0, then

g(x, t:a, 8) = (=1)™-B-T'(m — a)™-T(a + 1)

dm z
ey ) (u — t)ymot(x — w)f1- (1 — u)*F-du
re+1) 1—x\™
=Hﬁ—@TW—a)Hw+D(Lﬁ)
1 I'(n+m—a) [x — t\rHF=
-t am0 T(n+1) (1 —t) '

(ii) Let a be a real number such that 0>a> —1. If =0, then
g(x, e, B) = T(—a)™ " T(a+ 1)71- (1 — x)*-(x — £)~="

(iii) Let o be a real number such that 0>a> —1. If for 8 we have
0>B>a> —1, then

g(x, tia, B) = T(@+ 1)1 T(—a)?
'ifz(u =7l (x — u)f-(1 — u)ob-du
dxJ,

] r@+ 1)
Ila+ 1) -T(=a) T — o)
o T(n—a) (x—fro-=t

2

=0 '(n4+1) (1 —g)rtbe

(iv) Let a be a non-negative integer. If B>, then

a

8@ £ B) = (~D*p-Ta+ D — {(x—t)ﬂ-l (1 — t)=*}

r@e+1) (1 - x)" (x - t)ﬂ-« 1
M- T+ \1—2¢t/ \1-¢ x— 1
Proor. We shall prove (i). The proof of (ii), (iii), and (iv) is similar.
By the transformation »=x—v we have
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fx(u —f)mel (g — u)ft (1 — u)oF-du

z—t ? a—f
=1 —¢)b f (x —t — v)""l'v’”'“"(l - ) -dy
0 1-¢

© —t
= 2 Coppoatn- (1 — f)b-n f (x =t — g)ftymn—a=i.gy
0

n=0

e T#r+B—0a)T@)T(m+n— a)

amo T(n+ 1) T@—a) T(m+n+p8—a)
(1 —_ t)a—ﬂ—n.(x — t)m+n+ﬁ—a—l‘

We have

an {(x _— t)m+n+ﬁ—¢—1}

dtm (1 — t)n+ﬁ—a
m dk dm—k 1

- Cm' —_—— — ¢ m+n+f—a—14 | - }
D () J dtm_,,{(l v

_IMmtnth—o) 1 .(x—t>n+m+s—a 'icm,k‘(_l—t)k
'(n+8—0) x— ¢t \1 —¢ k=0 x — ¢

JIm+ntp—a)

= (=1 T(n+ B8 — a) Q1 =xm
1 x — f\nth—a 1
'x—t.(l—t) U=y
so that
ﬂ ’(u — f)ymel.(x — 4)b~1.(1 — u)oB.du
atmJ,
Ly 3 DB @) TE) Tt nt =) T+ 5= )
= D(n+1) T~ ) Tlm+n+B~a)T(n+B8—a)
1 (x — t)rtp-a
: (A= m—
x —t (1 — f)ntmtpa

ING)) 1—-a2\" 1
=D 'I‘(B—a).(l—-t) X1

R I‘(n+m—a).(x—t)"+""“
,.Z_;, T(n+ 1) 1—¢ '

By partial integration it follows now that
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TN (@ nte
Z:an -4
0 n=0

dt"‘{f (w — tymot.(x — u)f1-(1 — y)=>. du}d

zdnm N (a) nta
e
(=1 - Eo

. {ftz(u —fmel(x — u)ft (1 — u)"‘ﬂ'du}dt

=(=1)"T(m—a)T(a+1)

f (x — w)p1-(1 — w)ab. {:} @, "}du

= (=m0 =) Tt - [ (@ = ot

n=0

= (=1)mB1T(a+1)Tm—a) 3 ol -2,
n=0

Q.E.D.

Proor oF THEOREM 2.1. We may suppose that s= 0, so that
Y or oD grta=p(xe/(1—2%)). If s,=1, for n=0, 1, 2, , then for
anya> —1,0 =1. By Lemma 1 and Lemma 2 follows now Theorem
2.1.

It is natural now to define the following methods of summability:

DerFINITION. The sequence (s,) is summable (4, &) for somea> —1,
if the power series Y o, s.-x" is convergent for 0<x<1 and
limgy (1—%)- Yoo 0@ xn=s.

From Theorem 2.1 follows:

THEOREM 2.2. If the sequence (s.) s summable (A, a), then it is
summable (A, B) for any B greater than o.

THEOREM 2.3. If the sequence (s.) is summable (C, B) for some
B> —1, then it is summable (4, ) for any a> —1.

Proor. If o=, then the theorem follows from the corresponding
theorem for Abel’s summability. If >, then (s,) is also summable
(C, @) and the theorem follows from the first part of the proof. If
a <B, then by a well known theorem the sequence (¢'?) is summable
(C, B—a), and the theorem follows from the first part of the proof.



1952) ON A CONVERSE OF ABEL'S THEOREM 249

I have not yet found a sequence which is summable (4, 8) and is
not summable (4, ) if a<B, but we have the following theorem:

THEOREM 2.4. If for some a, o> —1, 6@ =0, n=0, 1, 2, - - -,
and (s.) is summable (A, B) for some 8> —1, then (s,) is summable
(4, v) for any v> —1.

ProoF. Let & be equal to max (a, B), then by a well known theorem
it follows that ¢ =0 for n=0, 1, 2, - - - . Since (s,) is summable
(4, 9), it follows from Theorem H that (¢?) is summable (C, 1),
so that (s,) is summable (C, §+1), and from Theorem (2.3) the proof
of this theorem follows.

As a corollary of Theorem 2.4 we have:

COROLLARY. If for some a, a>—1, ¢®@> K, n=0,1, 2, - - -,
and (s.) 1s summable (A, B) for some > —1, then (s,) is summable
(4, v) for any v> —1.

THEOREM 2.5 (Hardy and Littlewood’s theorem). Let a be some real
number such that a> —1. If (s.) s summable Abel and o> —K,
forn=0,1,2, - - - then the sequence (s,) is summable (C, a+1).

Proor. By the corollary of Theorem 2.4 it follows that (s,) is sum-
mable (4, @). By Theorem H we see that (¢/®) is summable (C, 1),
so that (s.) is summable (C, a+1). Q.E.D.

3. Tauberian theorems for the (4, o) methods of summability.
THEOREM 3.1. If the sequence (s,) 1s summable A and

lim lim inf min (¢ —c@)20
Al m—o mSnsA'm

for some o, 02> —1, then the sequence (s,) is summable (C, o).
In order to prove this theorem we shall need the following lemmas:
LeMMA 1. If N(x), M(x) are non-negative integers and lim .y (1 —x)
“N(x) =0, limzy (1—%)- M(x) =+ «, then for any o, 02a> —1,
(i) limg (1=x)*+1- 3V Copan 2 =0,
(ii) limzyn (1 —%)**1 3°% 4y Coya,n™ =0,
(iii) limgy (1—x)«*t. 3 M@ Crran xm=1.

Proor. Since
1

—_— for nt o,
e+ 1)

n-e Cn+a,'u

we have
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- N@) N(z)
(1 — ). 3 Cogan-a® S A-(1 — x)e*1. 3 pe
ne=l ne=l

< B-{(l - x).N(x)}a+l

and (i) follows.
We shall write a=f—1 so that 1=28>0. Now

-] ©
(1 =2 > Cppan-a® SA-(1— 2 D, nez
n=M (z) n=M (z)
L] xn

=4-(1- 2P Y

n=M nl_p

By the inequality n#'<Ci- (n— M) Co Co—m—pt1,n—n for n>M
and MF-1<C,;- Ci_p,0 it follows that

(1 = x)=tt. Z Crtam 5" < D-xM-(1 — x)8- Z.Cn—a+1.n'x"

n=M(z) n=0
=D-gM g DM -2

and (ii) follows.
By (i) and (ii), (iii) follows immediately.

LEMMA 2. For any positive integers m, n such that n>m>2 and for
any positive x, such that m-(1—x)>2, we have In (n/m) <(1/xY%)".

ProoF. From m-(1—x)>2 it follows that 0<x<1—-2/m
<(1—1/m)?, so that 0<xV2<1—1/m. Now 1/xV/2>(1—-1/m)~1>1
+1/m and (1/xV2)*»> {1 +1/m)*>n/m>In (n/m). Q.E.D.

LEMMA 3. If 02a> —1, 0=x <1, and M(x) is an integer such that
M@x)-(1—x)>2, and lim,y (1 —x)- M(x) =+ o, then

d n
lim (1 - x)“‘“- Z (ln —)‘Cmt—a.n’x" = 0.

zt1 n=M (2) m

Proor. By Lemma 2 we have

L4

n
(1= 22 > In —-Criam 2"
n=M (z) m

< (1 — 2)2+. D Cryayn (212"

n=M

0
< 2ot (1 — gl/2)atl. 3 Corpn- (2120,
n=M(z)
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For 0 =x <1 we have (1—x%2)-(1—x)~1>1/2 so that lim,» (1 —xV2)
- M(x) =+ » and the proof follows by (ii) of Lemma 1.

LEMMA 4. Let (s.) be a sequence of real numbers such that
limy,; lim inf,.. ming<n<iom {s,,—-s,,,} =0, then for any positive
constant ¢ there exists a mon-negative constant k(c) such that for any
positive integers m, n, m <n, we have

Sn—Sm> —(k-In n/m+tc).

Proov. If s,—s,> —c for any n>m, then k(c)=0. If this does not
happen, then there exists a constant a =a(c), a>0, so that for any
positive integers m, # such that m>m(c) and 1 <n/m=142a, we
have s,—s,> —c. Let r be a non-negative integer defined by m
-(14a) <n=m-(1+4a)t!, then

Sn = Sm = {Sn - sm'(l+a)'} + {sm-(l+a)' - 5m~(l+a)'_l} + ..
+ {sm-(l+a) - sm}

where Sm.q+a? stands for Sp,.a+a?). Let m be greater than (1+42a)
-a~', then [m-(1+a)?+!]/[m-(1+a)?]<1+42a, and from the in-
equality m-(14+a)"<n follows the inequality r+1<(1/In (1+4a))
-In (n/m)+1, so that for m >max ((1+2a)/a, my) we have

c n
Sn = Sm > r+1-¢c> {ln(1+a) lnm-l-c}
and the lemma is true for n>m>max ((142a/a), m,). It is easy to
see that for a suitable change in the value of the constant ¢/In (1+a)
the lemma will be true for any n>m.

PRrOOF oF THEOREM 3.1. In the first part we shall show that the
sequence (6{?) is bounded, and in the second part that the same
sequence is convergent.

Let us suppose that (¢') is not bounded, that is, we have
lim supm-« [a,(,:')] =+ . We cannot have limp., 0=+ o or — o
since then we shall have lim,,; (1—x)- Z:-o Sp'X"=+ 0 or — ©,
so that (¢) oscillates between + » and — .

We shall write si(z) =max,<, 0; sy(n) =max,<, (=0, It is easy
to see that for s1(n), s:(#) we may have either

(a) There exists an infinite sequence of positive integers n,, #,— ©,
such that s;(n,) =5:(n,);
or

(b) For any positive integers n greater than some n,, s1(n) <ss(n),
and there is no other possibility.
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Case (a). The functions si(n), s2(n) are nondecreasing, so that by
(a) we have s;(n)— o for n— . Let H>0, then there exist positive
integers N such that ¢ =s5,(V) > 2H. N will be the smallest integer
with this property. Then N = N(H). For N we have ¢§) = 5;(N) > 2H,
and for any integer p such that p <N we have s:(p)<2H. If H is
great enough, then there exists an integer m, m> N, such that ¢
=(1/2)-6§). M=M(H) will be the smallest of these integers m.
That is, o <(1/2) -6\, and for N<p< M, d®>(1/2)-¢. We
shall choose x by x=x(H)=1-1/(M-N)V2<1. M, N—« with
H— o, so that x—1 with H— . By Lemma 4 we have ¢ —¢®
>—(A-In (M/N)+1) or ¢ -6 <A-In (M/N)+1. We also have
c@—0P 20— (1/2)-0@=(1/2) -0 > H, sothat M/N > ¢EB-D/4A_ o
for H— . Now we have

M 1/2
(1) M~(1-—-x)=<-]§7—> — for H— .

(2) N-(1-—2)= (%)1/2-—>0 for H— o,

By (a) there exists an infinite sequence (n,) such that si(n,) = s:(n.).
We may suppose that for ,, ()—sl(n,) and si(n,—1) <o ("‘). We
also have lim,., si(n,)=+ «. Let ¢, be bounded and deﬁned by
0<e <si(n,) —si(m,—1). We shall define H, by H,=(1/2)-{s:i(n,)
—e,.} Then for this sequence (N,) we have H,— «, because s;(n,)
— o, and ¢§? >2H,, ¢ <2H, for r<N,. By (a) and the definition
of N we have, for the sequence (H,), |a(°‘)| <o for r <N. Now

() n

I=(1—u2)- Zs,, xr = (1 — x)att. Zc"+a,,.-an %

n=0

=(1—x)"+1~{f;+ g+ ZMZ} =L+ I+ I,

For the sequence (H,) we have

N—1
(a)
L= (1 — %)Y Crram-0n %

n=0
N-1

> —5i(N)-(1 = 2)2+ Y Crparn &%

n=0

by Lemma 1 and (2) it follows that I; = —8(H) - s;(n) where §(H) is
a function which has the limit zero for H—«. For any integer =
such that N <z <M, we have ¢ > (1/2) -5:(NN), so that
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M-1 (@) »
In=(1— 2)2. Y Cppain'0n %
n=N
1 M—1
> —si(W)-(1 = )< 2 Cotanm- 2
n=N

and by Lemma 1 it follows that I,=2(1/2)-s;(N). For any integer n
such that z= M, we have ¢ —o® > —(4-In (n/M)+1). We also
have ¢ —o{f ,>— (4 In (M/(M—1))+1). From the inequality
o > H, it follows that ¢ > H—A -In (M/(M—1))>1 if H is large
enough. Now we have

Ii=1= 23 Copanon o

n=M

0
(a) (a) (a)
= (1 — x)otl. ZC,.+,,,,,,- {cn; + a,.a — o }-xn
=M

> (1 — x)ot. ) C,,+a,,,-(— A-In f—)x"
n=M M

and by Lemma 3 and (2) we have I;>6(H), so that I=0L+1,+1;

— o for H,— x, and the case (a) cannot happen.

Case (b). We have limay; (1—%)- D oo (—s,)-2"=—s. We shall
define S, by S.= —s5, and Si(#) =max,<, S;; Sa(#) =max,<, (—S,). It
is easy to see that Si(n) =sy(n), and S:(n) =s:1(n), so that by (b) we
have for any integer n greater than #n,, Si(z)>S:(n). Thus the case
(b) for the sequence (s,) is reduced, but for one reversed inequality,
to the case (a) for the sequence (S,). As in the first part of the proof
it follows, by some trivial changes, that (b) is impossible.

It follows now that lim sup... |¢©®| =L <+ », so that the se-
quence (¢?) is bounded. By Hardy and Littlewood’s theorem it
follows that (s.) is summable (C, a+1). By Theorem 2.3, (s,) is
summable (4, &), and the proof follows by Schmidt’s theorem.

THEOREM 3.2. If the sequence (s,) is summable (A, a) for some
a>—1, and limy; lim inf,. Ming<a<yom {a,‘f’—aﬁ)} =0 for some
B=a, then (s.) is summable (C, B).

Proor. By Theorem 2.1 the sequence (a,(f,)) is summable Abel, and
the proof follows by Schmidt’s theorem.

As a corollary of Theorems 3.1 and 3.2 we have the following
corollary:

COROLLARY. If (s.) 25 summable Abel and for some a> —1, limy,;
lim infy . Milmgagr -m {af,“)——of,‘,")} =0, then (s,) is summable (C, o).
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THEOREM 3.3. If (s,) s summable Abel and for some o, o> —1, the
sequence (6'®) is bounded, then (s,) is summable (C, a+€) for any €>0.

Andersen proved that if (s,) is summable (C, 8) for some 8> —1,
and ¢ =0(1) for some a> —1, then (s,) is summable (C, a+e€) for
any €>0. From Theorem 2.3 it follows that Andersen’s theorem is
contained in Theorem 3.3.

In order to prove Theorem (3.3) we shall need the following lemma:

LeEMMA 5. If for some 8, B=0, the (C, B) means of (s.) are bounded,
then limy,1 lim SUPm -+ MAXm<ng) -m las,"" —cﬁ,";‘)[ =0 for any a>p.

Proor. We have

(a) (@ —1 ® —1
On — Om = (Cn+a,n) . an—ﬁ+n—v—l,n-v‘sv - (Cm+a.m)

v=(

m
()]
. Z Ca—ﬂ+m-v—l.m—r'sv

=0

-1 ¢ ®
= (Cn+a,n) . Z Ca—ﬂ+n—r—l.n—-v'cﬁ+v,r' gy

r=m+1

+ (Cn+a.n)—l' Z {Ca—ﬁ+n—v—1,n—w

r=0

®)
- Ca—ﬂ+m—v—l,m—r } . CB+V-V ‘O

- (Cn-l-a,n)—l' {Cn+a,n - Cm+a,m} * (Cm+az,m)_.l

- ®
. Z Ca-ﬁ-}-m—v—l.m—v . Cﬂ+v,r 0y .

»=0
Since |0®| <4 for n=0, 1, 2, - - -, and from the identity
Cax+n—m—l,n——m—1'C6+m+l.m—l + st + Ca+0.0 Cﬂ-f-n.n

= Ca+ﬂ+n+l n Ca+ﬁ+rn+l ,m

we have

| O’,(.a) - 0’:»“) § 24 ‘(Cn+a.n)_l' {Cn+a.n - Cm+¢-m} + 4 '(C""'a'")—l

. {i' [ Z Ca—ﬂ+n-—v—l,n—v‘cﬁ+v,v

v=0

- E Ca—ﬂ-{-m—r—l ,m—p" Cﬂ+v.r:|}

va=(

(+ for a—B—-120, — for 0>a—B—-1>—1)



1952] ON A CONVERSE OF ABEL'S THEOREM 255

é 34- (Cn-}-a.n)_l : {Cn+a.n - Cm+a,m}
+ 4- (Cn+a.n)—l ’C.¢+n-m—1.n—m—l

m a
= 3A . {1 hand na'm—a'c'n.’-a'm' (Cn+a,n)_l'('—) }
n

+ (Cn+a,n)—1 : Ca+n—m-—l.n—m,4—-1~

For A>1 and m <n=<\-m we have now

(a) (@)
max On — Om
m<nSN.-m

<34-{1 — min  [n*m 2 Crraim Crran)™t-N¢]}

m<ns\.m

+ A * max (Cn+a.n)-l 'Ca+n—m—1,n—m—lo
m<nS\.-m

Since liMp.w #7% Caya.n=1/T'(a+1), it follows that

. (@) (a)
limsup max |[o, — om
m—w m<nsSN.-m

m 1\«
S<34-(1—-X%+4+ 4, limsup max (1 -—— —)
m—o  m<nSA.m n n
S34-(1 = N9 4+ 4;-(1 — N e,
therefore
. . (@) (@)
lim limsup max |6, — om | = 0.
A1 m— o mEnsSA.m
Q.E.D.

Proor oF THEOREM 3.3. By the corollary of Theorem 2.4 it fol-
lows that the sequence (s,) is summable (4, a+¢) for any ¢>0. Now
by Lemma 5 and Schmidt's theorem (s,) is summable (C, a+¢€) for
any €>0.

4. A tauberien theorem for the Norlund methods of summapbility.
Let (pa), n=0, 1, 2, - - -, be a non-negative sequence such that
20>0, Po=po+p1+pe+ - - - +p—» and p,./P,—0, then we shall
say that the sequence (s,) is summable (N, p,) if limu., (Pa:So
4 pa1-S1F © - - +pPo-sa)- Pyl exists. We shall define S, by S, = (pa- S0
+ ... +po.$“).P;l_

We shall prove the following tauberien theorem for the Norlund
methods of summability:

THEOREM 4.1. If the sequence (s,) is summable (N, p,) to s and
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limy, 1 lim supm.e MaXmsngh -m Isn—s,,.| =0, then limy . Sa=s.

Proor. By Lemma 4 of §3 it is easy to see that |s,.| <A+B
-In (n+1), so that > =, s.-x" is convergent in the unit circle. By
Cauchy’s criterion for the convergence of series and the fact that
limg.w Pay1/P.=1, it follows that the power series Z,:-o Pn-x®
=(1—x)- D= P,-x" has the radius of convergence 1. It is easy to
see now that Y ., P,-S.-x" is convergent in the unit circle, so that
in the unit circle we have D o Sa %" D mog Pn-X"= D meg Pn-Sp-x™.
Now for 0=x<1, we have

. > Pp-Spx
(1= ) 2 s =
e Z P, x»
ne=(
It is easy to see that
Z P, S, x"
Hm n=0 =5
z+1 hd
Z P,z

n=0

so that (s,) is summable Abel and the proof follows from Schmidt’s
theorem.

Let k£ be some non-negative integer, and (h?) will be the Hélder
means of order k of the sequence (s,). It would be interesting to note
that by using Theorem 2.1 for =0, 8=1 & times it follows that if
(sa) is summable Abel, then lim,y (1—x)- D =, A®.x*=5. From
Schmidt’s theorem it follows that Abel's summability of (s,) and
limyy lim infp. Milmgasam (AP —2P)=0 are sufficient for the
(H, k) summability of (s,).
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