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1. Introduction. If A and B are arbitrary topological spaces, we

denote by BA the compact-open topologized space of continuous

functions on A into B. This topology is defined by taking as a sub-

base the collection of sets

(K,W) = {f\fEB*,f(K)EW},

for K a compact subset of A and W an open subset of B [2]1.

Now let X and Y be Hausdorff spaces, and let Z be an arbitrary

topological space. Let XX Y be the topological product of X and Y.

We shall be concerned with the compact-open topologized spaces

Zxxr, Zx, and (ZX)Y. R. H. Fox [2] has related these spaces, taking

Zx as compact-open topologized, but not considering topologies on

the more complex spaces. Our basic result is the following theorem,

which, with its corollary, adds significant conclusions to the results

of Fox.

(1.1) Theorem. For fEZXXY, define o(f): Y->ZX by

(1.2) vif)(y)(x) = fix, y) xEX,yEY.

Then a is a homeomorphism of ZXXY into iZx)Y.

We defer the proof of (1.1) until §§2 and 3. In the meantime we

state and prove a corollary which will be useful in the sequel.

(1.3) Corollary. // either (a) X and Y are both locally separable,

or (b) X is regular and locally compact; then

a:   ZXXY-*iZx)Y

is a homeomorphism onto.

According to the theorem, we need only show that a is onto. But

by a result of Fox [2], (1.2) (essentially) defines a transformation

of (Zx)r into ZXXY if either (a) or (b) holds. From this the required

condition is obvious.

2. An important lemma. The following lemma, which is of some

interest in itself, is essential to our proof (§3) of the continuity of a.
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(2.1) Lemma. Let A be a Hausdorff space, and let {U} be a sub-

base for the topology on B. Then the collection of sets (K, U), for K a

compact subset of A and U£ { U}, is a sub-base for the compact-open

topology on BA.

Proof. It is plainly enough to show that if K is a compact subset

of A and W is an open subset of B, and if f£(K, W), then there exist

compact subsets Ku • • • , Km of A, and sets Ui, • • ■ , Um£{ U},

such that

m

(2.2) /en (Ri, Ui) c (k, w).
i=i

Since W is open in B, we can write

w= u |~nVl,

where each U?E{U}. For each xEK, f(x) is in some flSi^.

which we denote by HSi^*. Since / is continuous, each x has a

neighborhood Vq in2 K such that

f(vl) c n ut
i-l

As a compact Hausdorff space, K is regular, so that each x has a

neighborhood Vx in K, whose closure in K, Kx, is contained in V0X.

The collection {F^xE-rí} is an open covering of the compact

space K, and hence has a finite subcovering {V,\j = l, • ■ • , k}. De-

note the Fq, ftiliUf, and Kx corresponding to V¡ by V'0, {\1LiU{, and

Kj, respectively.

Now the sets Kj, as closed subsets of compact set K, are compact.

Moreover,

ÂKÙCKvhECiui, y-i,...,*.
i-l

Hence,

(2.3) /enTn (**£$!•
í-1 Lt=i J

Suppose g is in the set on the right-hand side of (2.3). If xEK, then

2 A neighborhood of x in K is a set containing x, and open as a subset of the sub-

space K.
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x is in some V¡, and hence is in Kj. Therefore, g(x)E\r\V-iU{, so that

gix)EW. Thus gEiK, W), so that

(2.4) n in (*í. u\)\eík,w).
j_i Li-i J

Together, (2.3) and (2.4) show that (2.2) is satisfied, so the lemma

is proved.

3. Proof of (1.1). Fox [2] shows without restriction that for each

/, a(f) E(ZX)Y. That a carries ZxxY onto o(ZXXY) in a one-one fashion

is obvious. Hence it remains to prove that <r is continuous, and that

o--1 is continuous on a(ZXXY).

Since F is a Hausdorff space, and since the sets (K, W), lor K a

compact subset of X and W an open subset of Z, form a sub-base for

Zx, it follows from (2.1) that the subsets (L, (K, W)) of (ZX)Y form

a sub-base for this space, where K runs through the compact subsets

of X, L runs through the compact subsets of Y, and W runs through

the open subsets of Z. It is plain that

a~\L, (K, W)) = (KXL, W).

Now KXL, as the topological product of compact sets, is compact,

so (KXL, W) is open. It follows easily that the inverse under a of

any open subset of (ZX)Y is open, so a is continuous.

(Note: In the proof that a is continuous, we have used the hy-

pothesis that F be a Hausdorff space, but not the condition that X

be a Hausdorff space.)

It remains to be shown that o--1 is continuous on <r(ZXXY). For this,

it will be sufficient to prove that if / is a compact subset of XX F,

if W is an open subset of Z, and if fEa(J, W), then there exist com-

pact subsets jSTi, • • • , Kn of X, and compact subsets Li, • • • , Ln of

Y, such that

(3.1) / E <r(ZXXY) H J" n  (Li, (Ki, W))j C o-(J, W).

For then <r(J, W) must be open in o(ZXXY), as required.

hetf=o(fo), where foE(J, W). Let Jx and Jy be the projections of

J in X and Y, respectively. For (x, y)EJ, pick neighborhoods Uq"

of x in Jx and Vj¡'v of y in Jy, such that

x.v x.w

fo(Uo    XVo  )EW.

This is possible since/0 is continuous. As in the proof of (2.1), pick
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neighborhoods Ux,v of x in Jx and Vx,v of y in Jy, such that the

closure Kx-y of Ux-y in Jx is contained in US'", and the closure Lx-V

of Vx-y in Jy is contained in V¡¡'".

The collection {( Ux,yX Vx'y)C\J \ (x, y) £J} is an open covering of

the compact space J, and hence has a finite subcovering {(U'X V')

ÍM\ i=l, ■ • - ,n}. Denote the U¡,y and the Kx-Vcorresponding to Z7*

by Ul and Kit respectively, and the Vo" and Lx,v corresponding to

Vi by F0' and L,-.
The Ki and P;, as closed subsets of compact sets, are themselves

compact. Moreover,

f(Li)(Ki) = fo(Ki X Li) E MUÍ X Vl) C W,

for t=l, • • • , n. Hence

(3.2) f £'(Z***) r\\ i) (Li,(Ki,W))

Suppose g is in the set on the right side of (3.2). Let g=<r(go),

where go£ZXxr. Then

go(Ki X Li) = g(Li)(Ki) EW, i = 1, • • • , ».

If (x, y)£J, then (x, y) is in some L^X F', and hence is in KiXLi.

Hence go£(J, W), so gG<r(/, W). Thus,

(3.3) o-(ZX*v) r\ I" n (¿*, (^.-, ÍF))1 C «r(7, WO-

By (3.2) and (3.3), (3.1) is satisfied, as required.

4. Notation. If A and B are topological spaces, and Ai, ■ • • , A„

are subsets of A, while Pi, • • • , Bn are subsets of B, then we shall

denote by BA{Ai, Bi; • ■ ■ ; An, Bn} the subspace of BA consisting of

functions / with

f(Ai) EBi, i = 1, • • • , n.

Ii bo is any point, then the same symbol bo will be used to denote both

the set whose only member is bo, and any constantly èo-valued func-

tion.

If B is any space (possibly a function space), and b0£B, then

Hm(B, bo) denotes the mth homotopy group of B at base-point b0.

If P0 is a subset of B with b0£Bo, then IIm(P, B0, b0) is the mth rela-

tive homotopy group of B relative to B0 at base-point b0 [l].

If there exists a homomorphism of the group G onto the subgroup

•
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H, which is the identity over H, and whose kernel is N, then G is

called a split extension of N by H. Then the structure of G is de-

termined by the structures of TV and H and the commutators [«, A]

for nEN, hEH. If H is a normal subgroup, then G is the direct sum

N+H[\].
In the following sections, / will denote the closed unit interval, S

the circle, 5° will be a pair of points, Sr the r-sphere (r>0), and sT

will be a point of Sr (r^O). F° will denote a single point, and TT

will be the r-fold topological product of 1-spheres (r>0).

5. Torus homotopy groups. Let F be a topological space, and let

yoGFoCF. Define

(5.1)    r?(Y, Fo, yo) = Um(Y^XI{T'-2 X 0, F0; F-2 X 1, yo}, yo),

r = 2, 3, ■ • • ; m = 1, 2, • • • .

Fox [l] observed that r)(Y, Yo, yo) is isomorphic to his rth rela-

tive torus homotopy group tt(Y, Y0, yo). He proved a structure

theorem for his torus homotopy groups rr(Y, y0) [l, 9.3], using a

laborious construction of successive homomorphisms. This theorem

is easily proved by use of (1.3). Rather than state and prove this

published result, we give a (slight generalization of a) corresponding

theorem concerning the relative torus groups.

(5.2) Theorem, (i) t™(Y, F0, y0) is isomorphic to nm+i(F, F0, y0).

(ii) If t^(Y,  Yo, yo) is abelian (in particular, if m>l), then it is

isomorphic to the direct sum3

r

22 Cr-i,j-2Tlm+j-i(Y, Fo, y0).

(iii) // r>2, then t™(Y, Yo, yo) is a split extension of a subgroup

isomorphic to t™*i(Y, Y0, yo) by a subgroup isomorphic to rj"-i( F, F0,y0).

Proof. Conclusion (i) was noted by Fox. Conclusion (ii) is a simple

inductive consequence of the case r = 2 (contained in (i)) and conclu-

sion (iii). Thus, it remains to prove (iii).

It is obvious from (1.3) that there is a homeomorphism of

Fr'-2x7{r-2 X 0, F0; T*~2 X 1, yo}

onto

(F'{0, F0; 1, yo})r'"\

The Cj.k are the binomial coefficients.
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and a homeomorphism of this space onto

(5.3) [(F'{0, Yo;l,yo})Tr"]s,

and that the functions y0 of these various spaces correspond under

the homeomorphisms. (Note that the elements of the last space are

"third order" functions.)

According to S. T. Hu [3], Hm(Bs, bo) is a split extension of a sub-

group isomorphic to IIm+i(P, bo) by a subgroup isomorphic to

nm(P, bo). Then since t?(Y, F0, yo) is isomorphic to the rath homo-

topy group of the space given by (5.3), at base-point y0, we may

conclude that r™(Y, F0, y0) is a split extension of a subgroup iso-

morphic to

(5.4) nm+1((F'{0, Fo;l, yo})r'~\ yo)

by a subgroup isomorphic to

(5.5) nm((F'{0, F0;l, yo})T'~\yo).

Applying (1.3) again, we see that the groups (5.4) and (5.5) are

isomorphic to t^i(Y, Y0, yo) and r™i(F, F0, yo), respectively.

This completes the proof.

6. Further applications. Most known theorems on homotopy

groups of function spaces can be combined with (1.3) to yield addi-

tional results on homotopy groups, and, often, to get analogous

theorems concerning certain relative homotopy groups, torus homo-

topy groups, and relative torus homotopy groups of function spaces.

Using ua¿" to indicate algebraic isomorphism, and G^N'®H' to

mean that G is a split extension of a subgroup isomorphic to N' by a

subgroup isomorphic to H', we state several interesting results which

follow from (1.3) and the theorems of [3], in much the same way

that we obtained (5.2). We include the known results (6.1) and (6.5)

for completeness. In (6.2), (6.4), (6.6), and (6.8), the second function

space involved is a subspace of the first in the obvious way.

(6.1) Um(Y ^ {sk, yo}, yo)^ Hm+k(Y, yo).

(6.2) nm(F^ [sk, yo}, Yo  {sk, yo}, yo) ^ Um+k(Y, F0, yo).

(6.3) t?(YS {sk, yo}, yo) =* t?*\y, yo).
qK eft 1   j,

(6.4) TT (Y   {sk, yo}, Yo  {sk, yo}, yo)^rr    (Y, F0, yo).

(6.5) nm(F   ,yo)^nm+t(F, yo) ® nm(F, yo).

(6.6) nm(FSt, Fo , yo) =* IW(F, F0, yo) ® Um(Y, Yo, yo).

(6.7) r.V*, yo) « r7+k(Y, yo) ® r7(Y, y„).
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(6.8)        t?(YS\ YÎ, yo) £* tT\y, F„, y„) ® r?(Y, Y0, yo).

The isomorphism (6.3) implies, with certain theorems given in [l],

the interesting corollary that the Whitehead products of elements of

the groups Hm(Ys {sk, y0}, yo), A>0, m = \, 2, • • ■ , are all trivial.

(6.1) and (6.2) show that the entire homotopy sequence may be re-

duced, one chunk at a time, to low-dimensional segments of homotopy

sequences of suitable function spaces.
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A THEOREM ON INVOLUTORY TRANSFORMATIONS
WITHOUT FIXED POINTS

AMASA FORRESTER

This note contains a proof of a theorem conjectured by Dr.

Preston C. Hammer in his work on outwardly simple line families.

By En+l we denote the (» + l)-dimensional number space of ordered

(w+l)-tuples of real numbers; if X = (xi, x2, • • • , xn+i), Y

= (yi, y%, • • • i yn+i), and a, ß are real numbers, we define as usual

n+l

aX + ßY = (axi + ßyu ■ ■ ■ ),        (X, Y) = 22 Xiyu

By the »-sphere Sn we mean the set of all X in £n+1 such that

(X, X) = 1 ; a point X is said to be interior to S" if (X, X) < 1. A con-

tinuous map 0: Sn—*Sn of the «-sphere into itself is called an involu-

tory transformation if <b((j>(Q)) =Q for all Q on S".

Theorem. Let <p: Sn—>Sn be an involutory transformation of Sn

without fixed point, and let P be a point interior to Sn. Then there is a

point Q on Sn such that P lies on the line segment from Q to (b(Q).
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