ORTHOGONALITY RELATION FOR FROBENIUS-AND OUASI-FROBENIUS-ALGEBRAS

TADASI NAKAYAMA

The celebrated orthogonality relation for the coefficients of the regular representation of a group was extended first to the modular case by Nesbitt, and then to Frobenius-algebras by the writer; the proof was reproduced in [4] together with a second proof. Another proof of this orthogonality, for the coefficients of the regular representations of Frobenius-algebras, and its interesting application to faithful representations were given by Brauer [1]. In the present note we propose a still different proof, and generalize the orthogonality to quasi-Frobenius-algebras.

1. A class of automorphisms in a Frobenius-algebra. Let \mathfrak{A} be a Frobenius-algebra [1; 2; 3; 4] over a field Ω , and let

(1)
$$(a_1, a_2, \cdots, a_n) \quad \text{with } a_{\sigma}a_{\tau} = \sum_{\iota} \alpha_{\sigma\tau\iota}a_{\iota}$$

be its basis. Let

$$(2) P = \left(\sum_{\iota} \alpha_{\sigma\tau\iota} \mu_{\iota} \right)$$

be a nonsingular parastrophic matrix. Let

(3)
$$L(x) = (\lambda_{\sigma\tau}(x)), \qquad R(x) = (\rho_{\sigma\tau}(x))$$

be the left and right regular representations defined by the basis (1). We have

$$(4) R(x)P = PL(x).$$

With $x = \sum \xi_i a_i \in \mathfrak{A}$ we put [2, II, §1]

(5)
$$x^* = \sum \xi_i^* a_i, \qquad (\xi_i^*) = (P')^{-1} P(\xi_i).$$

In particular

(6)
$$(a_1^*, a_2^*, \cdots, a_n^*)P^{-1} = (a_1, a_2, \cdots, a_n)(P')^{-1}.$$

* is an automorphism of \mathfrak{A} , and we have further, as a counterpart to (4),

$$R(x)P' = P'L(x^*).$$

Received by the editors April 9, 1951.

¹ Numbers in brackets refer to the references at the end of the paper.

Also

$$(x^*(a_1^*, a_2^*, \cdots, a_n^*)P^{-1} =) x^*(a_1, a_2, \cdots, a_n)(P')^{-1}$$

$$= (a_1, a_2, \cdots, a_n)L(x^*)(P')^{-1}$$

$$= (a_1, a_2, \cdots, a_n)(P')^{-1}R(x)$$

$$(= (a_1^*, a_2^*, \cdots, a_n^*)P^{-1}R(x)),$$

$$((P')^{-1}(a_i^*)x =)P^{-1}(a_i)x = P^{-1}R(x)(a_i)$$

$$= L(x)P^{-1}(a_i)(= L(x)(P')^{-1}(a_i^*)).$$

Thus, if we put

(10)
$$(b_1, b_2, \dots, b_n) = (a_1, a_2, \dots, a_n)(P')^{-1} = (a_1, a_2, \dots, a_n)P^{-1}$$
, then

$$(11) x^*(b_1, b_2, \cdots, b_n) = (b_1, b_2, \cdots, b_n)R(x),$$

$$(b_{\iota})x = L(x)(b_{\iota}).$$

We call (b_1, b_2, \dots, b_n) conjugate to (a_1, a_2, \dots, a_n) .

With an arbitrary representation Z(x) of \mathfrak{A} , consider the matrix

(13)
$$\mathfrak{Z} = \sum Z(b_i)a_i$$

in a. We have

(14)
$$\beta x = \sum_{\iota} Z(b_{\iota}) a_{\iota} x = \sum_{\iota} Z(b_{\iota}) \sum_{\tau} \rho_{\iota\tau}(x) a_{\tau}$$

$$= \sum_{\tau} Z\left(\sum_{\iota} b_{\iota} \rho_{\iota\tau}(x)\right) a_{\tau} = \sum_{\tau} Z(x^*b_{\tau}) a_{\tau}$$

$$= \sum_{\tau} Z(x^*) Z(b_{\tau}) a_{\tau} = Z(x^*) \beta.$$

Similarly we have, by virtue of (12) instead of (11),

$$(15) x3 = 3Z(x).$$

A different choice of nonsingular parastrophic matrix gives rise to an automorphism congruent to * modulo inner automorphisms. On the other hand, if we start with another basis $(a_1, a_2, \dots, a_n)Q$ of \mathfrak{A} , then the parastrophic matrix Q'PQ belonging to it gives the same automorphism *. Take the second basis such that the left regular representation defined by it assumes a reduced form

with directly indecomposable $U^{(\kappa)}$ and irreducible $G^{(\kappa)}$, $F^{(\kappa)}$. Here $G^{(\kappa)}(x)$ is equivalent to $F^{(\kappa)}(x^{(\kappa^{-1})})$; cf. [2, II, §1]. For those κ for which $U^{(\kappa)}$ are not irreducible, we can assume that our basis is chosen so that $G^{(\kappa)}(x) = F^{(\kappa)}(x^{(\kappa^{-1})})$. As for those κ for which the $U^{(\kappa)}$ are irreducible, we see easily that we can choose μ_{τ} in (2) suitably so that $F^{(\kappa)}(x) = F^{(\kappa)}(x^{(\kappa^{-1})})$; those κ correspond to simple subalgebras of $\mathfrak A$ which are direct components of $\mathfrak A$, and these components together form a semisimple (hence certainly symmetric) algebra, and we have merely to choose our * such that it induces the identity automorphism on this subalgebra. Under these adjustments we have

(17)
$$U^{(\kappa)}(x) = \begin{pmatrix} F^{(\kappa)}(x^{(*^{-1})}) & M^{(\kappa)}(x) \\ & \ddots & \\ & & F^{(\kappa)}(x) \end{pmatrix}.$$

2. Orthogonality relation for Frobenius-algebras.

THEOREM 1. If a representation Z(x) of \mathfrak{A} does not contain $U^{(\kappa)}(x)$, then $F^{(\kappa)}(z) = 0$ for every element z of the matrix \mathfrak{Z} in (13). (If a representation contains $U^{(\kappa)}$, then it contains $U^{(\kappa)}$ as a direct component; cf. [3, §2, Remark 3].)

For, let \mathfrak{l} be the linear space spanned, not necessarily linearly independently, by the elements of the row of \mathfrak{Z} containing our z. It is a left-ideal of \mathfrak{A} , as (15) shows. Suppose, contrary to our assertion, $F^{(\kappa)}(z) \neq 0$. Then \mathfrak{l} contains a certain primitive idempotent element e which generates a left-ideal $\mathfrak{A}e$ defining $U^{(\kappa)}$. But \mathfrak{l} is a homomorphic image of the representation module \mathfrak{z} of Z(x), again by (15). Hence $\mathfrak{A}e$ is a submodule of a homomorphic image of \mathfrak{z} , which means that Z contains $U^{(\kappa)}$, contrary to our assumption.

In particular,

THEOREM 1'. If $\zeta(x)$ is a coefficient in the representation $U^{(\lambda)}$ and $\lambda \neq \kappa$, then $F^{(\kappa)}(\sum \zeta(b_i)a_i) = \sum \zeta(b_i)F^{(\kappa)}(a_i) = 0$.

Further, the part of $U^{(\kappa)}$ complementary to $F^{(\kappa)}$ forms a representation which certainly does not contain $U^{(\kappa)}$. The same is the case with the part complementary to $G^{(\kappa)}$. Thus we have the following theorem.

THEOREM 1". If $\zeta(x)$ is a coefficient in the representation $U^{(\kappa)}$ which is not in $M^{(\kappa)}$, then $F^{(\kappa)}(\sum \zeta(b_{\iota})a_{\iota}) = \sum \zeta(b_{\iota})F^{(\kappa)}(a_{\iota}) = 0$.

REMARK. In Theorem 1" only the reduced form (16) of $U^{(s)}$ is used, and the more specified form (17) of $U^{(s)}$ is unnecessary. In Theorem 1', $U^{(s)}$ can of course be in any form, not necessarily reduced.

We now assume that the $F^{(\kappa)}$ are absolutely irreducible, or at least that a certain $F^{(\kappa)}$, which we deal with, is so. Denote the degree of $U^{(\kappa)}$ by $u(\kappa)$. Because of our assumption the degree of $F^{(\kappa)}$ is equal to the multiplicity $f(\kappa)$ of $U^{(\kappa)}$ in the left regular representation; cf. (16). Construct

(18)
$$\mathfrak{U}^{(\kappa)} = \sum U^{(\kappa)}(b_i)a_i.$$

It satisfies

(19)
$$\mathfrak{U}^{(\kappa)}x = U^{(\kappa)}(x^*)\mathfrak{U}^{(\kappa)}, \qquad x\mathfrak{U}^{(\kappa)} = \mathfrak{U}^{(\kappa)}U^{(\kappa)}(x).$$

It is well known, and easy to see, that $u(\kappa)$ coefficients of the first row (or any one of the first $f(\kappa)$ rows) of $U^{(\kappa)}$ are linearly independent. (As a matter of fact, it is also well known that the coefficients in the first $f(\kappa)$ rows of $U^{(\kappa)}$ altogether are linearly independent. But this may be seen from the sequel and need not be assumed as known.) Hence the $u(\kappa)$ elements in the first row of $U^{(\kappa)}$ are linearly independent. They form, according to (19), a left-ideal $\mathfrak{I}_1^{(\kappa)}$ which defines $U^{(\kappa)}$. $\mathfrak{I}_1^{(\kappa)}$ is a direct component of \mathfrak{A} . Moreover, the first $u(\kappa) - f(\kappa)$ of our elements of the first row of $U^{(\kappa)}$ form a (unique) maximal left-subideal of $\mathfrak{I}_1^{(\kappa)}$, as the reduced form of $U^{(\kappa)}$ shows; this follows also readily from Theorems 1', 1". Here the maximal left-subideal is precisely the intersection of $\mathfrak{I}_1^{(\kappa)}$ with the radical \mathfrak{N} of \mathfrak{A} . Similarly the second, the third, \cdots , the $f(\kappa)$ th rows of $U^{(\kappa)}$ span left-ideals $\mathfrak{I}_2^{(\kappa)}$, $\mathfrak{I}_3^{(\kappa)}$, \cdots , $\mathfrak{I}_{(\kappa)}^{(\kappa)}$ belonging to $U^{(\kappa)}$.

Analogously, the last $f(\kappa)$ columns (i.e., the $u(\kappa) - f(\kappa) + 1$ st, $u(\kappa) - f(\kappa) + 2$ nd, \cdots , $u(\kappa)$ th columns) of $\mathfrak{U}^{(\kappa)}$ span right-ideals $r_1^{(\kappa)}$, $r_2^{(\kappa)}$, \cdots , $r_{f(\kappa)}^{(\kappa)}$; all belonging to the representation $U^{(\kappa)}(x^*)$.

Now, take a system $\{e_{ij}^{(k)}\}$ of elements in \mathfrak{A} such that

(20)
$$F^{(\kappa)}(e_{ij}^{(\kappa)}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} (1 \text{ at } (i,j)), \quad F^{(\lambda)}(e_{ij}^{(\kappa)}) = 0 \qquad (\lambda \neq \kappa).$$

The elements $e_{ij}^{(\kappa)}$ form a system of matric units modulo \mathfrak{N} . We have $\mathfrak{U}^{(\kappa)}e_{ij}^{(\kappa)}=U^{(\kappa)}(e_{ij}^{(\kappa)*})\mathfrak{U}^{(\kappa)}$. By virtue of (17), which we make use of for the first time, this gives

(21)
$$\mathfrak{l}_{1}^{(\kappa)} e_{1i}^{(\kappa)} \equiv \mathfrak{l}_{i}^{(\kappa)} \bmod \mathfrak{N};$$

more precisely

(22) (1st row of
$$\mathfrak{U}^{(\kappa)}$$
) $e_{1i}^{(\kappa)} \equiv (i\text{th row of }\mathfrak{U}^{(\kappa)}) \mod \mathfrak{N}$.

Similarly we have

(23)
$$e_{i1}^{(\kappa)} \stackrel{(\kappa)}{r} \equiv r_1^{(\kappa)} \mod \mathfrak{N}$$

and in fact

(24)
$$e_{i1}^{(\kappa)}(u(\kappa) - f(\kappa) + 1 \text{st column of } \mathfrak{U}^{(\kappa)}) \\ \equiv (u(\kappa) - f(\kappa) + i \text{th column of } \mathfrak{U}^{(\kappa)}) \mod \mathfrak{N}.$$

Thus the $(1, u(\kappa)-f(\kappa)+1)$ -element of $\mathfrak{U}^{(\kappa)}$ lies in $e_{11}^{(\kappa)}\mathfrak{A}e_{11}^{(\kappa)}$ mod \mathfrak{R} , and is, therefore, congruent to $\xi^{(\kappa)}e_{11}^{(\kappa)}$ mod \mathfrak{R} with $\xi^{(\kappa)} \in \Omega$. The $(i, u(\kappa)-f(\kappa)+j)$ -element of $\mathfrak{U}^{(\kappa)}$ is then congruent to $\xi^{(\kappa)}e_{ij}^{(\kappa)}$ mod \mathfrak{R} , according to (22), (24). Its representation matrix in $F^{(\kappa)}$ is the matrix with $\xi^{(\kappa)}$ at (i, j) and 0's elsewhere. This means, if we put

(25)
$$F^{(\kappa)}(x) = (\phi_{st}^{(\kappa)}(x))_{st}, \qquad M^{(\kappa)}(x) = (\mu_{ij}^{(\kappa)}(x))_{ij},$$

that

(26)
$$\phi_{st}^{(\kappa)} \left(\sum_{\iota} \mu_{ij}^{(\kappa)}(b_{\iota}) a_{\iota} \right) = \sum_{\iota} \phi_{st}^{(\kappa)}(a_{\iota}) \mu_{ij}^{(\kappa)}(b_{\iota}) = \xi^{(\kappa)} \delta_{sj} \delta_{ti}$$

$$(\xi^{(\kappa)}(\in\Omega)\neq0).$$

Of course the relations in Theorems 1, 1', 1" can be written as

(27)
$$\sum_{i} \phi_{st}^{(s)}(a_i) \zeta(b_i) = 0,$$

where $\zeta(x)$ is as in those theorems. Thus:

THEOREM 2. Let $F^{(x)}$ be absolutely irreducible. With (25) we have

the orthogonality (26). If $\zeta(x)$ is as in Theorems 1, 1', 1", then we have (27).

3. Quasi-Frobenius-algebras. Let now $\mathfrak A$ be a quasi-Frobenius-algebra [2; 4] with a basis

$$(28) (a_1, a_2, \cdots, a_n),$$

which defines the left and right regular representations L(x), R(x) of \mathfrak{A} . Let

$$(29) (u_1, u_2, \cdots, u_n) = (a_1, a_2, \cdots, a_n)Q$$

be a second, auxiliary basis of \mathfrak{A} such that the left regular representation $L_1(x) = Q_1^{-1}L(x)Q_1$ defined by it has a decomposed form similar to (16). Let $U_1^{(\kappa)}$ be its indecomposable components; $U_1^{(\kappa)} \simeq U^{(\kappa)}$. The right regular representation contains each $U_1^{(\kappa)}$ with a certain multiplicity, say $g(\kappa)$, greater than 0 (and it consists of them only). Put

$$h(\kappa) = \min (f(\kappa), g(\kappa)).$$

There exists a right-ideal of \mathfrak{A} which defines a representation containing (directly) each $U_1^{(\kappa)}$ exactly $h(\kappa)$ times. Let

(30)
$$(w_1, w_2, \cdots, w_m) \qquad (m = \sum h(\kappa)u(\kappa))$$

be its basis such that the representation defined by it has $U_1^{(\kappa)}$ in their order of indices, that is, first h(1) times $U_1^{(1)}$, then h(2) times $U_1^{(2)}$, and so on. Augment it with $(f(\kappa) - h(\kappa))u(\kappa)$ 0's after the $h(\kappa)u(\kappa)$ w's belonging to $U_1^{(\kappa)}$ ($\kappa = 1, 2, \dots, k$). Thus we obtain a vector

$$(31) (v_1, v_2, \cdots, v_n),$$

with $\sum (f(\kappa) - h(\kappa))u(\kappa)$ dummies 0, satisfying

$$(32) (v_{\iota})x = L_1(x)(v_{\iota}).$$

Put

$$(33) (b_1, b_2, \cdots, b_n) = (v_1, v_2, \cdots, v_n)Q_1';$$

 (b_{ι}) does not, together with (v_{ι}) , form a basis of \mathfrak{A} , in general. We have

(34)
$$(b_t)x = Q_1L_1(x)Q_1^{-1}(b_t) = L(x)(b_t).$$

With a representation Z(x) of \mathfrak{A} , define \mathfrak{Z} as in (13) by means of this (b_{ι}) (and the basis (a_{ι})). Then we obtain (15) in the same way as before.

Now, consider any left regular representation of \mathfrak{A} decomposed and reduced in the form (16). We can prove quite similarly that:

THEOREM 3. With the vector (b_i) in (33), constructed as above, Theorems 1, 1', 1" are valid for the quasi-Frobenius-algebra \mathfrak{A} .

Consider next the matrix

$$\mathfrak{Z}^* = \sum Z(a_i)b_i$$

in a. By means of (34) we see

$$\mathfrak{Z}^* x = Z(x) \mathfrak{Z}^*.$$

This leads us to the following theorem.

THEOREM 4. Suppose that Z does not contain the component $V^{(\kappa)}$ of the right regular representation having $F^{(\kappa)}$ as its top constituent. Then $F^{(\kappa)}(\bar{z}) = 0$ for any element \bar{z} of \mathfrak{Z}^* . Hence, also in our quasi-Frobenius-algebra generalization Theorem 3 of Theorems (1 and)1', 1" we may interchange (a_*) and (b_*) provided we consider $V^{(\kappa)}$ in place of $U^{(\kappa)}$.

(For a Frobenius-algebra such a modification is rather meaningless.)

Now, in order to specify our basis (b_i) further, we start with a (maximal) system $\{e_i^{(\kappa)}\}$ of primitive idempotent elements in \mathfrak{A} such that $\mathfrak{A}e_i^{(\kappa)}$ defines $U_1^{(\kappa)} (\simeq U^{(\kappa)})$. Let $\{c_{ij}^{(\kappa)}\}$ be, for each κ , a system of matric units with $c_{ii}^{(\kappa)} = e_i^{(\kappa)}$. We assume that our auxiliary basis (u_i) ((29)) is taken in accord with the decomposition

$$\mathfrak{A} = \sum \mathfrak{A} e_i^{(\kappa)}$$

and is composed of the bases of $e_j^{(\lambda)}\mathfrak{A}e_i^{(\kappa)}$ such that each basis of $e_j^{(\lambda)}\mathfrak{A}e_i^{(\kappa)}$ is obtained from that of $e_1^{(\lambda)}\mathfrak{A}e_1^{(\kappa)}$ by the left- and right-multiplications of $e_n^{(\lambda)}$, $e_{1i}^{(\kappa)}$. (If the $F^{(\kappa)}$ are absolutely irreducible, this means that (u_i) is a so-called Cartan basis; we may perhaps call our basis a Cartan basis in the wider sense.) Put

(38)
$$E = \sum_{i=1}^{h(\kappa)} \sum_{i=1}^{h(\kappa)} e_i^{(\kappa)};$$

we can, and shall, take $E\mathfrak{A}$ as our right-ideal possessing the basis (w_i) ((30)). Replace in (u_i) those u's not belonging to $\mathfrak{A}_0 = E\mathfrak{A}E$ simply by 0's, to obtain a vector

$$(39) \qquad (y_1, y_2, \cdots, y_n);$$

 (y_i) is essentially a basis of \mathfrak{A}_0 , augmented by some 0's. For $x_0 \in \mathfrak{A}_0$ we have

$$(40) x_0(y_1, y_2, \cdots, y_n) = (y_1, y_2, \cdots, y_n)L_1(x_0) (x_0 \in \mathfrak{A}_0)$$

with our left regular representation L_1 of $\mathfrak A$ defined by (u_i) . Also

(41)
$$(y_{\iota})x_{0} = R_{1}(x_{0})(y_{\iota}) \qquad (x_{0} \in \mathfrak{A}_{0}).$$

 \mathfrak{A}_0 is a Frobenius-subalgebra of (the quasi-Frobenius-algebra) \mathfrak{A} . Let \dagger be its automorphism defined by a nonsingular parastrophic matrix as in §1. Take a basis of \mathfrak{A}_0 conjugate (with respect to the same parastrophic matrix) to the basis consisting of the nonzero y_i , and augment it with 0's at the same places where $(v_i)E$ has 0's, to obtain

$$(42) (z_1, z_2, \cdots, z_n).$$

From the Cartan basis property of (u_i) , in the wider sense, and from the way we enlarged (w_i) into (v_i) , we see easily (cf. also the argument below)

(43)
$$(z_{i})x_{0} = L_{1}(x_{0})(z_{i}) \qquad (x_{0} \in \mathfrak{A}_{0}).$$

It is also not difficult to see

$$(44) x_0^{\dagger}(z_1, z_2, \cdots, z_n) = (z_1, z_2, \cdots, z_n) R_1(x_0) (x_0 \in \mathfrak{A}_0).$$

Each idempotent element $e_j^{(\lambda)}$ is represented in L_1 by a diagonal matrix having 1's and 0's on the diagonal, and different $e_t^{(\lambda)}$ have 1's on different places (on the diagonal). The representation matrix of $c_{ij}^{(\lambda)}$ has 1's at the intersections of those rows and columns where the matrices of $e_i^{(\lambda)}$ and $e_j^{(\lambda)}$ have 1's (and 0's elsewhere). From this form of L_1 and (43) it follows that (z_i) consists of the basis of the modules $\mathfrak{A}_0 e_j^{(\lambda)}$ $(1 \leq j \leq h(\lambda))$ (and 0's) and the part corresponding to $\mathfrak{A}_0 e_j^{(\lambda)}$ is obtained from the part corresponding to $\mathfrak{A}_0 e_1^{(\lambda)}$ by the right-multiplication of $c_{11}^{(\lambda)}$. Replace in (z_i) those 0's, which are in the places we had basis elements of $E\mathfrak{A}(1-E)$ in (v_i) , by the basis elements of $E\mathfrak{A}c_{14}^{(\lambda)} = \mathfrak{A}_0e_1^{(\lambda)}c_{14}^{(\lambda)}, i = h(\kappa) + 1, \cdots, f(\lambda),$ obtained from those (in (z_i)) of $\mathfrak{A}_0e_1^{(\lambda)}$ by the (right-)multiplication of $c_{14}^{(\lambda)}$. Then we obtain a vector which is essentially a basis of $E\mathfrak{A}$, augmented with some 0's. Denote it (v_{i}) . It satisfies (32) (which justifies our notation). To see that we have merely to verify the relation for the elements x of a form $x = c_{11}^{(\lambda)} x_0 c_{14}^{(\kappa)}$ $(x_0 \in e_1^{(\lambda)} \mathfrak{A} e_1^{(\kappa)})$. Thus it suffices to verify the relation for $x = c_{11}^{(\lambda)}$, x_0 , and $c_{14}^{(\kappa)}$. But the relation is clear for these elements either because of the above construction of our (v_i) and the structure of the representation matrices of $c_{ij}^{(\kappa)}$, mentioned above, or because of (43). So, we can employ this (v_i) as our vector in (31). It satisfies, besides (32),

(45)
$$x_0^{\dagger}(v_1, v_2, \dots, v_n) = (v_1, v_2, \dots, v_n)R_1(x_0) \qquad (x_0 \in \mathfrak{A}_0),$$

as follows from (44) and our construction of (v_i) .

Define (b_1, b_2, \dots, b_n) from our (v_1, v_2, \dots, v_n) again by (33). Then we have, besides (34), (15), (36), which we have already observed, also

(46)
$$x_0^{\dagger}(b_1, b_2, \cdots, b_n) = (b_1, b_2, \cdots, b_n)R(x_0) \qquad (x_0 \in \mathfrak{A}_0),$$

since $R = (Q_1')^{-1}R_1Q_1'$. We obtain then

$$3x_0 = Z(x_0^{\dagger})3 \qquad (x_0 \in \mathfrak{A}_0)$$

with \mathcal{B} in (13), as our analogue to (14). With \mathcal{B}^* in (35) we have, from (45), also

(48)
$$x_0^{\dagger} \mathcal{Z}^* = \mathcal{Z}^* Z(x_0) \qquad (x_0 \in \mathfrak{A}_0).$$

Consider, after all these preliminary constructions, again a right regular representation of $\mathfrak A$ in a decomposed form (16). It needs not, of course, be defined by our auxiliary basis (u_{ι}) ((29)), but we assume that it is taken such that there exists for each κ a system of elements $\{e_{ij}^{(\kappa)}\ (i,j=1,2,\cdots,h(\kappa)\}$ in $\mathfrak A_0$ satisfying (20), where $F^{(\kappa)}$ denotes the last irreducible constituent of the directly indecomposable component $U^{(\kappa)}$ in our regular representation. We take it further such that the representation matrices $F^{(\kappa)}(x_0^{(t-1)})$ and $G^{(\kappa)}(x_0)$ with $x_0 \in \mathfrak A_0$, of respective degrees $f(\kappa)$ and $g(\kappa)$, coincide with each other in their places (i,j) with $i,j \leq h(\kappa)$. We also assume the absolute irreducibility of $F^{(\kappa)}$.

With such $U^{(\kappa)}$ and our above (b_{ι}) , we again consider (18). We have

$$(49) x \mathfrak{U}^{(\kappa)} = \mathfrak{U}^{(\kappa)} U^{(\kappa)}(x), \mathfrak{U}^{(\kappa)} x_0 = U^{(\kappa)}(x_0) \mathfrak{U}^{(\kappa)} (x_0 \in \mathfrak{Y}_0).$$

The first row of $\mathfrak{U}^{(\kappa)}$ spans a left-ideal defining $U^{(\kappa)}$, and its last $f(\kappa)$ elements do not belong to the radical \mathfrak{N} . The same is the case with each of the first $g(\kappa)$ rows of $\mathfrak{U}^{(\kappa)}$, and for $i \leq h(\kappa)$ the *i*th row is congruent modulo \mathfrak{N} to the first row multiplied on the right by $e_{ii}^{(\kappa)}$. Further, each of the last $f(\kappa)$ columns of $\mathfrak{U}^{(\kappa)}$ is congruent modulo \mathfrak{N} to the first of them, multiplied on the left by $e_{ii}^{(\kappa)}$ with respective i; observe that x is arbitrary in the first half of (49). In particular, the $(1, u(\kappa) - f(\kappa) + 1)$ -element of $\mathfrak{U}^{(\kappa)}$ lies again in $e_{11}^{(\kappa)}\mathfrak{U}e_{11}^{(\kappa)} \mod \mathfrak{N}$, and is thus congruent to an element $\xi^{(\kappa)}e_{11}^{(\kappa)}$ ($\xi^{(\kappa)} \in \Omega$) mod \mathfrak{N} . Here $\xi^{(\kappa)} \neq 0$ since the element is not contained in \mathfrak{N} . Further, for $i \leq h(\kappa)$, $j \leq f(\kappa)$ we see that the $(i, u(\kappa) - f(\kappa) + j)$ -element is congruent to $\xi^{(\kappa)}e_{ji}^{(\kappa)}$ mod \mathfrak{N} . Hence

$$(50) \qquad \phi_{st}^{(\kappa)} \left(\sum_{\iota} \mu_{ij}^{(\kappa)}(b_{\iota}) a_{\iota} \right) = \sum_{\iota} \phi_{st}^{(\kappa)}(a_{\iota}) \mu_{ij}^{(\kappa)}(b_{\iota}) = \xi^{(\kappa)} \delta_{sj} \delta_{ti}$$

$$(\xi^{(\kappa)} (\in \Omega) \neq 0)$$

for $i=1, 2, \cdots, h(\kappa)$ (and $s, t, j=1, 2, \cdots, f(\kappa)$). On the other hand, since $b_{\iota} \in E\mathfrak{A}$, for each ι , $G^{(\kappa)}(b_{\iota})$ has 0's in its last $g(\kappa) - h(\kappa)$ rows. This shows that the left-ideals of \mathfrak{A} formed by the $h(\kappa) + 1$ st, \cdots , $g(\kappa)$ th rows of $\mathfrak{U}^{(\kappa)}$ are properly homomorphic to $\mathfrak{U}^{(\kappa)}_1$, the left-ideal formed by the first row. Thus $\sum_{\iota} \mu_{ij}^{(\kappa)}(b_{\iota})a_{\iota} \in \mathfrak{N}$ for $i=h(\kappa)+1, \cdots$, $g(\kappa)$. Hence (50) holds for $i=1, 2, \cdots, g(\kappa)$ and $s, t, j=1, 2, \cdots, f(\kappa)$ without restriction.

THEOREM 5. The orthogonality (50) holds for $i = 1, 2, \dots, g(\kappa)$ and $s, t, j = 1, 2, \dots, f(\kappa)$, $F^{(\kappa)}$ being absolutely irreducible.

Again we may consider 3^* , $\mathfrak{U}^{*(s)}$ instead of 3, $\mathfrak{U}^{(s)}$. Observing (36), (48) we obtain the following theorem.

THEOREM 6. We can interchange (a_i) and (b_i) in the orthogonality (50) of Theorem 5 provided we consider (the normized) $V^{(\kappa)}$ in place of $U^{(\kappa)}$ (cf. Theorem 4); $\xi^{(\kappa)}$ may differ from that of Theorem 5.

In fact, the argument for the case $j = h(\kappa) + 1, \dots, f(\kappa)$ is simpler than the one we had above for $i = h(\kappa) + 1, \dots, g(\kappa)$. For, we have simply $\phi_n^{(\kappa)}(b_i) = 0$ for those j.

ILLUSTRATION. Since the above construction is somewhat complicated, it is perhaps useful to illustrate it by an example. Consider the (quasi-Frobenius-) algebra $\mathfrak A$ consisting of matrices

(51)
$$\begin{pmatrix} U_{1}^{(1)} & & & & & & & & & & & \\ & U_{1}^{(1)} & & & & & & & & & \\ & & U_{1}^{(2)} & & & & & & & \\ & & U_{1}^{(1)} & & & & & & & & \\ & & \alpha_{11} & \alpha_{12} & & & & & & \\ & & \alpha_{21} & \alpha_{22} & & \alpha_{22} & \delta_{2} & & & & & \\ & & & & & & & & & & & & \\ \end{pmatrix}$$

over a certain field Ω . Let $e_1^{(1)}$, $e_2^{(1)}$, c_{12} , c_{21} , $e^{(2)}$, d_1 , d_2 , d_1' , d_2' be the elements of $\mathfrak A$ which have respectively α_{11} , α_{22} , α_{12} , α_{21} , β , γ_1 , γ_2 , δ_1 , $\delta_2 = 1$ and other coefficients equal to 0.

(52)
$$(u_1) = (d_1, e_1^{(1)}, c_{21}; d_2, c_{12}, e_2^{(1)}; d'_1, d'_2, e^{(2)})$$

forms a basis of \mathfrak{A} , and in fact (51) is the left regular representation

 L_1 of \mathfrak{A} defined by this basis (52). The right regular representation defined by the same basis is

We have f(1) = 2 = g(2), f(2) = 1 = g(1), and h(1) = h(2) = 1, while u(1) = u(2) = 3. The basis $(e^{(2)}, d_1, d_2)$ of the right-ideal $e^{(2)}\mathfrak{A}$ gives the representation $U_1^{(1)}$, and the bases $(e^{(1)}, c_{12}, d_1')$, $(c_{21}, e_2^{(1)}, d_2')$ of $e_1^{(1)}\mathfrak{A}$, $e_2^{(1)}\mathfrak{A}$ give the representation $U_1^{(2)}$. As (v_i) we can take

$$(54) (v_1) = (e^{(2)}, d_1, d_2; 0, 0, 0; e_1^{(1)}, c_{12}, d_1').$$

Put $E = e_1^{(1)} + e^{(2)}$. Then the left and the right regular representations of $\mathfrak{A}_0 = E\mathfrak{A}E$ defined by its basis $(d_1, e_1^{(1)}; d_1', e^{(2)})$ are

(55)
$$\begin{pmatrix} \beta & \gamma & & & \\ & \alpha & & & \\ & & \alpha & \delta & \\ & & & \beta \end{pmatrix}, \qquad \begin{pmatrix} \alpha & & & \\ & \alpha & \delta & \\ & & \beta & \\ \gamma & & & \beta \end{pmatrix}.$$

Its nonsingular parastrophic matrix P_0 , corresponding to the same basis, is given by, for instance,

(56)
$$P_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

The corresponding automorphism \dagger of \mathfrak{A}_0 is given by

$$(57) \quad (d_1, e_1^{(1)}, d_1', e_1^{(2)})^{\dagger} = (d_1, e_1^{(1)}, d_1', e_1^{(2)})(P_0')^{-1}P_0 = (d_1', e_1^{(2)}, d_1, e_1^{(1)}).$$

A conjugate basis is given by

(58)
$$(e^{(2)}, d_1, e_1^{(1)}, d_1').$$

Now, $(v_i)E = (e^{(2)}, d_1, 0; 0, 0, 0; e_1^{(1)}, 0, d_1')$. Augmenting (58) with 0's as we have 0's in $(v_i)E$, we obtain

$$(59) (z_i) = (e^{(2)}, d_1, 0; 0, 0, 0; e_1^{(1)}, 0, d_1).$$

Since here $(z_i) = (v_i)E$, rather accidentally, it is clear that

(60)
$$(z_{\iota})x_{0}(=(v_{\iota})x_{0}E=L_{1}(x_{0})(v_{\iota})E)=L_{1}(x_{0})(z_{\iota}).$$

Further

$$x_{0}(e^{(2)}, d_{1}, 0, 0, 0, 0, e_{1}^{(1)}, 0, d'_{1}) = (e^{(2)}, d_{1}, 0, 0, 0, 0, e_{1}^{(1)}, 0, d'_{1}) \begin{bmatrix} \beta & & & \\ & \beta & \gamma & & \\ & & & \alpha & \\ & & & & \alpha \end{bmatrix}.$$

Hence

Here the 3rd (4th, 5th, 6th) and 8th rows of the matrix in the right-hand side may be modified arbitrarily. Thus we have

(61)
$$x_0^{\dagger}(e^{(2)}, d_1, 0, 0, 0, 0, e_1^{(1)}, 0, d_1') = (e^{(2)}, d_1, 0, 0, 0, 0, e_1^{(1)}, 0, d_1')R_1(x_0)$$

with R_1 as in (53). The construction described above gives from $(z_i) = (e^{(2)}, d_1, 0, 0, 0, 0, e_1^{(1)}, 0, d_1')$ the same old $(v_i) = (e^{(2)}, d_1, d_2, 0, 0, 0, e_1^{(1)}, c_{12}, d_1')$.

If we take our (u_i) ((52)) also as (a_i) , then $(b_i) = (v_i)$ too. We may also take $U^{(\kappa)} = U_1^{(\kappa)}$, though such identifications decrease the value of orthogonality. The verification of the orthogonality relations is left to readers.

If we take, instead of the above P_0 (in (56)), the parastrophic matrix

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{pmatrix},$$

then the corresponding automorphism \dagger of \mathfrak{A}_0 is given by

$$(63) \quad (d_1, e_1^{(1)}, d_1', e_2^{(2)})^{\dagger} = (d_1', d_1 - d_1' + e_2^{(2)}, d_1, d_1' - d_1 + e_1^{(1)}).$$

The corresponding conjugate basis is

$$(64) (e^{(2)} - d_1', d_1, e_1^{(1)} - d_1, d_1').$$

Thus the new vector (z_i) is

(65)
$$(z_i) = (e^{(2)} - d_1', d_1, 0, 0, 0, 0, e_1^{(1)} - d_1, 0, d_1').$$

For this new (z_i) we verify also

(66)
$$(z_{\iota})x_{0} = L_{1}(x_{0})(z_{\iota}), \quad x_{0}(z_{1}, z_{2}, \cdots, z_{9}) = (z_{1}, z_{2}, \cdots, z_{9})R_{1}(x_{0})$$

$$(x_{0} \in \mathfrak{Y}_{0}).$$

REMARK. Our orthogonality relations, for the quasi-Frobenius-algebra \mathfrak{A} , are closely related to those of the Frobenius-subalgebra \mathfrak{A}_0 . But they assert more than the latter do. Observe in particular that (b_{ι}) is essentially more than a basis of \mathfrak{A}_0 .

REMARK. Some of our constructions and assertions can be generalized to the case where $\mathfrak A$ is not a quasi-Frobenius-algebra, but where the left and the right regular representations of $\mathfrak A$ contain certain common direct components.

REFERENCES

- 1. R. Brauer, On hypercomplex arithmetic and a theorem of Speiser, A. Speiser Festschrift, Zürich, 1945.
- 2. T. Nakayama, On Frobeniusean algebras, I, Ann. of Math. vol. 40 (1939); II, ibid. vol. 42 (1941); III, Jap. J. Math. 18 (1942).
- 3. T. Nakayama and C. Nesbitt, Note on symmetric algebras, Ann. of Math. vol. 39 (1938).
- 4. C. Nesbitt and R. Thrall, Some ring theorems with applications to modular representations, Ann. of Math. vol. 47 (1946).

NAGOYA UNIVERSITY AND UNIVERSITY OF ILLINOIS