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AND QUASI-FROBENIUS-ALGEBRAS

TADASI NAKAYAMA

The celebrated orthogonality relation for the coefficients of the

regular representation of a group was extended first to the modular

case by Nesbitt, and then to Frobenius-algebras by the writer; the

proof was reproduced in [4]1 together with a second proof. Another

proof of this orthogonality, for the coefficients of the regular represen-

tations of Frobenius-algebras, and its interesting application to faith-

ful representations were given by Brauer [l]. In the present note

we propose a still different proof, and generalize the orthogonality to

quasi-Frobenius-algebras.

1. A class of automorphisms in a Frobenius-algebra. Let 31 be a

Frobenius-algebra [l; 2; 3; 4,] over a field ß, and let

(1) (ai, a2, ■ ■ ■ , an) with a,ar = 2~1 a„ial

be its basis. Let

(2) P   =   (     Z  .«rrJ».J

be a nonsingular parastrophic matrix. Let

(3) L(x) = (M*)).       R(x) = (/»„(*))

be the left and right regular representations defined by the basis (1).

We have

(4) R(x)P = PL(x).

With x = ££,a.eSl we put [2, II, §l]

(5) x* = £ ¿au iÙ = (PT'Ptt.).

In particular

(6) ia*i, a*, • • • , a*„)P-i = (alt «*•■-, an)(P')-\

* is an automorphism of Sí, and we have further, as a counterpart to

(4),

(7) R(x)P' = P'L(x*).
_
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1 Numbers in brackets refer to the references at the end of the paper.
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Also

4¡ ¡fe É jfc ¡fc

(x («i, a2, ■ • • , an)P~l =)x (au a2, • • • , an)(P')~1

(8)
- (fli, at,--- , a„)L(x )(P')~l

= (ai, at,--- , aK)(P')-1R(x)

(= (a*, a*,--- , a*)P-lR(x)),

((PTK^x  =)P-i(at)x = P->R(x)(ai)

= L(x)P-i(<0(= L(x)(P')-i(a*)).

Thus, if we put

(10) (¿i, bt, • • • , i») - (ai, a,, • • • , an)(P')-1 - (a* a*, • • • , al)p-\

then

(11) x*(&i, 4,, • • • , K) = (ii, bt,--, bn)R(x),

(12) (ft.)x = L(x)(i,).

We call (bi, b2, ■ ■ • , ¿>„) conjugate to (ai, a2, • • • , a„).

With an arbitrary representation Z(x) of SI, consider the matrix

(13) ,3 = 2>(¿.K

in 31. We have

Sx = ZZ(ft.)a,x = Z ^(*.) Z P.r(x)aT

(14) =   Z ^( Z fcp,r(*)V =   Z Z(x*br)aT

= Z 2(x*)Z(6r)ar = Z(x*)3.

Similarly we have, by virtue of (12) instead of (11),

(15) xS = &(*)■

A different choice of nonsingular parastrophic matrix gives rise to

an automorphism congruent to * modulo inner automorphisms. On

the other hand, if we start with another basis (ai, a2, • • • , an)Q of

31, then the parastrophic matrix Q'PQ belonging to it gives the same

automorphism *. Take the second basis such that the left regular

representation defined by it assumes a reduced form
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(16)

t/(1)(s)

/(l) times

UW(x)

\f(2) times

\f(k) times

£/•<«>(*) =

;<«>(*)      m^(x)\

F^(x)

with directly indecomposable U1k) and irreducible G^, FÍK). Here

G(">(*) is equivalent to /""'(x'*-1)); cf. [2, II, §l]. For those k for

which c7(,) are not irreducible, we can assume that our basis is chosen

so that G(K)(x)=F^(x<-*~1>). As for those k for which the UM are

irreducible, we see easily that we can choose pT in (2) suitably so

that FU)(x) = P(')(x(*~I)) ; those k correspond to simple subalgebras of

21 which are direct components of 21, and these components together

form a semisimple (hence certainly symmetric) algebra, and we have

merely to choose our * such that it induces the identity auto-

morphism on this subalgebra. Under these adjustments we have

(17) t/<">(*) =

/f<"»(ilr'l) MM(x)\

F^(x)

2. Orthogonality relation for Frobenius-algebras.

Theorem I. If a représentation Z(x) of 21 does not contain UM(x),

then F(k)(z) =0 for every element z of the matrix S in (13). (If a repre-

sentation contains Uu), then it contains Z7(,) as a direct component;

cf. [3, §2, Remark 3].)

For, let I be the linear space spanned, not necessarily linearly inde-

pendently, by the elements of the row of ,3 containing our z. It is

a left-ideal of 21, as (15) shows. Suppose, contrary to our assertion,

FM(z)¿¿0. Then I contains a certain primitive idempotent element e

which generates a left-ideal 2te defining Uilc). But I is a homomorphic

image of the representation module } of Z(x), again by (15). Hence

2le is a submodule of a homomorphic image of j, which means that

Z contains U('\ contrary to our assumption.
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In particular,

Theorem 1'. // f (x) is a coefficient in the representation L™ and

\^k, then F("(Zf(öc)al)= Ef(il)f<"(a,)=0.

Further, the part of C/(<) complementary to F(<) forms a repre-

sentation which certainly does not contain U("K The same is the

case with the part complementary to GU). Thus we have the following

theorem.

Theorem 1". IfÇix) is a coefficient in the representation i/(,) which is

not in Af<"\ then F<«>( Zf(&,)«.) = Z W^C«.) =°-

Remark. In Theorem 1" only the reduced form (16) of c7(,) is

used, and the more specified form (17) of t/(l) is unnecessary. In

Theorem 1', ¿7(li) can of course be in any form, not necessarily reduced.

We now assume that the F(") are absolutely irreducible, or at least

that a certain F(lc), which we deal with, is so. Denote the degree of

UU) by m(k). Because of our assumption the degree of F(") is equal to

the multiplicity /(k) of U(k) in the left regular representation; cf.

(16). Construct

(18) IF«' = Z Ul'KhW

It satisfies

(19) U«>x = U^ix*)UM,       xU(«> = WW^ix).

It is well known, and easy to see, that m(k) coefficients of the first row

(or any one of the first/(k) rows) of U(k) are linearly independent. (As

a matter of fact, it is also well known that the coefficients in the first

/(k) rows of L™ altogether are linearly independent. But this may

be seen from the sequel and need not be assumed as known.) Hence

the m(k) elements in the first row of U(k) are linearly independent.

They form, according to (19), a left-ideal IÍ"' which defines UM. IÍ"'

is a direct component of 31. Moreover, the first m(k) —/(k) of our ele-

ments of the first row of UM form a (unique) maximal left-subideal

of IÍ"', as the reduced form of UU) shows; this follows also readily

from Theorems 1', 1". Here the maximal left-subideal is precisely

the intersection of IÎ"' with the radical 91 of 3Í. Similarly the second,

the third, • • • , the /(/c)th rows of U(k) span left-ideals l^, í(3\ • • • ,

1$, belonging to I™.

Analogously, the last/(/c) columns (i.e., the m(/c)—/(«) +1st, u(k)

—/(«)+2nd, • • • , M(»c)th columns) of IF"' span right-ideals

rj"1, r^, • • • , $¡); all belonging to the representation U(k)(x*).

Now, take a system {e^1} of elements in 31 such that
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(20) FW(el?)=l     1     \(lat(i,j)),   Fa\eii?)=Q       (X * «).

\o    0/

The elements e^ form a system of matric units modulo 9Î. We have

mK)e^=UM(e[f*)]X(K). By virtue of (17), which we make use of for

the first time, this gives

(21) iW-lT'modR;

more precisely

(22) (1st row oiVLM)eiï = (ith row of O mod 5R.

Similarly we have

(23) en   r  = ri mod vt

and in fact

en (u(k) — /(«) + 1st column of U    )
(24) (K)

= («(«) — /((c) + ith column of U   ) mod 9Î.

Thus the (1, u(k) -/(/<) +l)-element of U("' lies in eiî'2Ieii' mod 31,

and is, therefore, congruent to £("'en mod 9Î with £(,t)£ß. The

(i, u(k) — f (k) +j)-element of U(-") is then congruent to ^"'e«1 m°d ^>

according to (22), (24). Its representation matrix in P(ri is the

matrix with £(,) at (i, j) and 0's elsewhere. This means, if we put

(25) Fl"\x) = (<bl't\x)U       MW(x) = (¿i\x))n,

that

(26) <b,t ( S Mü (*.K J = Z) 0»" («Oí*./ (¿0 = £ " fi.,-5«

(Î(Ï)(G o) * o).

Of course the relations in Theorems 1, 1', 1" can be written as

(27) 2>«<" W(&0 = 0,
i

where Ç(x) is as in those theorems. Thus:

Theorem 2. Let F<-K) be absolutely irreducible. With (25) we have
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the orthogonality (26). If Ç(x) is as in Theorems 1, 1', 1", then we have

(27).

3.  Quasi-Frobenius-algebras. Let now SI be a quasi-Frobenius-

algebra [2; 4] with a basis

(28) (ai, a2, • • • , a«),

which defines the left and right regular representations L(x), R(x) of

31. Let

(29) («i, u2, ■ ■ ■ , un) = (ai, a2, • ■ • , a„)Q

be a second, auxiliary basis of SI such that the left regular representa-

tion Li(x) =Qï1Lix)Qi defined by it has a decomposed form similar

to (16). Let U[k) be its indecomposable components; Ui^caU^'K The

right regular representation contains each U[k) with a certain multi-

plicity, say g(/c), greater than 0 (and it consists of them only). Put

Ii(k) = min (J(k), g(n)).

There exists a right-ideal of 31 which defines a representation contain-

ing (directly) each U[k) exactly A(k) times. Let

(30) (wi, w2, • • • , wm) im = Z *M«M)

be its basis such that the representation defined by it has U[') in

their order of indices, that is, first h(\) times i/f', then h(2) times

Uf\ and so on. Augment it with (/(/c) — ä(k))m(k) 0's after the ä(k)m(k)

w's belonging to U[k) (k = 1, 2, • • • , k). Thus we obtain a vector

(31) (»1, V2,   ■   ■   ■   ,  Vn),

with Z(/(K) — A(k))m(k) dummies 0, satisfying

(32) (ot)x = Li(x)(vt).

Put

(33) (bi, b2, ■ • • , ¿B) = (»i, Vi, ■ ■ ■ , v„)Q'i;

(bt) does not, together with (»,), form a basis of 31, in general. We have

(34) (bt)x = QiIiix)Qi (bt) = L(x)(bt).

With a representation Z(x) of 31, define S as m (L3) by means of this

(bi) (and the basis (a,)). Then we obtain (15) in the same way as

before.

Now, consider any left regular representation of 31 decomposed

and reduced in the form (16). We can prove quite similarly that:
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Theorem 3. With the vector (bi) in (33), constructed as above,

Theorems 1, 1', 1" are valid for the quasi-Frobenius-algebra 2Í.

Consider next the matrix

(35) 3*=E2(«0*.

in 21. By means of (34) we see

(36) S*x = Z(x)S*.

This leads us to the following theorem.

Theorem 4. Suppose that Z does not contain the component V-K) of the

right regular representation having F'"' as its top constituent. Then

F(x)(z) =0for any element z of £*. Hence, also in our quasi-Frobenius-

algebra generalization Theorem 3 of Theorems (1 and )l', I" we may

interchange (ai) and (bi) provided we consider Vl'} in place of f/(').

(For a Frobenius-algebra such a modification is rather mean-

ingless.)

Now, in order to specify our basis (bi) further, we start with a

(maximal) system {e,"'} of primitive idempotent elements in 21 such

that 2i4") defines U^ (c~U™). Let {c[f} be, for each k, a system of

matric units with c^ = e\"\ We assume that our auxiliary basis

(«,) ((29)) is taken in accord with the decomposition

(37) 21 = Z %e?

and is composed of the bases of eftye^ such that each basis of ej-x)2ie4w

is obtained from that of ef'^ei"' by the left- and right-multiplications

of c£\ eg. (If the FU) are absolutely irreducible, this means that («,)

is a so-called Cartan basis; we may perhaps call our basis a Cartan

basis in the wider sense.) Put

(38) £=Z£e.;
«   ¿=i

we can, and shall, take £21 as our right-ideal possessing the basis

(wi) ((30)). Replace in («,) those «'s not belonging to 2I0 = £2i£

simply by 0's, to obtain a vector

(39) (yi, y2, ■ • • , yn) ;

(yi) is essentially a basis of 2Io, augmented by some 0's. For x0£fio

we have

(40) *0(yi, yt, ■ ■ • , yn) = (yi, yt, • • • , yn)Li(xo) (x0 E 2lo)
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with our left regular representation Li of 31 defined by (ui). Also

(41) (y.)xo = Ri(xo)(y¡) (xoG3Io).

Sio is a Frobenius-subalgebra of (the quasi-Frobenius-algebra) 31.

Let f be its automorphism defined by a nonsingular parastrophic

matrix as in §1. Take a basis of 3lo conjugate (with respect to the

same parastrophic matrix) to the basis consisting of the nonzero y„

and augment it with 0's at the same places where (v,)E has 0's, to

obtain

(42) (Zi, z2, ■ ■ ■ , zn).

From the Cartan basis property of (a,), in the wider sense, and from

the way we enlarged (a/,) into (»,), we see easily (cf. also the argu-

ment below)

(43) (*,)xo = Li(xo)(2l) (xoGSIo).

It is also not difficult to see

(44) x0(zi, z2, • ■ ■ , zn) = (zi, Zi, • ■ ■ , zn)Ri(xo) (x0 E Slo).

Each idempotent element ej*' is represented in Li by a diagonal

matrix having l's and 0's on the diagonal, and different ejx) have l's

on different places (on the diagonal). The representation matrix of

c(y' has l's at the intersections of those rows and columns where the

matrices of 4X> and ejx) have l's (and 0's elsewhere). From this form

of Li and (43) it follows that (z.) consists of the basis of the modules

Sloef (i^jSh(\)) (and 0's) and the part corresponding to Slo^00 is

obtained from the part corresponding to Sloef' by the right-multi-

plication of Cy. Replace in (z.) those 0's, which are in the places we

had basis elements of £31(1— E) in (vt), by the basis elements of

EStcii^SloefMo i = hiK) + l, ■ ■ ■ ,/(X), obtained from those (in (z,))

of Síoeíx) by the (right-)multiplication of Ci¡¡\ Then we obtain a vector

which is essentially a basis of £31, augmented with some 0's. Denote

it (»,). It satisfies (32) (which justifies our notation). To see that we

have merely to verify the relation for the elements x of a form

x=cji)Xo4j) (xoEef'Síeí"'). Thus it suffices to verify the relation for

x = Cji\ Xo, and c«. But the relation is clear for these elements either

because of the above construction of our (vt) and the structure of the

representation matrices of c$, mentioned above, or because of (43).

So, we can employ this (vt) as our vector in (31). It satisfies, besides

(32),

(45) xo(pi, »2, • • • , vn) = (»i, Vi, ■ ■ ■ , vn)Riixo) (xo G 81o),
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as follows from (44) and our construction of (»,).

Define (bi, b2, • • • , bn) from our (vi, v2, • ■ • , vn) again by (33).

Then we have, besides (34), (15), (36), which we have already ob-

served, also

(46) *o(ii, h, ■ ■ ■ , bn) = (éi, é2, • • • , bn)R(xo) (x0 £ 2lo),

since R = (Q{ ̂ RiQl. We obtain then

(47) 3*o = Z(xl)3 (xo £ 2Io)

with 3 m (13), as our analogue to (14). With 3* m (35) we have,

from (45), also

(48) «¡3* = 3*Z(xo) (xo £ Sto).

Consider, after all these preliminary constructions, again a right

regular representation of 21 in a decomposed form (16). It needs not,

of course, be defined by our auxiliary basis («,) ((29)), but we assume

that it is taken such that there exists for each k a system of elements

{««' (*»i"li 2, • • • , h(K)} in 2io satisfying (20), where F(k) denotes

the last irreducible constituent of the directly indecomposable com-

ponent C/(,l) in our regular representation. We take it further such

that the representation matrices FU)(x§ ') and GU)(xo) with x0£2Io,

of respective degrees /(k) and g(ic), coincide with each other in their

places (i,j) with i,j = h(n). We also assume the absolute irreducibility

of F<'>.

With such i/(,) and our above (bi), we again consider (18). We have

(49) xVLM - Uw£7«(*).       VLMxo= U^(xl)]\M     (x0£%).

The first row of UU) spans a left-ideal defining UU), and its last/(/c)

elements do not belong to the radical 9Î. The same is the case with

each of the first g(/c) rows of U("\ and for i = h(n) the ith row is con-

gruent modulo 9Î to the first row multiplied on the right by eft'.

Further, each of the last /(/c) columns of \XM is congruent modulo 9Í

to the first of them, multiplied on the left by eft' with respective i;

observe that x is arbitrary in the first half of (49). In particular, the

(1, «(/c)-/(ic) + l)-element of UU) lies again in e^eii' mod 9Î, and

is thus congruent to an element ^"^íí' (P'Gfi) mod 9i. Here £(,)5¿0

since the element is not contained in Sft. Further, for i = h(n), j^/(k)

we see that the (i, u(k) —f(ic) +j)-element is congruent to ^"'eyi' mod

91. Hence
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(50) fa I Z Hi'i (bi)atJ = Z <*>»< (a.)At.-î (a.) = { " M«

tt(°(G O) * 0)

for t = 1,2, • ■ • , A(k) (ands, i, j = l, 2, • • • ,/(k)). On the other hand,

since &.G-E8I, for each i, G(,)(6.) has O's in its last g(«)—A(/c) rows.

This shows that the left-ideals of 31 formed by the A((c)+lst, • • ■ ,

g(/c)th rows of U(,) are properly homomorphic to l[K\ the left-ideal

formed by the first row. Thus Z'Atv>(^')*iG9'l for t" = A(/c) + l, • • • ,

g(/c). Hence (50) holds for t = l, 2, • • • , g(x.) and s, t, 7 = 1, 2, • ■ -,/(«)

without restriction.

Theorem 5. The orthogonality (50) holds for i = \,2, ■ ■ ■ , g(k) and

s, t, 7 = 1, 2, • • • ,/(«), F(<) A«»g absolutely irreducible.

Again we may consider ,3*, U*(,) instead of &, U(<). Observing

(36), (48) we obtain the following theorem.

Theorem 6. We can interchange (at) and (bt) in the orthogonality (50)

of Theorem 5 provided we consider (the normized) F(,) in place of UM

(cf. Theorem 4); §(d may differ from that of Theorem 5.

In fact, the argument for the case7' = A(ic)+l, • • • ,/(k) is simpler

than the one we had above for t = A(*c) + l, • • • , g(«). For, we have

simply ^(b,) =0 for those j.

Illustration. Since the above construction is somewhat compli-

cated, it is perhaps useful to illustrate it by an example. Consider

the (quasi-Frobenius-) algebra 81 consisting of matrices

(

U?

i/fV
(51)

over a certain field ß. Let ¿i1 \ e^1'. Cn, c2i, e(2), ¿i, ¿2, ¿i, ¿2' be the ele-

ments of 81 which have respectively au, an, au, a2i, ß, 71, 72, ôi, ôs = 1

and other coefficients equal to 0.

,.^ ,   N       ,j     (D j (i)   y   y    (*K
(52j («,) = (di, ei  , Cíi; d2, Cu, e2   ; d\, a2, e   )

forms a basis of 81, and in fact (51) is the left regular representation
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Li of 21 defined by this basis (52). The right regular representation

defined by the same basis is

(53)       Ri =

«ii

an

an

7i

«12

«12

«12

72

¿1

S,

ß)

We have /(l)=2=g(2), /(2) = l=g(l), and A(1)=A(2) = 1, while
«(1) =«(2) =3. The basis (e(2), du d2) of the right-ideal e(2)2l gives the

representation Ui\ and the bases (e(1), Ci2, d{), (c2i, e^, d2) of

ef'21, e^ty. give the representation £/?'. As (vi) we can take

(54) (»0 = (e    , di, d2;0,0,0;ei  , cx2, d[).

Put E = e^)+e{2). Then the left and the right regular representations

of 2Io = MJS defined by its basis (du ef; d[, e<2)) are

(55)

ß   y

a

a    ô

ß

a    6

ß

y ß

Its nonsingular parastrophic matrix P0, corresponding to the same

basis, is given by, for instance,

(56) Po =

Í0    1 0   0

0    0 10

0   0 0    1

11    0 0   0J

The corresponding automorphism f of 2Io is given by

rC7\     /J        (1)    j'       (2Kt IJ        (1)    j' (2)\/r.'\-1r. ,]'      l2)    J        (1\
(57)   (¿i, ei  ,dh e   )   = (dh d  , du e   )(P0)   P0 = (du e   , dx, ex ).

A conjugate basis is given by
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(58)
(2) (1)        /

(e    , di, ei  , di).

Now, (vi)E = (e<2\ di, 0; 0, 0, 0; ei", 0, di). Augmenting (58) with 0's

as we have 0's in (vi)E, we obtain

(59) (zi) = (e  \ di, 0; 0, 0, 0; ei \ 0, d[).

Since here (zi) = (vi)E, rather accidentally, it is clear that

(60) (*.)*>(- (vi)xoE = Li(x0)(vi)E) = Li(xo)(zi).

Further

ß

(2)        ,        «     r,     ~     « <!>

Xo(e   , di, 0, 0, 0, 0, ei  , 0, d'i)

= (em , di, 0, 0, 0, 0, ei", 0, d'i)

ß

[S

Hence

t.   (2) (1)
x0(e   , di, 0, 0, 0, 0, ei  , 0, ¿i)

= (e<2) , du 0, 0, 0, 0, ei", 0, d[)
ß

17 ß

Here the 3rd (4th, 5th, 6th) and 8th rows of the matrix in the right-

hand side may be modified arbitrarily. Thus we have

x0(e    , di, 0, 0, 0, 0, ei   , 0, d'i)

= (e2>, di, 0, 0, 0, 0, eXi  , 0, d'i)Ri(x0)

with i?i as in (53). The construction described above gives from (zi)

= (e<2>, ¿i, 0, 0, 0, 0, eP, 0, d{) the same old (»,) =(e<2>, du d2, 0, 0, 0,

ef\ca,di).
If we take our (ui) ((52)) also as (ai), then (bi) = (vi) too. We may

also take U(k) = t/J"', though such identifications decrease the value

of orthogonality. The verification of the orthogonality relations is

left to readers.
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If we take, instead of the above P0 (in (56)), the parastrophic ma-

trix

(62)

f 0    1    0   0

0    110

0    0    0    1

10    0    1.

then the corresponding automorphism f of Sto is given by

(63) (¿i, ei  , di, e   )   = (dh di — di + e    , ¿i, ¿i — dy + ex  ).

The corresponding conjugate basis is

(64) (e     — d'i, di, ex    — du d[).

Thus the new vector (z,) is

(65) (z.) = (e<2) - ¿Í, ¿i, 0, 0, 0, 0, e," - du 0, d[).

For this new (z.) we verify also

(66) (z,)xo = Li(xo)(z,),    xo(zi, z2, ■ ■ ■ , z») = (zh z2, , z9)Ri(xo)

(xo E Slo).

Remark. Our orthogonality relations, for the quasi-Frobenius-

algebra SI, are closely related to those of the Frobenius-subalgebra

Slo- But they assert more than the latter do. Observe in particular

that (&,) is essentially more than a basis of Slo-

Remark. Some of our constructions and assertions can be gen-

eralized to the case where 31 is not a quasi-Frobenius-algebra, but

where the left and the right regular representations of 31 contain

certain common direct components.
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