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In a recent paper (Proceedings of the American Mathematical

Society vol. 1 (1950) pp. 397-401), P. Erdös and G. Piranian ex-

posed a degree of arbitrariness in the relative size of the convergence

fields of row-finite and row-infinite matrices. Roughly, they proved

that there is a row-finite (-infinite) matrix with no equipotent row-

infinite (-finite) matrix.

This paper attempts to restore order. Also, remarks on reversible

matrices are appended. A simplification in the above-mentioned

paper will be described below, after Lemma 1.

Summability is often investigated with a reversible matrix (see,

e.g., Banach, Théorie des operations linéaires, pp. 90-95) or the special

case, called normal, of a triangular matrix with no zeros on the main

diagonal, although K. Zeller has recently weakened the require-

ments (Math. Zeit. vol. 53).

Theorem. Given an arbitrary reversible matrix A, there is a matrix,

all of whose rows are of infinite length, consistent with A, whose con-

vergence field is identical with that of A. There is also a normal, con-

servative matrix whose convergence field includes that of A.

We conjecture that the first part of the theorem is true with finite

instead of infinite.

The second part of the theorem may be compared with the follow-

ing result which was proved, but not stated, by Erdös and Piranian.

There is a regular matrix whose convergence field is not contained in

that of any normal matrix.

For their treatment of case I, p. 398, does not use regularity of B.

The proof of theorem is given in two lemmas.

Lemma 1. If, for a matrix A, there is a sequence {tn}, tn^O, such

that limn tnxn = 0for all x which is summable A, then there is a matrix B,

all of whose rows are of infinite length, consistent with A, whose con-

vergence field is identical with that of A. There is also a normal, con-

servative matrix which sums all the sequences which are summable A.

The second part of the lemma is trivial. We set dnn = t„, dnk = 0 if

ky^n. Here D turns out to be co-null. (See my paper, Trans. Amer.
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Math. Soc. vol. 67 (1949) p. 62, line 11.)
To prove the first part, suppose {tn} exists. We can clearly find a

sequence {sn}, sn>0, such that ^s„x„ converges for all x which is

summable A.

Let bnk = ank if either anms¿0 for some m^k, or k^n, b„k = Sk other-

wise.

Then

oO oo oo

¿_i   bnkXk   =   22 InkXk +    ¿_i   SkXk,
k=l k=l ¡fc=r(n)

where r(n)^n. Here r(n) describes the length of the wth row of A

provided that that row is at least n terms long, otherwise r(n)=n.

For any n for which r(n) = oo, the last sum will be zero.

If x is summable A, it is obviously summable B to the same limit.

If x is summable B, the last series must converge so that the 5-trans-

form of x will exist. Thus x is summable A to the same limit.

Remark. Using this argument we can simplify the matrix given

by Erdös and Piranian, p. 400, by simply omitting every alternate

row.

The following lemma shows that a single upper bound can be put

on the growth of a sequence which is summable by a reversible matrix.

Obviously the hypothesis of reversibility cannot be dropped, even

for regular matrices.

Lemma 2. Let A be a reversible matrix. Then there is a sequence {t„},

tn>0, such that lim tnxn = Q for all x which is summable A.

For example, if A is the matrix of the Cesaro-Hölder transform,

tn = l/n would do.

There is (Banach, loc. cit. p. 94) a sequence ja¡j and matrix

(cnk) with

(1) xn = otn lim y i + 2~2 cnkyk
k

wherey„ = 2* ankXk\ moreover X}*! C*A < °° f°r each n-

We choose tn>0 such that lim„ t„2Jk \cnk\ =lim„ i„an = 0. Then,

for x summable A, y as above, we have tnxn = tnan lim y.+í« ¿1* cnkyk,

and this clearly proves the lemma, noting that {y„} is convergent,

and therefore bounded.

The proof of the theorem is now complete.

We now append some remarks on reversible matrices. Let A be

reversible and {«i}, (cnk) have the same meaning as in the proof of

Lemma 2.
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Lemma 3. The matrix C is a right inverse for A.

We set, for each p, y = 5p in (1), where 5*" is the sequence of zeros,

save for a 1 in the pth place. This gives xn = c„p and so 23* o-nkCnp

= 2~2ik ankXk = 8np. This proves the lemma.

Lemma 4. If 2*Z)r ankCk,= £.-22* ankckr for each n, then ak = 0

for all k. In particular, if A is row-finite, ak = 0for all k.

Wesety* = l in (1). This gives xn = an+ 2~2k cnk. Thus 1 = 2~2kankxh

= X* ankak + 2~2k 2~2r ankckr =2~2k ankak +1 by hypothesis and Lemma

3. Since A is reversible, it follows that ak = 0.

We finally give an example of a regular matrix which has a two-sided

inverse but is not reversible.

Let A be the matrix

-1 2 0 0 • • •

0-1 2 0 • • •

0       0-1        2    • • •

It has the two-sided inverse

-1    -2 -4 -8 •••

0    -1 -2 -4 •••

0       0 -1 -2 • • •

and yet is not reversible since it transforms the sequence {(1/2)"}

to zero.

Thus, for a matrix, reversibility is not a generalization of the prop-

erty of having an inverse.
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