RIEMANN'S METHOD AND THE PROBLEM OF CAUCHY. II. THE WAVE EQUATION IN n DIMENSIONS ${ }^{1}$

J. B. DIAZ AND M. H. MARTIN

1. Introduction. In a recent paper ${ }^{2}$ Riemann's method for the solution of the problem of Cauchy for a linear hyperbolic partial differential equation $L(u)=0$ of second order for one unknown function u of two independent variables x, y was modified by the introduction of a line integral $I_{1}=\int\{B d x-A d y\}$ vanishing on closed paths. Here A and B are bilinear forms in the partial derivatives $u_{x}, u_{y}, v_{x}, v_{y}$; and v, the resolvent, is a properly chosen solution (analogous to Riemann's function) of an associate equation $M(v)=0$, the counterpart to the adjoint equation.

This modification opened the way to an extension of Riemann's method to the wave equation

$$
u_{x x}+u_{y y}-u_{t t}=0,
$$

in two dimensions. The line integral I_{1} was replaced by an integral I_{2} vanishing on closed surfaces and the associate equation $M(v)=0$ turned out to be the Euler-Poisson equation ${ }^{3}$

$$
M(v)=v_{\alpha \beta}+\frac{1 / 2}{\alpha-\beta}\left(v_{\alpha}-v_{\beta}\right)=0,
$$

with the resolvent

$$
v=\alpha+\beta+2[(\bar{t}-\alpha)(\bar{t}-\beta)]^{1 / 2}
$$

taking over the role of Riemann's function.
In the present paper the authors extend this method to the wave equation

$$
u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}-u_{t t}=0
$$

in n dimensions, $n \geqq 2$, with, as might be expected, an n-dimensional integral I_{n}, which vanishes over closed n-dimensional surfaces bounding ($n+1$)-dimensional volumes, replacing I_{1} and I_{2}. The associate

[^0]equation is now
$$
M(v)=v_{\alpha \beta}+\frac{(n-1) / 2}{\alpha-\beta}\left(v_{\alpha}-v_{\beta}\right)=0,
$$
and the resolvent is
$$
v=(\bar{i}-\alpha)^{(n-1) / 2}(\bar{l}-\beta)^{(n-1) / 2}
$$
2. The Laplacian $\Delta_{2} u=u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}$ in polar coordinates. Consider the generalization to n dimensions of the well known space polar coordinate system ϕ, θ, r, in three dimensions, where
\[

$$
\begin{aligned}
x=r \cos \phi \sin \theta, \quad y=r \sin \phi \sin \theta, \quad z=r \cos \theta, \\
0 \leqq \phi<2 \pi, 0 \leqq \theta \leqq \pi, r \leqq 0,
\end{aligned}
$$
\]

that is, coordinates $\phi, \theta_{1}, \cdots, \theta_{n-2}, r$ with

$$
\begin{array}{rlr}
x_{1}=r \cos \phi \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \cdots \sin \theta_{n-2}, & 0 \leqq \phi<2 \pi, \\
x_{2} & =r \sin \phi \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \cdots \sin \theta_{n-2}, & 0 \leqq \theta_{1} \leqq \pi, \\
x_{8} & =r \cos \theta_{1} \sin \theta_{2} \sin \theta_{3} \cdots \sin \theta_{n-2}, & 0 \leqq \theta_{2} \leqq \pi, \\
x_{4} & =r \cos \theta_{2} \sin \theta_{3} \cdots \sin \theta_{n-2}, & 0 \leqq \theta_{3} \leqq \pi, \tag{1}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & \cdot & 0 \leqq \theta_{n-2} \leqq \pi, \\
x_{n-1} & =r \cos \theta_{n-3} \sin \theta_{n-2}, & r \leqq 0 .
\end{array}
$$

The element of arc is given by

$$
\begin{aligned}
d s^{2}= & r^{2} \sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-2} d \phi^{2}+r^{2} \sin ^{2} \theta_{2} \cdots \sin ^{2} \theta_{n-2} d \theta_{1}^{2}+\cdots \\
& +r^{2} d \theta_{n-2}^{2}+d r r^{2}
\end{aligned}
$$

and if we write

$$
\begin{aligned}
y_{1} & =\phi, y_{2}=\theta_{1}, \cdots, y_{n-1}=\theta_{n-2}, y_{n}=r, \\
g_{11} & =r^{2} \sin ^{2} \theta_{1} \cdots \sin ^{2} \theta_{n-2}, \\
g_{22} & =r^{2} \sin ^{2} \theta_{2} \cdots \sin ^{2} \theta_{n-2}, \cdots, g_{n-1, n-1}=r^{2}, \quad g_{n n}=1
\end{aligned}
$$

we shall have

$$
\Delta_{2} u=\frac{1}{g^{1 / 2}} \sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\left(\frac{g^{1 / 2}}{g_{i i}} u_{y_{i}}\right), g^{1 / 2}=r^{n-1} \sin \theta_{1} \sin ^{2} \theta_{2} \cdots \sin ^{n-2} \theta_{n-2}
$$

If we set $f_{i-1}=g^{1 / 2} / r^{n-8} g_{i i}, i=1, \cdots, n-1$, so that

$$
\begin{align*}
& f_{0}=\csc \theta_{1} \sin \theta_{3} \sin ^{2} \theta_{4} \cdots \sin ^{n-4} \theta_{n-2} ; \\
& f_{1}=\sin \theta_{1} \sin \theta_{3} \sin ^{2} \theta_{4} \cdots \sin ^{n-4} \theta_{n-2} ; \\
& f_{2}=\sin \theta_{1} \sin ^{2} \theta_{2} \sin \theta_{3} \sin ^{2} \theta_{4} \cdots \sin ^{n-4} \theta_{n-2} ; \\
& f_{3}=\sin \theta_{1} \sin ^{2} \theta_{2} \sin ^{3} \theta_{3} \sin ^{2} \theta_{4} \sin ^{3} \theta_{5} \cdots \sin ^{n-4} \theta_{n-2} ; \tag{2}\\
& f_{n-3}=\sin \theta_{1} \sin ^{2} \theta_{2} \cdots \sin ^{n-3} \theta_{n-3} \sin ^{n-4} \theta_{n-2} ; \\
& f_{n-2}=\sin \theta_{1} \sin ^{2} \theta_{2} \cdots \sin ^{n-2} \theta_{n-2} ;
\end{align*}
$$

we find

$$
\Delta_{2} u=f^{-1}\left[\frac{\partial}{\partial \phi}\left(\frac{f_{0}}{r^{2}} u_{\phi}\right)+\sum_{j=1}^{n-2} \frac{\partial}{\partial \theta_{j}}\left(\frac{f_{j}}{r^{2}} u_{\theta j}\right)\right]+u_{r r}+\frac{n-1}{r} u_{r},
$$

provided we write

$$
f=\sin \theta_{1} \sin ^{2} \theta_{2} \cdots \sin ^{n-2} \theta_{n-2}=f_{n-2} .
$$

We note in passing that the element of ($n-1$)-dimensional area on the unit sphere $r=1$ is

$$
d \omega_{n}=f d \phi d \theta_{1} \cdots d \theta_{n-2}
$$

and the $(n-1)$-dimensional area of the unit sphere is

$$
\omega_{n}=\int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{0}^{2 \pi} f d \phi d \theta_{1} \cdots d \theta_{n-2}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

3. A fundamental identity. Starting with the polar coordinates $\phi, \theta_{1}, \cdots, \theta_{n-2}, r$ in n-dimensional space we introduce coordinates $\alpha, \beta, \phi, \theta_{1}, \cdots, \theta_{n-2}$ in ($n+1$)-dimensional space-time by setting

$$
\begin{equation*}
\alpha=t+r, \quad \beta=t-r, \tag{3}
\end{equation*}
$$

and term α, β characteristic coordinates, inasmuch as $\alpha=$ const., $\beta=$ const. are characteristic half-cones for the wave equation

$$
L(u)=\frac{f}{4}\left(u_{t t}-\Delta_{2} u\right)=0
$$

In these coordinates the operator $L(u)$ takes the form

$$
\begin{align*}
L(u)= & {\left[u_{\alpha \beta}-\frac{(n-1) / 2}{\alpha-\beta}\left(u_{\alpha}-u_{\beta}\right)\right] f } \\
& -(\alpha-\beta)^{-2}\left[\frac{\partial}{\partial \phi}\left(f_{0} u_{\phi}\right)+\sum_{j=1}^{n-2} \frac{\partial}{\partial \theta_{j}}\left(f_{j} u_{\theta_{j}}\right)\right] \tag{4}
\end{align*}
$$

with which we associate the operator

$$
M(v)=v_{\alpha \beta}+\frac{(n-1) / 2}{\alpha-\beta}\left(v_{\alpha}-v_{\beta}\right) .
$$

If we write

$$
\begin{array}{ll}
A=f u_{\beta} v_{\beta}, & B=-f u_{\alpha} v_{\alpha} \\
\Phi=f_{0} \frac{v_{\alpha}-v_{\beta}}{(\alpha-\beta)^{2}} u_{\phi}, & \Theta_{j}=f_{i} \frac{v_{\alpha}-v_{\beta}}{(\alpha-\beta)^{2}} u_{\theta_{j}}
\end{array}
$$

$j=1, \cdots, n-2$, a simple calculation shows that (note that v $=v(\alpha, \beta))$

$$
\begin{equation*}
A_{\alpha}+B_{\beta}+\Phi_{\phi}+\sum_{j=1}^{n-2} \frac{\partial \Theta_{j}}{\partial \theta_{j}}=\left(v_{\beta}-v_{\alpha}\right) L(u)+\left(u_{\beta}-u_{\alpha}\right) f M(v) \tag{5}
\end{equation*}
$$

This identity plays the role of a Green's identity ${ }^{4}$ in our investigation, the part of the adjoint equation being taken over by the associate equation $M(v)=0$.
According to the generalized Green's theorem, the surface integral

$$
\begin{align*}
I_{n}= & \int_{S_{n}}\left\{A d \beta d \phi d \theta_{1} \cdots d \theta_{n-2}+B d \alpha d \phi d \theta_{1} \cdots d \theta_{n-2}\right. \tag{6}\\
& \left.\quad+\Phi d \alpha d \beta d \theta_{1} \cdots d \theta_{n-2}+\cdots+\Theta_{n-2} d \alpha d \beta d \phi \cdots d \theta_{n-8}\right\} \\
= & \int_{S_{n}}\left\{A \nu_{\alpha}+B \nu_{\beta}+\Phi \nu_{\phi}+\cdots+\Theta_{n-2} \nu_{\theta_{n-2}}\right\} d S_{n}
\end{align*}
$$

(where $\nu_{\alpha}, \nu_{\beta}, \cdots$ are the components of the anit outer normal to S_{n}) when extended around a closed n-dimensional surface S_{n} bounding an ($n+1$)-dimensional volume V_{n+1} can be expressed as a volume integral over V_{n+1}, namely

$$
\int_{V_{n+1}}\left(A_{\alpha}+B_{\beta}+\Phi_{\phi}+\sum_{j=1}^{n-2} \frac{\partial \Theta_{j}}{\partial \theta_{j}}\right) d \alpha d \beta d \phi d \theta_{1} \cdots d \theta_{n-2} .
$$

The following lemma is now obvious.
Lemma. The surface integral I_{n}, taken around a closed n-dimensional surface S_{n}, vanishes whenever u, v are regular solutions of $L(u)=0$, and its associate equation $M(v)=0$, respectively.

[^1]It is worth while to note that each of $A, B, \Phi, \Theta_{1}, \cdots, \Theta_{n-2}$ is a bilinear form in the partial derivatives of first order of u and v with respect to $\alpha, \beta, \phi, \theta_{1}, \cdots, \theta_{n-2}$.
4. The problem of Cauchy. As Cauchy data on the hyperplane $t=0$ in ($n+1$)-dimensional space-time we take

$$
\begin{aligned}
u\left(x_{1}, \cdots, x_{n}, 0\right) & =u^{0}\left(x_{1}, \cdots, x_{n}\right) \\
u_{t}\left(x_{1}, \cdots, x_{n}, 0\right) & =u^{1}\left(x_{1}, \cdots, x_{n}\right)
\end{aligned}
$$

the functions u^{0}, u^{1} being given in advance. Let P_{l} denote the point with coordinates ($\bar{x}_{1}, \cdots, \bar{x}_{n}, \bar{t}$) in space-time. The solution of the problem of Cauchy requires the value $u\left(P_{\eta}\right)$ of the solution u of $L(u)=0$ to be expressed in terms of the initial data u^{0}, u^{1} carried by the part of the initial hyperplane $t=0$ contained within the ("retrograde") characteristic half-cone with vertex at $P_{\bar{i}}$, i.e., in terms of the initial data assigned to the points

$$
\left(x_{1}-\bar{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\bar{x}_{n}\right)^{2} \leqq \bar{t}^{2}, \quad t=0
$$

We assume $\bar{i}>0$ and consider the ($n+1$)-dimensional conical volume C bounded in space-time by the characteristic hypercone with vertex at $P_{\bar{l}}$ and the initial hyperplane $t=0$. The axis of C is the straight line $P_{0} P_{l}$ in space-time traced out by P_{t} as t ranges from 0 to \bar{t}. If at each point P_{t} we introduce polar coordinates $\phi, \theta_{1}, \cdots, \theta_{n-2}, r$ with pole at P_{t}, the conical volume C is described by the inequalities

$$
C: \quad 0 \leqq \phi<2 \pi, \quad 0 \leqq \theta_{i} \leqq \pi, \quad 0 \leqq r \leqq \bar{t}-t, \quad 0 \leqq t \leqq \bar{t}
$$

$$
(j=1, \cdots, n-2)
$$

When we take $\alpha, \beta, \phi, \theta_{1}, \cdots, \theta_{n-2}$ as rectangular coordinates in a second ($n+1$)-dimensional space, C appears as a "wedge"

$$
W: \quad 0 \leqq \alpha \leqq \bar{t}, \quad-\alpha \leqq \beta \leqq+\alpha, \quad 0 \leqq \phi<2 \pi, \quad 0 \leqq \theta_{i} \leqq \pi
$$

$$
(j=1, \cdots, n-2)
$$

That part of the boundary of C formed by the mantle of the characteristic hypercone becomes the face $\alpha=\bar{t}$ of W; the base $t=0$ of C is represented by the face $\beta=-\alpha$ of W; and the axis $P_{0} P_{l}$ of C by the face $\beta=\alpha$ of W. The vertex P_{\beth} of C appears as the edge $\alpha=\beta=\bar{t}$ of W; the periphery of the base of C (the intersection of the initial plane with the characteristic hypercone) is replaced by the edge $\alpha=-\beta=\bar{t}$ of W; and center P_{0} of the base of C by the edge ${ }^{5} \alpha=\beta=0$ of W.

To reformulate the problem of Cauchy in ($\alpha, \beta, \phi, \theta_{1}, \cdots, \theta_{n-2}$)-

[^2]space we observe that the carrier $t=0$ becomes the hyperplane $\beta=-\alpha$ upon which, from (3), we assign
\[

$$
\begin{equation*}
u_{\phi}=u_{\phi}^{0}, \quad u_{\theta_{j}}=u_{\theta_{j}}^{0}, \quad u_{\alpha}=\left(u_{r}^{0}+u_{t}^{0}\right) / 2, \quad u_{\beta}=-\left(u_{r}^{0}-u_{t}^{0}\right) / 2 \tag{7}
\end{equation*}
$$

\]

as initial data. One would accordingly seek an expression for the value of the solution u of $L(u)=0$, for $L(u)$ as defined in (4), along the edge $\alpha=\beta=\bar{t}$ of W in terms of the above initial data carried by the face $\beta=-\alpha$ of W.

To solve the problem of Cauchy as originally formulated we apply the lemma of the preceding section to the closed surface S_{n} which is the boundary of the wedge W and obtain

$$
\underset{\beta=\alpha}{I_{n}}+\underset{\beta=-\alpha}{I_{n}}+\underset{\alpha=l}{I_{n}}+\left(\underset{\phi=0}{I_{n}}+\underset{\phi=2 \pi}{I_{n}}\right)+\sum_{j=1}^{n-2}\left(I_{\theta_{j}=0}+\underset{\theta_{j}=\pi}{I_{n}}\right)=0 .
$$

For single-valued solutions, u must be periodic of period 2π in ϕ and it follows from the definition of Φ that

$$
\underset{\phi=0}{I_{n}}+\underset{\phi=2 \pi}{I_{n}}=0
$$

since the external normals to S_{n} have opposite directions on the faces $\phi=0, \phi=2 \pi$. Since Θ_{j} involves f_{j}, and f_{j} contains $\sin \theta_{j}$ as a factor for $j=1, \cdots, n-2$, it is clear that

$$
\underset{\theta_{j}=0}{I_{n}}=\underset{\theta j=\pi}{I_{n}}=0
$$

and the above result simplifies to

$$
\underset{\beta=\alpha}{I_{n}}+\underset{\beta=-\alpha}{I_{n}}+\underset{\alpha=7}{I_{n}}=0
$$

The integration of I_{n} in (6) over S_{n} yields

$$
\begin{aligned}
\int_{0}^{l} \int_{\omega_{n}}[-A+B]_{\beta=\alpha} f^{-1} d \omega_{n} d \alpha & -\int_{0}^{l} \int_{\omega_{n}}[A+B]_{\beta=-\alpha} f^{-1} d \omega_{n} d \alpha \\
& \left.+\int_{-\bar{l}}^{\boldsymbol{l}} \int_{\omega_{n}} A\right]_{\alpha=\bar{l}} f^{-1} d \omega_{n} d \beta=0
\end{aligned}
$$

and when we employ the definitions of A and B, we find

$$
\begin{align*}
& -\int_{0}^{l} \int_{\omega_{n}}\left[u_{\alpha} v_{\alpha}+u_{\beta} v_{\beta}\right]_{\beta=\alpha} d \omega_{n} d \alpha \\
& +\int_{0}^{l} \int_{\omega_{n}}\left[u_{\alpha} v_{\alpha}-u_{\beta} v_{\beta}\right]_{\beta=-\alpha} d \omega_{n} d \alpha+\int_{-l}^{l} \int_{\omega_{n}} u_{\beta} v_{\beta} \int_{\alpha=l} d \omega_{n} d \beta=0 \tag{8}
\end{align*}
$$

Up to this point v has been any solution of the associate equation $M(v)=0$. For v we now take the special solution ${ }^{6}$

$$
v=(\bar{t}-\alpha)^{(n-1) / 2}(\bar{t}-\beta)^{(n-1) / 2}, \quad n \geqq 2
$$

This solution, termed the resolvent, is obtained by applying the ordinary method of separation of variables to $M(v)=0$ and plays the role of "Riemann's function." It is convenient to observe that
$\beta=\alpha$ implies $r=0, \alpha=t$,

$$
\frac{v_{\alpha}-v_{\beta}}{2}=0, \quad \frac{v_{\alpha}+v_{\beta}}{2}=-\frac{n-1}{2}(\bar{t}-t)^{n-2},
$$

$\beta=-\alpha$ implies $t=0, \alpha=r$,

$$
\begin{aligned}
& \frac{v_{\alpha}-v_{\beta}}{2}=-\frac{n-1}{2}\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} r, \\
& \frac{v_{\alpha}+v_{\beta}}{2}=-\frac{n-1}{2}\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} \bar{t},
\end{aligned}
$$

$\alpha=\bar{t}$ implies $v_{\beta}=0$.
More precisely, the last relations hold for $n \geqq 3$, and (8) holds as a result of integrating the fundamental identity (5) over the "wedge" W, all integrals involved being proper integrals. However, if $n=2$ then v_{β} is infinite on $\alpha=\bar{t}$ and in order to obtain (8)-where improper integrals now appear-it is necessary to integrate first the identity (5) in (α, β, ϕ)-space over the smaller "wedge" $W_{\epsilon, \eta}$ whose cross section in the $\alpha \beta$-plane is bounded by the four straight lines

$$
\alpha=\beta, \alpha=-\beta, \quad \beta=\bar{t}-\epsilon, \alpha=\bar{t}-\eta,
$$

where $0<\eta<\epsilon<\bar{t}$. Passing to the limit, letting $\eta \rightarrow 0$ first, and afterwards letting $\epsilon \rightarrow 0$, yields (8).

Thus the last term in (8) drops out altogether, eliminating the need for prescribed data on the characteristic half-cone, and the result is

$$
\begin{aligned}
\int_{0}^{l} \int_{\omega_{n}}(\bar{t}- & t)\left.^{n-2} u_{t}\right|_{r=0} d \omega_{n} d t \\
& =\int_{0}^{l} \int_{\omega_{n}}\left[\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} \bar{t} u_{r}^{0}+\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} \cdot r \cdot u^{1}\right] d \omega_{n} d r
\end{aligned}
$$

where the integration on the left is performed on the axis of the cone

[^3]C. Since
\[

$$
\begin{aligned}
\int_{0}^{l} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{m-2}} d t_{m-1}\left[\int_{0}^{t_{m-1}} f\left(t_{m}\right) d t_{m}\right] & \\
& =\int_{0}^{l} \frac{(\bar{t}-t)^{m-1}}{(m-1)!} f(t) d t
\end{aligned}
$$
\]

it follows that the preceding relation may be differentiated at least $n-1$ times with respect to \bar{t}. Differentiating $n-2$ times with respect to \bar{t} yields the final formula:
(9)

$$
\begin{aligned}
& u\left(P_{\bar{\eta}}\right)=u\left(P_{0}\right)+\frac{1}{(n-2)!\omega_{n}} \\
& \quad \cdot \frac{\partial^{n-2}}{\partial \bar{t}^{n-2}} \int_{0}^{\boldsymbol{I}} \int_{\omega_{n}}\left[\left(\bar{t}^{2}-r^{2}\right)^{(n-8) / 2} \bar{t} u_{r}^{0}+\left(\bar{t}^{2}-r^{2}\right)^{(n-8) / 2} r u^{1}\right] d \omega_{n} d r .
\end{aligned}
$$

In the present notation, the usual formula ${ }^{7}$ for the solution of the Cauchy problem considered above may be written

$$
\begin{align*}
u\left(P_{\overline{7}}\right)= & \frac{1}{(n-2)!\omega_{n}} \frac{\partial^{n-1}}{\partial \bar{t}^{n-1}} \int_{0}^{\boldsymbol{l}} \int_{\omega_{n}}\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} \cdot r \cdot u^{0} d \omega_{n} d r \tag{10}\\
& +\frac{1}{(n-2)!\omega_{n}} \frac{\partial^{n-2}}{\partial \bar{t}^{n-2}} \int_{0}^{\bar{l}} \int_{\omega_{n}}\left(\bar{t}^{2}-r^{2}\right)^{(n-3) / 2} \cdot r \cdot u^{1} d \omega_{n} d r .
\end{align*}
$$

The two formulas for $u\left(P_{\bar{\eta}}\right)$ are easily seen to coincide, ${ }^{8}$ upon differentiating once with respect to \bar{t} the first integral on the right-hand side of (10). This differentiation may be carried out directly under the integral sign if one first sets $r=\bar{t} \rho$. A subsequent integration by parts then yields the result.

In conclusion, the above argument shows the uniqueness of the solution of Cauchy's problem. More precisely, if the Cauchy problem considered has a solution u which possesses continuous second derivatives on $t>0$ and continuous first derivatives on $t \geqq 0$, then u is given by formula (9).

University of Maryland

[^4]
[^0]: Presented to the Society, December 27, 1951; received by the editors November 19, 1951.
 ${ }^{1}$ This paper was sponsored by the Office of Naval Research.
 ${ }^{2}$ M. H. Martin, Riemann's method and the problem of Cauchy, Bull. Amer. Math. Soc. vol. 57 (1951) pp. 238-249.
 ${ }^{8}$ G. Darboux, Lę̧ons sur la théorie générale des surfaces, 2d ed., vol. II, p. 54 ff ., Paris, 1914-1915.

[^1]: 4Compare the "formule fondamentale" in the terminology of J. Hadamard, Le problème de Cauchy et les équations aux derivées partielles linéaires hyperboliques, Paris, 1932, chapter II, esp. p. 83.

[^2]: ${ }^{5}$ Compare M. H. Martin, loc. cit., p. 245.

[^3]: - Compare G. Darboux, loc. cit., p. 70, for $n=2$.

[^4]: ${ }^{7}$ R. Courant and D. Hilbert, Methoden der Mathematische Physik, vol. II, Berlin, 1937, p. 399.
 ${ }^{8}$ See M. H. Martin, loc. cit., page 244, for the case $n=2$.

