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1. Introduction. In a recent paper2 Riemann's method for the solu-

tion of the problem of Cauchy for a linear hyperbolic partial dif-

ferential equation L(u) =0 of second order for one unknown function

u of two independent variables x, y was modified by the introduction

of a line integral Ii=f\Bdx — Ady\ vanishing on closed paths.

Here A and B are bilinear forms in the partial derivatives ux, uy, vx, vv;

and v, the resolvent, is a properly chosen solution (analogous to Rie-

mann's function) of an associate equation M(v)=0, the counterpart

to the adjoint equation.

This modification opened the way to an extension of Riemann's

method to the wave equation

UxX   +   Uyy   -   Utt    =    0,

in two dimensions. The line integral h was replaced by an integral I2

vanishing on closed surfaces and the associate equation M(v) = 0

turned out to be the Euler-Poisson equation3

1/2
M(v) = vaß -\-— (va — vß) = 0,

a — p

with the resolvent

v = a + ß + 2[(t - a)(t - 0)]1'2

taking over the role of Riemann's function.

In the present paper the authors extend this method to the wave

equation

««m + • • • + «x„sB - Utt = 0,

in n dimensions, n ^2, with, as might be expected, an «-dimensional

integral /„, which vanishes over closed «-dimensional surfaces bound-

ing (« + l)-dimensional volumes, replacing Ix and 72. The associate
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equation is now

(n - l)/2
M(v) = vaß H-— (va - vß) = 0,

a — p

and the resolvent is

v = (t - aYn-»'2(t - ßY"-»'2.

2. The Laplacian A2u = uxlXl+ • • ■ +uXnXn in polar coordinates.

Consider the generalization to n dimensions of the well known space

polar coordinate system <p, 0, r, in three dimensions, where

x = r cos <p sin 6,       y = r sin <j> sin 6,       z = r cos d,

0 g <p < 2tt, 0 g 0 ú ir, r ^ 0,

that is, coordinates <p, 0lt • • • , 0n-i, r with

Xx = r cos <p sin 0i sin 02 sin 63 ■ • • sin 0n_2, 0 g <£ < 2x,

£2 = r sin <£ sin 0i sin 02 sin 03 • • • sin 0n_2, 0 ^ 0X ̂  ir,

x3 = r cos 0i sin 02 sin 03 • • • sin 0n_2, 0 :£ 02 á ir,

(1)             X4 = r cos 02 sin 03 • • • sin 0„_2, 0 S (j S r,

x„_i = r cos 0„_3 sin 0„_2, 0 ^ 0„_2 ?£ r,

xn = r cos 0„_2, f^O.
»

The element of arc is given by

2 2 2 2 222 2 2

ds   = r sin 0X • ■ • sin dn-2d<t> + r sin 02 • • • sin 6n-2ddx + • • •

2      2 2
+ r ¿0„_2 + dr ,

and if we write

yi = <P, y2 = 0i, • • • , y„-i = 0„_2, yn = r,

gu = r2 sin2 0i • • • sin2 0n_2,

gn = r2 sin2 02 • • • sin2 0„_2, • • • , g„-i,n-i = r2,       gnn = 1.

we shall have

1     »     d   /g112     \
^u = — E -   -«»< ), g1'2 = r-1 sin 0! sin2 0

g1'2 <_i   dy¿ \ |«       /

If we set /¿_i = gll2/rn~3gu, i = l, • • • ,n — l, so that

2 • • -sin"-2 0„_2.
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/o = ese 0i sin 03 sin2 04 • • • sinn_40„_2 ;

/i = sin 0i sin 03 sin2 04 • • • sin"_40n_2;

f2 = sin 0! sin2 02 sin 03 sin2 04 • • • sinn_40n_2 ;

(2) ft = sin 0i sin2 02 sin3 03 sin2 04 sin3 06 • • • sin"-40„_2 ;

»

fn-t = sin 0i sin2 02 • • • sin"-30n_3 sinn_40n_2;

fn-i = sin 0i sin2 02 • • • sinn_20„_2;

[June

we find

—HsG-M-âtë-)]
n — 1

+  U,T H-'- Ur

provided we write

/ = sin 0i sin2 02 ■ • • sinn_20„_2 = /»_».

We note in passing that the element of (n — l)-dimensional area on

the unit sphere r = 1 is

dcon = fd<pddx ■ ■ • ddn-2,

and the (»î —1) -dimensional area of the unit sphere is

»   i*2' 27r"'2

■     I      j     fdi/tdBx ■ ■ ■ ddn-2 =
0 J 0     J 0 r(»/2)

3. A fundamental identity. Starting with the polar coordinates

<f>, 0i, • • • , 0n-i, r in «-dimensional space we introduce coordinates

a, ß, <p,0x, • • • , 0n-i in (« + l)-dimensional space-time by setting

(3) a = t + r,        ß = t-r,

and  term a,  ß  characteristic coordinates,  inasmuch  as a = const.,

ß = const, are characteristic half-cones for the wave equation

L(u) = — (un — A2u) = 0.
4

In these coordinates the operator L(u) takes the form

(4)

r    {n -1)/2 r    ^f
L(U)   =      Ma/3-(«a ~ Uß)  If

L a — ß J

rd -n2  a i
- (a - ß)~2 V. ̂ M*} + £ IT to*') -

Lo<^> ,=i   o0,- J
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with which we associate the operator

(» - l)/2
M(V)   = Vaß -|-(Va - Vß).

a — ß

If we write

A   = fUßVß, B  =   — fUaVa,

Va-Vß Va-Vß

(a - ß)2 (a - ß)2

j = l, • • • , n — 2,  a  simple  calculation  shows  that   (note  that v

= v(a, ß))

(5) Aa + Bß + $, + E —l' - (Vß - va)L(u) + (uß - ua)fM(v).
j=l   dd¡

This identity plays the role of a Green's identity4 in our investigation,

the part of the adjoint equation being taken over by the associate

equation M(v) = 0.

According to the generalized Green's theorem, the surface integral

In=  \    {Adßd<pddi - • ■ ddn-i + Bdadipddx • • - ddn-i

(6) S"
+ üdadßddx • • • ddn-i + • • • + ®n-idadßd<p • ■ ■ d0„_8j

=    f      {AVa +  Bvß +   $H +   -   -  -   + Qn-iVB^dSn
JSn

(where va, Vß, • • • are the components of the unit outer normal to Sn)

when extended around a closed «-dimensional surface Sn bounding an

(« + l)-dimensional volume Vn+i can be expressed as a volume inte-

gral over Vn+i, namely

I      [Aa + Bfi + #, + E ■—)dadßd<j>ddx ■ ■ ■ ¿0n_2.

The following lemma is now obvious.

Lemma. The surface integral In, taken around a closed n-dimensional

surface Sn, vanishes whenever u, v are regular solutions of L(u)=0,

and its associate equation M(v) =0, respectively.

4 Compare the "formule fondamentale" in the terminology of J. Hadamard, Le

problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Paris,

1932, chapter II, esp. p. 83.
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It is worth while to note that each of A, B, <P, ©i, • • -, @„_2 is a

bilinear form in the partial derivatives of first order of u and v with

respect to a, ß, d>, #i> • • • , On-i-

4. The problem of Cauchy. As Cauchy data on the hyperplane

t = 0 in (»+l)-dimensional space-time we take

u(Xx, • • •  ,  Xn, 0)   =  U°(Xx, ■ ■ ■   , X„),

Ut(Xx,  •   ■  ■   ,   Xn,  0)   =   U^Xx,   •  •   •   ,   Xn),

the functions u°, u1 being given in advance. Let Pi denote the point

with coordinates (xx, ■ • • , xn, t) in space-time. The solution of the

problem of Cauchy requires the value u(Pj) of the solution u of

L(u) =0 to be expressed in terms of the initial data u", u1 carried by

the part of the initial hyperplane t = 0 contained within the ("retro-

grade") characteristic half-cone with vertex at P?, i.e., in terms of the

initial data assigned to the points

(xi - xx)2 + ■■■ + (xn- xn)2 g P, t = 0.

We assume t>0 and consider the (n + l)-dimensional conical vol-

ume C bounded in space-time by the characteristic hypercone with

vertex at P-, and the initial hyperplane t = 0. The axis of C is the

straight line PoPj in space-time traced out by Pt as t ranges from 0 to t.

If at each point Pt we introduce polar coordinates <p,0x, ■ • ■ , 0n-i, r

with pole at Pt, the conical volume C is described by the inequalities

C:    0 ^ c¡> < 2tt,     0 ^ 0,- ̂  ir,     Ogrgi-i,     0 = t ^ t

(j = 1, • • • , n - 2).

When we take a, ß, <p, 0i, • • • , 0n-i as rectangular coordinates in a

second (« + l)-dimensional space, C appears as a "wedge"

W:    0 á a á I    - a g> ß g + a,    0 ^ <j> < 2r,    0 ^ 0¡ g tt

(j = 1, • • • , n - 2).

That part of the boundary of C formed by the mantle of the char-

acteristic hypercone becomes the face a = t of W; the base t = 0 oi C

is represented by the face ß = — a oi W; and the axis PoP? of C by the

face ß = a of W. The vertex Pj of C appears as the edge a=ß = t of

W; the periphery of the base of C (the intersection of the initial plane

with the characteristic hypercone) is replaced by the edge a= —ß = t

of W; and center P0 of the base of C by the edge5 a=/3 = 0 of W.

To reformulate the problem of Cauchy in (a, ß, <f>, 0X, • • • , 0n~i)-

5 Compare M. H. Martin, loc. cit., p. 245.
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space we observe that the carrier t = 0 becomes the hyperplane

ß= —a upon which, from (3), we assign

(7)     «0 = «¿,    utj = utj,    ua = (ur + «0/2,    uß = — (ur — «0/2

as initial data. One would accordingly seek an expression for the

value of the solution u of L(u) =0, for L(u) as defined in (4), along

the edge a=ß = t of W in terms of the above initial data carried by

the face ß = — a of W.

To solve the problem of Cauchy as originally formulated we apply

the lemma of the preceding section to the closed surface Sn which is

the boundary of the wedge W and obtain

In    +     h     +    In    +(ln    +      /»   )  +   E ( /.    +      /,   )   =  0.
ß=a 0—a a=l \«-0 *=2ir/ ;=1 \0,=O «¿=t /

For single-valued solutions, u must be periodic of period 2ir in <p

and it follows from the definition of <3? that

In     +    In      =   0,
<l¡=0 *=2t

since the external normals to S„ have opposite directions on the faces

d> = 0, <p = 2ir. Since ©j involves/,-, and/y contains sin 0¡ as a factor for

j = l, • • ■ , n — 2, it is clear that

In  =   h   = 0,

and the above result simplifies to

In   +      In     +    In    =   0.
ß—a ß=—a a—1

da

The integration of /„ in (6) over Sn yields

f     f   [-A + B]ß=af-'do>nda -  f     f   [A + B]ß._af-idun
J 0      •' u„ " 0      J un

+  f     f  A     f~ldo>ndß = 0,
J -1   J wn      Ja-7

and when we employ the definitions of A and B, we find

>t
—  I I     [uava + UßVß]ß=adwnda

Jo J un

+  I [uava — ußVß]ß=-adanda +  I      I    ußvß I     du„dß = 0.
J 0 J «„ J -1 J u„ J a=I

W ,',
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Up to this point v has been any solution of the associate equation

M(v) = 0. For v we now take the special solution6

v= (t- a)(»-D/2(J - jS)'"-1»2, 0 £ 2.

This solution, termed the resolvent, is obtained by applying the

ordinary method of separation of variables to M(v) = 0 and plays the

role of "Riemann's function." It is convenient to observe that

ß = a implies r = 0, a = t,

Va — Vß Va + Vß « —  1     .

ß = — a implies / = 0, a = r,

Va — Vß n — 1

2 2

Va + Vß « —   1

(J2  —  riyn-Z)/2r¡

(t2 - r2Y"-vin,
2

a = t implies Vß = 0.

More precisely, the last relations hold for w^3, and (8) holds as a

result of integrating the fundamental identity (5) over the "wedge"

W, all integrals involved being proper integrals. However, if n = 2

then Vß is infinite on a = t and in order to obtain (8)—where improper

integrals now appear—it is necessary to integrate first the identity

(5) in (a, ß, <p)-space over the smaller "wedge" We,v whose cross

section in the a/3-plane is bounded by the four straight lines

a = ß,  a=-ß,  ß = t-e,  a=t-r¡,

where 0<r¡<e<i. Passing to the limit, letting r¡—>0 first, and after-

wards letting e—»0, yields (8).

Thus the last term in (8) drops out altogether, eliminating the

need for prescribed data on the characteristic half-cone, and the

result is

/|    (/"-/)n-2«J    dundt
0     J u, I r=0

=   f     f  [(P - r>)f*-»»W + (P-r»)(-«'*• r-«1]*»^,
JO J M„

where the integration on the left is performed on the axis of the cone

• Compare G. Darboux, loc. cit., p. 70, for » = 2.
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C. Since

/»I /• <1 /• <m-4 T    /• 'm-l

Ä1   I       <»,•■•     I rf/m-l I f(tm)dtm
o       J o Jo l-J o J

I (t- t)m-

"/. o    («-!)!
/(0*.

it follows that the preceding relation may be differentiated at least

n — 1 times with respect to t. Differentiating n — 2 times with respect

to / yields the final formula:

1
u(Pt) = m(Po) +

(»-2)1«,

ó"1"2     pï

—-—    I      I     [(í2 - r2)<"-3>/2/w? + (/2 - r2)«"-3)/2^1]^«^.
dtn~2   Jo   J u„

In the present notation, the usual formula7 for the solution of the

Cauchy problem considered above may be written

(10)

l d»-1   rJ   r
u(Pi) =-\    (t2- r2)(n-3)/2-r-«°¿w„¿r

(n-2)lo,n   dt»'1 Jo   J»,

+-I      I    (t2 - ^'■"-w-r-^dwndr.
(n- 2)!w„   dtn~2 Jo   J«n

The two formulas for «(Pi) are easily seen to coincide,8 upon differ-

entiating once with respect to t the first integral on the right-hand

side of (10). This differentiation may be carried out directly under

the integral sign if one first sets r = tp. A subsequent integration by

parts then yields the result.

In conclusion, the above argument shows the uniqueness of the

solution of Cauchy's problem. More precisely, if the Cauchy problem

considered has a solution u which possesses continuous second

derivatives on ¿>0 and continuous first derivatives on t^O, then u

is given by formula (9).

University of Maryland

7 R. Courant and D. Hubert, Methoden der Mathematische Physik, vol. II, Berlin,

1937, p. 399.
8 See M. H. Martin, loe. cit., page 244, for the case n = 2.


