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1. Put

(1.1) - =  E B*>(u) -, Bm = Bm(0).
ex — 1       m=0 ml

The writer has shown [l, §4] that if (p — l)pr\ m, m>0, then

1
(1.2) Bm +-1 = 0 (mod p') (P^3);

P

indeed if m = t(p — l)pr, then

(1.3) am = —\Bm-\-1 ) = twv (mod p),
pr\ P        I

where wp=((p —1)1 + 1)/p. (For the case r = 0, see [2, p. 354].) It was

stated that

■ph.

(1.4) am =- ¿i-*    22    a(a) (mod #") (p > 3),
a=l,pA a

where h= [(r + 2)/3] and q(a) = (a^-»vT-l)/pr+\

In the present note we first extend these results to Bm(u), where

the rational number u is integral (mod p). Secondly we derive the

corresponding divisibility property for B^(u) defined by [3, chap. 6]

:k\oy(1.5) M-rY." = i B*\u),        B^ = B
\ex — 1/ m=0

where k is restricted to the range l^k^p — 1.

2. We recall that

1 '-1
(2.1) -(Bm+1(u + t)- Bm+i(u)) = 22(u+s)m,

m + 1 s=o

also

™ /m\
(2.2) Bm(u + t) = 22[     )taBm_s(u).

<-o \ s /
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Now for p\u+s, put

(u + j)<*-»i" = 1 + pr+lq(u + s),

from which it follows that

(2.3) (u + s)m = 1 + tpr+1q(u + s) (mod p2r+2) (m = t(p - l)pr).

If we put

ph—l pti—1

Sm(ph) = E (« + *)m,    s'm(p")=   E   (« + *)",
M 8=0, pK U+8

where Ä =T, it is evident that

(2.4) Sm(ph) = Si.fr*) (mod p*'+*),

since m^(p — l)pr^2(r + l). In the next place it follows from (2.3)

that

(2.5) S'm(ph) = p" - £*-» + tpr+1R(ph) (mod i2r+2),

where

pÄ—1

W =    E    «(« + «).
8=0, p A U+S

By (2.1) and (2.2) we see that

1     m+i/m + 1\
Sm(ph) =-—■ E ( ph*Bm+i-s(u)

(2.6) m+l«\    s    )

A      1    ( m\= E ——:(      ,»(,tl)5«W.
s=0   5 +   1 \ S /

Now let p ^ 3 ; then it is easily verified that for s = 1 each term in the

extreme right member of (2.6) is divisible by at least pr+2h. Hence

by (2.4), (2.5), (2.6) we have

(2.7) phBm(u) + ph~l - ph = tp'+iR(ph) (mod p2r+\ pr+2h).

In particular for A = 1, (2.7) becomes

pBm(u) + 1 - p = tpr+1R(p) (mod p'+*)

which shows that

(2.8) <xm(u) = — [Bm(u) +-1 )
Pr\ *        /
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is integral (mod p) and indeed

(2.9) om(u) m tR(p) (mod p).

It is easily seen that, forw = 0, (2.9) reduces to (1.3).

To get a stronger congruence we take 2/t=:r+2. Clearly (2.7)

implies

(2.10) an(u) m tp1-hR(ph) (mod ph) (lgiár/2+ 1).

In particular when h= [r/2 + l], we have the largest modulus.

We now state:

Theorem 1. Let £ = 3, m = t(p — l)pr, then am(u) as defined by (2.8)

is integral (mod p). Moreover am(u) satisfies the congruences (2.9) and

(2.10).

For u = 0, (2.10) is not quite as sharp as (1.4). Indeed to prove

(1.4) we take u = 0 in (2.6) and assume p>3. Then since Bm-i = 0 we

can show that (2.6) implies

Sm(ph) m p>Bm (mod p'+îh) (u « 0) ;

the rest of the argument is as before except that we take 3& = r + 2.

Thus (1.4) is proved.

We remark that if in place of (2.3) we use

(u + s)m = 1 + pT+1Q(u + s)

so that Q is integral (mod p), and replace (2.4) by the stronger con-

gruence

Sm(p>>) = S'm(ph) (mod />'"),

then (2.7) becomes

phBm(u) + ph-1 - ph = pr+1R*(ph) (mod pm, pT+2h),

where now

R*(ph) =   E   e(« + s).
a=0,pA u+8

Hence

(2.10)' <xm(u) m pi-i'R^p'') (mod p»),

provided r + 2h^m.

Similarly in the case u = 0, we find that

om m pi-"R*(p*) (mod ph) (p > 3),
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provided r + 3h^m.

3. We shall require the following formula [3, p. 148, (87)]:

(m \ t,1 /k- 1\ Bm_t(u)     (t)
(3.1)     £<*>(«) = *( JI(-l)»- )-—bI\u),

\k / a=o \    s    /  m — s

where B^(u) is defined by (1.5). We suppose m = 5o (mod £ — 1),

O^so^k — 1, k^p — 1; also pr\m— s0. Now for S5^s0, both Bm~,(u)

and Bf(u) are integral (mod ¿>). Hence (3.1) implies

tit) k-i-st,/ m\ (m — So — 1\ (k) r
BÍ\u)m(-í)        '(     )( S^.Wfl.VwHí),

\ So/ \« —  So  —   1/

so that by Theorem 1,

(Tm   (U)   =   -<Bm   (u)

P~
(3.2)

^-^0-t)O€::::)^}
is integral (mod p). We state:

Theorem 2. Letpt3,1 ¿kg>p-1;m=-s0 (modp-l),0^s0^k-1;

pT\m — so; then Om(u) as defined by (3.2) is integral (mod p). In par-

ticular if (p — l)pr\m then

^wu'O-ix::,1)}
is integral (mod p).

Theorem 2 can be extended to larger values of k but the results

are complicated. We remark that

/ dY
B,   («)-—-—( — )        (« - l)(u- 2) • • • (u- k+ 1)

\du/
(u) =

(*-D!

/or &>s.
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