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THE RECIPROCAL OF A CONTINUED FRACTION

W. T. SCOTT

Stieltjes [3, Chapter X],1 and later Rogers [2], gave formulas by

means of which the reciprocal continued fractions for continued

fractions of a certain claás may be determined. We give below a theo-

rem which extends the class of continued fractions to which this

reciprocal transformation is applicable;2 moreover, the theorem is

stated in terms of certain parameters which facilitate the trans-

formation.

From results of [l] it is known that there is a unique, one-to-one

correspondence between formal power series, £(z) = l+22i cp/zP<

and C-fractions,

a,      a2 a„

2fli -f 2/Sî 4. -(- g/»» -(-

where the/3pareintegers,/3o = 0,/3p_i+j3p>0,andap?íO,/> = l, 2, • • -,

re, or p = l, 2, • ■ • , according as the C-fraction does or does not

terminate. The power series for the pth approximant of the C-frac-

tion agrees with £(z) for the first (ap-.i+ap) terms, where ap=ßo

+ßi+ • • • +ßp\ this property characterizes the correspondence (1).

For simplicity we put a2n=0 in case a C-fraction terminates with

the (2re — l)th partial quotient. Our result is stated below for a

class of terminating C-fractions. In the nonterminating case the

conditions of the theorem must hold for every index, re; conse-

quently, a statement of our result in this case is obtained by replac-

ing re by oo.

Presented to the Society, November 25, 1949; received by the editors February 1,

1952.
1 Numbers in brackets refer to the bibliography at the end of the paper.

2 Another theorem on reciprocals of C-fractions was given by Evelyn Frank, Amer.

J. Math. vol. 68 (1946) pp. 89-108. The domain of application of the two theorems

does not overlap.
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Theorem. The correspondence

ax      a2 a2n-i      a2n
(2) F(z) ~ 1 + —     —      • • •      -     -

2"' + 1  + + z"2»-1 +   1

implies the correspondence

1 d      «i ö2n_i     a2n
(3) -1 + —     —      ...      —     -

F(z) z^+  1  + + z"2"-1 +   1

if and only if the correspondence (2) has the form

„,. .    ,     2gi gi(g2 -   1) (g2n-2 +  l)g2n-l
F(z) ~ 1 H-——■      • • •      -

a* +        1 +        + z"2«-1
(4)

g2„-jUJ2n  —   1)
-,

+ 1

where güp-i^O, p = l, 2, • • • , re, and glp^l, p = l, 2, • • • , n — l. In
this case (3) has the form

1 2gi gi(gi +  1) (gin-2 -   l)g2n-l

F(z) z"' +        1 +        + z"2»-'
(5) V

g2n-l(gin +  1)

+ 1

which may be obtained from (4) by replacing gp by —gp.

We begin the proof by noting that the pth numerator, Ap(z), and

denominator, Bp(z), of (2), which are the solutions of

(6) yp = zP'yp-i + aPyp-2, p = 1,2, ■ ■ ■ ,2n, ß2p = 0,

for which y_! = l, yo = l, and y_i = 0, yo = l, respectively, are poly-

nomials in z of degree <rp with leading coefficient unity. Since

Ap(z)Bp-i(z) - Ap-i(z)Bp(z) = (—i)axat ■ ■ • ap,   p = 1, 2, • • • , 2«,

it follows that the pth approximant of (2), Ap(z)/Bp(z), is irreducible.

Also £2p^i(0)=0, A2p-i(0)^0, p = l, 2, • • • ,», while £¡¡„(0)^0,

p = l, 2, • • • , n — l, and £2„(0) =0 if and only if a2„ = 0. Similar re-

marks apply for the numerators, A*(z), and denominators, B*(z), of

(3).
If (2) implies (3), then

*       * * *
1       a-i      a2 a2n-i     a2n

F(z) ~ —     —     —      • • •      -     -,
1 + Z* + 1 +        + z"2»-' +   1
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and the odd contraction of the continued fraction on the right gives

* *  * *       *
öl 02   Os ß2n-2 a2n-l

(7) 1-      • • •      -j
z* +a\+a*- z*> + a* + a* - - z^-i + a2n-i + a2n

whose pth approximant is B^z) / A%(z). The even contraction of the

C-fraction of (2) is

öi a2a3 a2n-2a2n_i

(8) 1 + —-     —-;-       •■•       -¿-r;-ï-—*■
z"> + a2 - z*» + a3 + at - - z"2*-» + aU-i + ain

whose pth approximant is A2v(z) /B2v(z), and from earlier remarks

it follows that

(9) A*2p(z) = B2p(z),       B*2p(z) = A2p(z), p = 1, 2, ■ ■ • , re.

Since the continued fractions (7) and (8) are identical, we deduce the

necessity of the conditions

* * i    *
«i = — ai, ax + a2 = a2,

(10)
* * *    *

ö2pff2p+i = a2pa2p+i,       a2p+i + a2p+2 — a2p+i + a2p+2,

p =  1, 2, • • • , re — 1,

which are precisely the formulas given by Rogers for the case

ß2p_i = l, P = l, 2, • • • , re, and are equivalent to the formulas of

Stieltjes for this case.

Continuing with the proof, we note that ^42p_i(0) ¿¿0, p = l, 2, • • •,

re, B^p(0)^0, p = 0, l,-..,n-l; hence by (9), Ap(0)^0, p
= 0, 1, • • • , 2re-1, when (2) implies (3).3 Then by (6)

a2p_! = A2p-i(0)/A2ps(0) = (g2p-2 + l)gip-i,

p = 2, 3, ■ ■ ■ , n, ai = 2gu

a2p = [A2p(0) - A2p_i(0)]/A2p-2(0) = g2p-i(g2p - 1),

p = 1, 2, • • • , re,

where

g2p-i = A2p_i(0)/2A2p-2(0),       g2p = - 1 + 2A2p(0)/A2p^1(0),

p = 1, 2, • ■ ■ , n;

thus the correspondence (2) may be written in the form (4) where

* When ftp-i = 1 and the continued fractions are nonterminating, a theorem of

H. S. Wall, Trans. Amer. Math. Soc. vol. 48 (1940) p. 168, is equivalent to the state-

ment that (2) implies (3) if and only if Ap(0) ̂ 0, p = 1, 2, • • • .
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gîp-i^O, p = l, 2, ■ ■ ■ , re, and gln7¿l, p = l, 2, ■ ■ ■ , re-1. It is now

easy to show by induction that for these ap, p — l, 2, • • ■ , 2re, the

numbers oj obtained from them by replacing gp by — gp,

p = l,2, • • • , 2re, are solutions of (10) for which a*¿¿0, p = l,2, • • •,

2« —1; consequently the correspondence (3) may be written in the

form (5).

Conversely, if (4) holds, the partial numerators ap and a* of the

continued fractions in (4) and (5) satisfy (10). Then the continued

fractions (7) and (8) are identical and (9) holds, from which it is

readily seen that the left member of the correspondence (5) is 1/F(z).

Thus a correspondence (2) which can be written in the form (4)

implies a correspondence of the form (3), and the proof of the theorem

is complete.

It is readily found that the present theorem is applicable to a

large class of continued fractions obtained from the continued

fractions of Gauss and of Heine. For example the expansion of

F(a, -b, a; -x)/F(a, 1-b, 1+a; -x) is (cf. [4, p. 337])

1(1 - 6) (a + l)(a + b+l)

(a + l)(a +2)X (a + 2)(a +3)

1 + 1

2(2 - b)

ÖT+3)(a + 4) *

1 +"*'

which converges in the x-plane cut from — 1 to — oo, except perhaps

for isolated points (cf. [4, p. 339]). The parameters of the theorem

are found to be g2p+i = (a+b)/2(a+2n-l), g2p = l+2p(p-b)/(a+b)

■(a+2p), p = l, 2, ■ ■ ■ , and application of the theorem with z re-

placed by 1/x yields the new expansion,

a+b (a+l)(a + b+l) 1(1 — 5)

j        g+1* (a+l)(a+WX (a + 2)(a + 3) *

1        + 1 +1

(a + 2)(a + b+2) 2(2 - b)

(a + 3)(a +4) (a + 4)(a + 5) *

+ 1 + 1 +'

for the reciprocal of the original series. It is easily shown that the

new expansion converges in the x-plane cut from — 1 to — °o, except

perhaps at isolated points.

1 +

a(a + b)

a(a + 1)

+

+
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