
INACCESSIBLE BOUNDARY POINTS

A. W. GOODMAN

1. Introduction. The Riemann mapping theorem gives immediately

the existence of a function F(z), analytic in £, the circle \z\ <1, and

mapping that region onto a region having inaccessible boundary

points [3, pp. 179-200j.»
However, so far as the author is aware, there are no known formal

expressions for an F(z) of this type, and it is the purpose of the

present work to remedy this defect by giving a class of examples of

such functions. As a particular case we shall see that the function

(1.1) F(z) = —-—

II (1 - z2 cos (7T/2C+1»/2) + z2)1'2"
n=l

maps E onto a region B, of the w-plane, for which all of the points

w > 8 are inaccessible boundary points.

2. The slit regions B,. We shall consider regions formed by delet-

ing from the entire complex plane an infinite number of semi-infinite

radial slits, symmetrically placed with respect to the real axis. Be-

cause of this symmetry it is sufficient to consider only the slits in the

closed upper half-plane. Let Sn denote the slit with end point at

w =pnei*n and suppose the subscripts so chosen that

(2.1) IT  =   <bo  >  01  >  <l>2  >   •   ■  ■   >  <Pn  >   ■   ■   ■   >  <t>K  =   0.

Definition. A region B, is said to be of type S if it is formed as

described above, and if in addition:

(a) There is a constant m > 0 such that

»lp,<», re = 0, 1, 2, • • • ,

(b) lim <bn = 0,
»—»00

(c) p« = lim inf p„.
n-+oo

It is obvious that if pM< «, then all of the points w>p„ are in-

accessible boundary points of Bs. Condition (a) assures the existence

of an F(z), such that £(0) =0, £'(0) >0, and F(z) maps £ conformally

onto Bt. Theorem 1 gives somewhat more information about F(z).
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1 Numbers in brackets refer to the references at the end of the paper.
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Theorem 1. For each region B, of type S there are constants c>0,6n,

(2.2) it > 0! > e2 > ■ ■ ■ > en > ■ ■ ■ > o, en -» 0» = o,

such that if

(2.3) F(z) = —-,
00

PI (i - z2 cos en + z2)y
n=l

where

(2.4) y„ir = <t>„-i — 4>n, n = 1,2, - • ■ ,

then F(z) maps E conformally onto B„ with £(0)=0 and F'(0)>0.

Conversely each function defined by (2.3) and (2.2) with

CO

(2.5) Et» = 1, 7»>0;re= 1, 2, ••• ,
n=l

maps E conformally onto a region of type S where the directions of the

slits are determined by

00

(2.6) <pn = X E Tí-
J-n+1

Proof. First note that each term of the product

(2.7) £n(z) = (1 - z2 cos 0„ + z2)?» = (1 - ze»»)y»(l - ze-*»)?»

is to be understood as that branch of the function for which £„(0) =1.

Let £„(0) denote the region obtained by deleting from E the portion

common to the circle \z — ei,»| ^5, and the portion common to the

circle \z—e~i,n\ ^5, ô>0; and let £(S) denote the intersection of the

sets £„(S), re = 1, 2, • • • . Then it is clear from (2.7) that in £„(ô)

(2.8) 82y g | £n(z) | á 4?»,

(2.9) — ynir < arg £„(z) < ynv,

and hence for 0<5<1,

(2.10) | log £n(z) | = yn{log 4 - 2 log á + t}.

From (2.5) it follows that in £(5) the series

(2.11) Êlog£„(z)
n=l

converges uniformly and hence by the Weierstrass Theorem repre-
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sents an analytic function in £(5). Since S can be taken arbitrarily

small, the series (2.11) converges in £ and hence the product in (2.3)

is also convergent in the same region. In fact, the product is uniformly

convergent on any closed arc of | z\ = 1 which is free of the points

e±**, w = l, 2, • • • .

Suppose now that we have a given fixed region B, of type 5. By

the Riemann mapping theorem, there is a unique function £„(z)

mapping £ conformally on£„ with £„(0) =0 and £,' (0)>0. From the

symmetry of B„ £>(z) is real on the real axis and further r£,(r)>0

for 0<r2<l. Denote by Ec the region obtained by cutting the open

unit circle along the negative real axis, — 1 <r ^0. Then u, =arg £,(z)

is harmonic in Ec, and further, with a suitable determination, —ir

^u,^ir. A consideration of 1/F,(z) shows that each of the points

on the inverted slits S'1 (w=pe~idn, O^pgp"1, 0<<p^ir) is an ac-

cessible boundary point and, therefore, the zero of l/£s(z) correspond-

ing to the vertex of the sector defined by S^1 and Sñli is the image of

a well-determined point z = ei0n [3, pp. 189-192]. Even more, the

Schwarz reflection principle shows that z = eiin is a simple zero of

(F,(z))~llyn. Thus the function £,(z) determines a set of arcs on the

boundary of the upper half of the unit circle with end points e'e"

satisfying (2.2), such that for 0„+i<0<0„

00

arg £.(6*) =   E tí* = <t>n, n = 1, 2, • • • .
i=n+l

For 0i<6<ir, arg F,(z) =ir. Finally, if 0oo>O, then arg £,(z) can be

extended by continuity so that arg F,(e'e) =0 for — 0«,<0 <0oo- To see

this last assertion, observe that any simple curve Tw in B, joining

pne**n and p„e_i*n is the image of some simple curve Tt in £ joining

eUn and e-**». Given e>0, an appropriately chosen Yw with « suffi-

ciently large determines a curve r«, which, together with the arc

z=eie, —dn^B^dn, determines a region in which |arg £,(z)| Ss<Pn<e.

Thus arg £,(z) is a harmonic function in £„, continuous and

bounded on the interior, constant on the boundary except for finite

jumps of ±7nir at ±8n, and a jump of 2ir at z = 0.

Next, with the values of 8„ just determined for Fa(z), and with the

associated values of yn, form the function £(z) as in (2.3). If u

= arg £(z) for z in Ec, then u is also harmonic there and

00

u = arg z — E 7i arg (1 — z2 cos 0, + z2)

(2.12)

= E y>{$ - arg (i -z2 cos ei + 22)}.
3-1
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For z = eie,

D ̂  0 < 0,-,

<0  g   7T.

Í0, if    0 :
(2.13)    arg (1 - z2 cos 0,- + z2) =  <

(0  —  T,      if      0,-

Thus for the upper half of the boundary of Ec, u is a step function,

such that for 0n+1 <0 <0„

oo

(2.14) re = argF(e») =   E 7,{ö - (ft - x)} = <¿„.
i=n+l

Similar results hold for the lower half of the boundary of £«.. Finally

when z=r, —Kr<0,u= +ir according as z approaches the boundary

from above or below.

Therefore U = u, — u is a bounded harmonic function, continuous

in Ec and zero on the boundary except for an infinite number of

points which have at most two limit points. The conformality of

F(z) and £,(z) at the origin permit us to remove the slit, and make

the same assertions about U in £. It is then easy to see from the Pois-

son integral formula that U=0 [4, p. 321 ]. Thus F(z) and F,(z)

differ by at most a multiplicative positive constant. Thus if c is

chosen properly in (2.3), £(z) maps £ onto the region £,. It is now

easy to see that 0.0 = 0, for otherwise the arc

z = e*,        - 8X < 0 < 000,

would go into a doubly covered slit on the real axis consisting of

accessible boundary points. This is indeed a possibility, but we have

excluded this possibility by condition (c) of the definition of the

region £,. If, in (2.3), 0oo>O then £(z) will map £ onto a region with

accessible boundary points on the positive real axis whether or not

it has inaccessible boundary points. We have defined B, in such a

way as to exclude this occurrence in order to simplify the presenta-

tion.

The second part of Theorem 1 will be a trivial consequence of the

preceding material as soon as we show that the accessible boundary

points of B, form a one-to-one image of the arc \z\ =1, Z9*l, under

£(z), i.e. as soon as we show that each slit Sj is doubly covered. Re-

calling (2.5) it is easy to see that

(2.15) £W _ ¿ Tiff - 1_
£(z)        ÉÍ   1 - 22 cos 0,- + z2

Thus £'( — 1) =0, and if z = l is a point of regularity of £(z), i.e.

if 0.0 5*0, then £'(!)= 0. For z = ea, 0„+i<0<0„,
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zF'(z) .  .   _ ( ^ y i ^ y i
= — i sin i

In -, . oo

\22-_E
I ,_i   COS 0 — COS 0j        i=n+iF(z) ( j_i  cos 0 — COS 0;       ,_n+i COS 0,- — COS 6)

= - ¿sin0{/(0) -£(0)}

where 1(0) is an increasing function, tending to <x> as 0—»0„, and

D(&) is a decreasing function, decreasing from oo at 0=0n+i. Thus in

each arc 0„+i<0<0„, re = l, 2, • • • , F'(z) has a simple zero which we

denote by z = eian, and F(eia-)=pnei*u, a slit end point.

In case ÖM>0, z = l furnishes the simple zero of F'(z) for the arc

—000 <ö <0oo, while z = — 1 is always the simple zero for 0i <0 < 2x—0i.

The slits 5y are doubly covered, and thus Theorem 1 is proved.

We observe that if the region £„ is not assumed to be symmetrical,

then (2.3) is replaced by

(2.17) F(z) =    _ -,

JT (i  _ Ze».)T-
n=l

where now

00

(2.18) E7n=2, y„>0.
n=l

If B, has only m slits, then in (2.17) and (2.18) the product and sum

have exactly m terms.2 In the still more special case that the ei9n are

taken as the reith roots of unity, and the y„ all equal, we obtain the

well known

cz
/to-

il — zm)2lm

which maps the unit circle on the w-plane with radial slits whose end

points are the vertices of a regular »w-gon.

Perhaps a more intuitive approach to (2.17) and (2.3) would have

been through Alexander's theorem [l ; 5, pp. 11-15], which states that

if

(2.19) F(z) = zf(z),

then £(z) starlike with respect to the origin implies f(z) convex, and

conversely. Then (2.17) and (2.3) would be a simple consequence of

1 After this paper was completed, the author learned from Professor Z. Nehari

that formulae (2.17), (2.18), with a finite number of terms, were given earlier by C.

Darwin [2].
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the Schwarz-Christoffel transformation

/*' dt
(2.20) f(z) = c I    —-

°   f[ (1 - te«»)*»
n=

It is worth noting that even though £(z) given by (2.17) may map

£ onto a region with inaccessible boundary points, the associated/(z)

given by (2.19) and (2.20) maps £ onto a convex region which conse-

quently has no inaccessible boundary points. Thus integration may

destroy inaccessible boundary points.

3. Some examples of functions for which B, has inaccessible

boundary points. In general it may be very difficult to find the zeros

of (2.16), but for the problem at hand this is not necessary, since if

0„+i<r/<0„, and if a„ is the zero of (2.16) corresponding to this

interval, then [ F(eian) | = | £(e4») |. This together with Theorem 1

gives the following results.

Theorem 2. A necessary and sufficient condition that F(z) given

by (2.3) maps E onto a region with inaccessible boundary points is that

there is a constant M and a decreasing sequence [ r/„ | such that

(3.1) limr/„ = 0,

and

(3.2) \F(e*»)\ £M, re = 1, 2, • • • .

Under these conditions all the points oi>M will be inaccessible boundary

points.

To determine such a sequence we proceed thus. If, in (2.3), e = l,

then

1 °°
(3.3) log | F(ei") | = log— - E 7i log | cos r/ - cos d¡\.

2 ,_i

Since cos rj — cos 0=—2  sin   (r/+0)/2   sin   (n—0)/2  and   2|3c|/ir

á |sin x\ á |x\ for 0^ | *| g7r/2, it follows that if 0<n, Bj^ir/2, then

oo

QOi) - E 7i log I cos ij - cos Oj |
;'-i

(3.4)
2 ^ i     2 2 i

è log — + 2u 71 log |i?  -0j\.
x2 ,_1
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Let us suppose that, given {7,,} satisfying (2.5), it is possible to

determine an increasing sequence of positive constants  {c„}  such

that the series
00

(3.5) Ee-C'=<r,
;-i

00

(3.6) 22yfj=Mi
)'=1

both converge. In £(z) take 0n >0 such that

-p2    00

(3.7) el = — 22e~ci, re= 1, 2, ••• ,
4<r ,_„

and note that 7r/2=0i>02> • • • >0«, = O. Next set

2    el + el+i    x / »      \
(3.8) vn =-= -le— + 2 22 e")

¿ OO \ j=n+l /

and observe that 0i>r/i>02> • • • >6n>rj„> • • • >0. Then for all

j, re = 1, 2   • • • ,

1   2        21       x2

(3.9) \vn - 9i I ^ — e-«.
oo~

Using this in (3.4), and taking into account (3.6), gives

(3.10) 6(1,») > - Jfx-log^.

Consequently from (3.3) and (3.4) we have

(3.11) \F(ei"")\ < 2«*i= M.

We summarize these results as follows:

Lemma 1. Given {yn} satisfying (2.5), if it is possible to find an in-

creasing sequence of positive constants {cn\ such that (3.5) and (3.6)

are convergent series, then F(z) defined by (2.3) with 0„ defined by (3.7)

maps the unit circle onto a region B, for which all the points w > 2aeMl

are inaccessible boundary points.

At first the author conjectured that for every convergent series

(2.5) there is a sequence of positive constants {c„} such that (3.5)

and (3.6) both converge. Professor James A. Jenkins refuted this

conjecture with the following counter example. Set 7„ = l/re(log re)2,

re^2. If we could find c„>0 such that (3.5) and (3.6) both converge,

then the sum
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E  (e~Cn + 7nCn)

2

would also converge. But this last is impossible, since if cn = log re,

then yncn§ï 1/re log re, and if c„ = log re, then e~cn^ 1/re, so that in any

case e"~c»+7„c„>l/re log re.

A rather general case in which Lemma 1 can be applied occurs

when {7„} is decreasing and E7» '°& n converges, for then it suf-

fices to take cn = —log yn so that (3.5) becomes (2.5). This is possible,

for example, when yn = kn~p, k > 0, p > 1.

A still simpler case occurs when {yn} is a geometric sequence, i.e.

yn =An~1 (1 -A), 0 <A < 1. In this case, taking cn = -logA"-^! -A),

we have, from (3.5), a = 1, and from (3.6)

(3.12) Mi=-~--log A - log (1-A),
1 — A

so that

2
(3.13) M =-

(1 - A)AAi«-A)

Equation (3.7) gives 0„=x.<4(n-l)/2/2. This proves the following

theorem.

Theorem 3. If 0<A <1, the function

(3.14) F(z) =- '-
oo

II (1 - z2 cos (tA*i2/2) + z2Yn^-A)
n=0

maps E onto a region of type S for which all the points w> M are in-

accessible boundary points, where Mis given by (3.13).

The case .¡4=1/2 gives the function (1.1) mentioned in the intro-

duction.

4. Further examples. By suitable combinations of £(z) with certain

simple functions, other interesting examples can be obtained. Thus if

fc(z) maps onto £ onto £c, then log F(fc(z)) maps £ onto a strip

| $(w)\ <t cut by lines parallel to the real axis in such a way that

the points w > log M are inaccessible boundary points. The function

(£1'2(/c(z))-l)/(£i/2(/c(z)) + l) maps £ onto the unit circle with

circular arc slits so disposed that the points (Af1/2-l)/(Af1/2+l)

<w;gl are inaccessible boundary points. It seems difficult however

to give an expression for the function which maps £ onto a circle
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with radial slits and having inaccessible boundary points.

The inaccessible boundary points can be rotated by taking £*(z)

= e<s*£(ze-i{*), and it is then clear that

/    m \   1/ m

(4.1) Gm(z)= <IlFk(zÚ
\ k-l J

maps £ onto a region having m radial lines with inaccessible boundary

points, providing only that the 0„t) for £*(z) satisfy suitable condi-

tions.

Finally if

(4.2) — > 0i > 02 > • • • > 0«, > 0* > 0,

CO

(4.3) 7*+E7»=L 7*, 7n>0,
n=l

and if the 0„ are suitably chosen, then

(4.4) £(z)=-.-1-
(1 - z2 cos 0* + z2KlI (1 - z2 cos 0n + z2)>»

n=l

maps £ onto a region for which points on the two radial lines w

=pe±i>», p>M, are accessible from one side but inaccessible from

the other.
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