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1. Introduction. In a previous paper1 we obtained variational

formulae for the Green's function of an ordinary differential system

under the assumption that the interval, operator, and boundary

conditions were allowed to vary. We shall now deduce various monot-

onous properties of the Green's function as well as other results based

on these formulae.

Our interest is centered on a linear differential operator

(1) L = Po(x) —- + pi(x)- + • ■ • + pn(x).
dx" dx"'1

whose coefficients are continuous in some closed finite interval / of

the x-axis and po(x)>0 in I. With Equation (1) we shall associate

two-point boundary conditions of the form

(2) Ua(u) = ¿ ca,iU«-»(a) + ¿ ca,n+iu«-»(b),       i = 1, 2, • • • , n,
i=l t=l

where [a, b] is a closed subinterval of /. The completely homogeneous

system

(3) Lu = 0,        Ua(u) = 0, a = 1, 2, • • • , n,

will always be assumed incompatible. The adjoint of L will be de-

noted by L+ and the adjoint boundary conditions by U*(u). If L

or U operates on a function of more than one variable, a presuper-

script, for example rL or s U, will denote which variable is to be oper-

ated upon. The bilinear concomitant will be denoted by w[u, v],

(4) [v(x)Lu(x) — 'u(x)L+v(x)]dx = ir[u, v].
J a

For every incompatible differential system of the form of Equa-

tion (3) there exists a Green's function G(x, £). It may be that this

Green's function depends on a parameter X. Then we shall write
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1 On the Green's function of ordinary differential systems, Proceedings of the Ameri-

can Mathematical Society vol. 3 (1952) pp. 433-441. We shall refer to this paper as

[MS]. *
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G(x, £) =G(x, £, X) to exhibit this dependence explicitly. If we now

consider the same system when X has been changed to X', we shall

write G'(x, £) =G'(x, £, X') as the Green's function of the new system.

We define AG by the equation

(5) AG(*. Q = G'(x, ç, X') - G(x, *, X)

which also equals

d
(6) AG(x, {) = — G(x, £, X)AX + 0(AX2).

d\

Let 8G(x, £) be the principal part of the above expression, that is,

d
(7) 8G(x, Ö = —G(x, i, X)5X

ÔX

where the finite increment AX of the independent variable X has been

identified with 5X. Equation (5) is called a finite comparison formula

and Equation (7) an infinitesimal variational formula.

We shall consistently use the notation of [MS] in the following sec-

tions. In particular, it will frequently be convenient to use the nota-

tion drG(x, b)/d2r to indicate that the function G(x, t) was first dif-

ferentiated with respect to the second argument, /, and this argument

then replaced by b.

2. Monotonie properties of the Green's function.

2.1 Variation of the interval. One of the main advantages in the

theory of partial differential equations of having variational formulae

for the Green's function is that it enables one to deduce many

monotonous properties of the Green's function. This is also true in

the case of ordinary differential systems. In particular, we shall as-

sume that the differential operator L under consideration is of even

order n = 2r and the boundary conditions are of the special form

(8) Ua(u) = «««-«(o), Ur+a(u) = «<<•"»(&),       a = 1, 2, • ■ • , «.

As a physical example, we note that in the theory of strength of ma-

terials the deflection of a built-in beam is governed by a self-adjoint

equation of the fourth order whose boundary conditions are

u(a) =u'(a) =u(b) =u'(b) =0.

We shall now further assume that the left-hand end point (a) is

held fixed while the right-hand end point (b) is allowed to vary. It

follows from Theorem 3 of [MS] that if L is self-adjoint, then
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(9) 8G(x, Ö = (-l)'-lG(f, b) -¡-G(x, b)po(b)8b.

Theorem 1. Hypothesis. Let the interval [a, b] be divided into m+\

subintervals by the points of subdivision f,: a<fi<f2< • • • <Çm<b.

Let ait i = l, 2, • • • , m, be any set of m real numbers. Let G(x, £|f¿)

be the Green's function for a self-adjoint differential operator of even

order n = 2r with boundary conditions of the form (8) in the interval

[a, f,-]. Let the completely homogeneous system be incompatible for

every subinterval [a, c] of [a, b].

Conclusion. If r is even,

m     m

EZG(r<.ry I &)««*,
¿-i i-i

m      m

= ZZgg\, ry|r-)«**y

m— 1 m—1 m—1 m—1

= Z Zea« fil f »><«>• = Z Ec(r* fil r—o««**

m—& m—Ä m—fe—1 m— A— 1

=       = Z Z Gitu fy I f—*)o^ = Z    Z G(f,-, fy I f—*)«<«*
i-l j-1 <=1        J=l

£ • • • £ G(fi, fi | f2)a? ̂  G(fi, fi | fi)ai = 0.

If r is odd, the inequalities will be reversed.

Proof.

r~    m      m

«    ZZGÍfi.fyKay
L  1=1   3=1 J

m     m      Qr Qr

= (-iypo(b)8bZ Z — G^»J) tt^* &)öia>
,_i ,-_i 32r d2r

r»   3' n2
= (-iypo(b)\  Z —G(ft,ô)aJôè

L i-i o2T J

by Equation (9) from which the positive or negative monotony of

m      m

(10) ZZG^.fyK-ffy
i-i y=i

follows depending on whether r is even or odd.

With a theorem such as this we can prove many interesting
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(mostly well known) results2 with a few strokes of the pen. For

example :

Corollary 1. Hypothesis. Let G(s, t) be the Green's function for a

self-adjoint differential operator L of even order n = 2r on the closed

interval [a, b] with boundary conditions of the form (8) such that the

completely homogeneous system is incompatible for every subinterval

[a, c] of [a, b].
Conclusion. If 4> is any real continuous function in [a, b],

/ib     p bI   G(s, t)(p(s)<p(t)dsdt è 0
a    Ja

if r is even. The inequality is reversed if r is odd.

Proof. The non-negative sums of Equation (10) may be regarded

as Riemann sums approximating the integral of Equation (11).

Corollary 2. Hypothesis. As in Corollary 1.

Conclusion. If y(x) satisfies equation (8), then

/.

b

y(x)Lydx — 0

if r is even. The inequality is reversed if r is odd.

Proof. If we write Ly=<b(x), then y(x)=JlG(x, £)<K£)d£ by the
definition of the Green's function. Applying Corollary 1 we see that

/■ b pb
y(x)<b(x)dx= I   y(x)Ly(x)dx = 0

a Ja

if r is even.

An interesting result is the following:

Corollary 3. Hypothesis. As in Corollary 1.

Conclusion.

\G(x, €)| á [G(x, *)G(|, ¿)]1/2á(l/2)[G(x, *)+<?«, &].

Proof. Let m = 2 in Equation (10) and apply Schwarz's Inequality.

The representation in Theorem 1 can be generalized to include

derivatives of the Green's functions.

Theorem 2. Hypothesis. As in Theorem 1 where we now introduce

* A systematic presentation of well known properties of the Green's function can

be found in the book Kernel functions in mathematical physics by S. Bergman and

M. M. Schiffer, Academic Press, 1952.
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the real arbitrary constants Aai, a = 0, 1, • • • , p'è.r — 1, i = \, 2, • • • ,

m.

Conclusion.

p      p      m     m d^ß

IEEE AaiA9i ——G(f,, fy) è 0
a=o 3=o f=i y-i ôl'W

if r is even. The inequality is reversed if r is odd.

Proof. Apply the 8 operator to

E   E AaiAßjd°+i>G(U, f,)/ôlaâ2"
a-0    (9—0

and sum over i and j.

As in the case of Theorem 1 we can deduce various corollaries.

Corollary 4. Hypothesis. Let aa, a = 0, 1, • • • , p — r — 1, be any

set of p+\ real numbers. Let G(s, t) be the Green's function for a self-

adjoint linear differential operator L of even order n = 2r on the closed

finite interval [a, b] with boundary conditions of the form (8) such that

the completely homogeneous system is incompatible in every subinterval

[a, c] of [a, b].

Conclusion. If <b is any real continuous function in [a, b],

p      V pb     pb     Qa+ß

E E a-«« -l—raG(s> t)<t>(s)4>(t)dsdt = 0
oTo^o Ja   Ja   díad2»

if r is even. The inequality is reversed if r is odd.

Corollary 5. Hypothesis. As in Corollary 4.

Conclusion.

j   J Gi(î, t)<p(s)<b(t)dsdt}

= \   f    f G(s, t)<p(s)<l>(i)dsdt\\   )     J   Gn(s, t)(j>(s)<¡>(t)dsdt].

Proof. Let p = 1 in Corollary 4 and apply Schwarz's Inequality.

We conclude this section with a theorem which has an obvious

physical interpretation.

Theorem 3. Hypothesis. Let G(x, £) be the Green's function for a

self-adjoint linear differential operator of even order n = 2r with boundary

conditions of the form (8). Let y(x) satisfy the differential equation

Ly=4>(x) and boundary conditions of the form (8).
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Conclusion.

8y<-'\b) dn
= (-iypo(b)-rG(b,b)8b.

yM(b) dxrd£r

Proof. From y(x) =/6aG(x, 8*(ö<*f,

8y(x) = (-1)' f    ~G(x, b) -¡-G(Ç, b)Po(b)ôb<p(£)d£
J a    o2r d2r

= (-iypo(b)ôb ̂-G(x, b) f   -^-Gtt, &M£)á£
o2r J a   o2r

= (-iypo(b)8b -^-G(x,b)y"(b).
o2r

[The fact that the upper limit of integration is b does not affect the

variation since the Green's function satisfies boundary conditions of

the form (8).] Differentiate the above expression r times with respect

to x and let x=b.

If we think of a loaded built-in beam whose deflection satisfies a

self-adjoint equation of fourth order and self-adjoint boundary con-

ditions of the form (8), we see that by measuring the rate of change

of the first nonvanishing derivative [y"(x)—the moment] of the de-

flection, y(x), at the point b we can obtain drG(b, b)/dxrd^r.

2.2.   Variation of the boundary conditions.

Theorem 4. Hypothesis. Let Lbea self-adjoint differential operator

of even order n = 2r with boundary conditions of the form (8) in the

interval [a, b]. Let the perturbed boundary conditions Uá be Uá =Ua

fora = l,2, ■ • -,r-l,r+l, • • •, 2r-l andletV'T(u) = (l+ei)u('~»(a)

+iji«M(o), C/2'r(M) =(l+62)Mfr-1>(6)+7?2M«(o).

Conclusion.

8G(x, 8 = (-iyL2^-G(x, b) -^-G(b, Qpt(b)
(    d2r dlr

dr dr )

~ ^ttGÍ*' a)—G(a> £)Po(a)} ■
olr olr )

Proof. From Theorem 5 of [MS],

AG(x, Ö = Z rAC/,[G'(f, ê)]fc72*n+i-.-[G(x, f)].
«■=i

We note that Ai/<=0  for t'-l,  2, • • • , r-l, r+l, • • • ,  2r-l
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and from the expression for w[u, v],

Wt+i[G(x, t)] = - (-Y)'Po(a) -¡-G(x, a),

Wt+i[G(x, f)] = (-iypo(b)~G(x, b).
o2T

Substituting these formulae in AG(x, £) and making simplifications

due to first order variation, we obtain Theorem 4.

We shall now define an "energy integral," E[<p] and show that it

is monotonie. This theorem has a physical interpretation which we

shall point out at the end of the proof.

Theorem 5. Hypothesis. As in Theorem 4. Let y(x) be any function

which satisfies the boundary conditions Ua(y) =0, a = \, 2, • • • , «. Let

Ly=(j>(x). Let E[(p]=fafaG(x, ^)(p(x)tp(^)dxd^ by definition, where
G(x, £) is the Green's function.

Conclusion.

8E = (-Y)'[^2y^Hfi)2po(b) - -lyMfapM«)].

Proof.

8E = (-l)'-tM*) f     f  —G(x, b) —G(b, Ç)<p(x)<p(Ç)dxd1-
Ja   Ja  d2r dlr

/'h   Cb dT dr
-~G(x, a) —G(a, Ç)<b(x)d>(Odxdt

a    Ja    d2r dlr

Noting that y(¡¡) =f*G(x, l-)<b(x)dx, we easily arrive at the result

stated in the theorem.

Physically speaking, if our self-adjoint differential operator repre-

sents the deflection of a beam, Ly=<¡>, then y is the deflection and

<b is the load. The original boundary conditions Ua(u), a = i, 2, repre-

sent a built-in beam, while the U¿ (u) represent conditions inter-

mediate between a simply supported beam and a built-in beam. If

the load is fixed, the energy varies monotonously as the boundary

conditions vary from "built-in" to "simply supported."

2.3. Extensions to non self-adjoint operators. In all the previous ap-

plications of monotony we have assumed self-adjointness of the dif-

ferential operator. In Theorem 6 below we shall prove a result con-

cerning the monotony of the "energy" which is valid for non self-

adjoint operators (but with self-adjoint boundary conditions).
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Theorem 6. Hypothesis. Let L be a linear differential operator of

order n and let Ua(u)=0, a = l, 2, • • • , m, be a set of self-adjoint

boundary conditions. Let y(x), z(x) be two functions of class C" such

that Ui(y)=0=Ui(z) and U2n+i-i(y) = U2n+i-i(z), i = l, 2, • ■ ■ , n.

Let L+y=cp, Lz=yp. Define the generalized energy integral as

/b     p b [~ p b p b
I   G(x, k)<t>(x)t(£)dxdt   =   I    zL+ydx =   I    yLzdx .

Let the perturbed boundary conditions be Ul = Ui+uU*n+i-i, i = l,

2, ■ • ■ , n, e^O.

Conclusion. oT = 0.

Proof. From Theorem 5 of [MS],

ár = ¿ U*2n+i-i[ f G(x, t)<p(x)dx~\-8Uiï f G(l, OHÛdil

n n

=   Z  U2n+ l-i(y) -8Ui(z)   =    Z^Sn+l-i(y)U2n+l-i(z).
Í-1 «-1

3. Eigenvalue problems. Let us consider the eigenvalue problem

(12) Lvi(x) + KiVi(x) = 0,        Ua(vi) =0, a = I, 2, ■ ■ ■ , n,

connected with the differential systems treated so far. We may write

this in the form of an integral equation

(13) Vi(x) + Kif G(x, iMZ)dS = 0

by the use of the Green's function G of the system Lv = 0, Ua(v) =0.

We perform upon this system a variation of the types considered in

[MS], that is, we change the coefficients of the operator, the end

points of the interval, or the boundary conditions. In each case, the

variation 8G(x, £) of the Green's function has been determined, and

by means of Equation (13), the variations 8v{ and 5X¿ of the corre-

sponding eigenfunctions and eigenvalues can be deduced therefrom.

Suppose, for simplicity, that the basic interval [a, b] is kept fixed

and that X,- is nondegenerate ; then we have

8Ki r "
0 - 8vi(x)-Vi(x) + Ki j    5G(x, Qvfâdt

Ki Ja

+ Kij G(x, OSviWt-
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This represents an inhomogeneous integral equation of the second

kind for Svi which contains, however, the unknown parameter 5X,-. In

order to determine the latter, we multiply the above equation by

Vi(x) and integrate over the basic interval [a, b]. We may assume

without loss of generality that v((x) has been normalized by the re-

quirement

/.

b

Vi(x)2dx = 1.

We then obtain, in view of Equation (13),

SXf       /•»/•»
(14) T7= 8G(x, £)Vi(£)Vi(x)dtdx.

X¿ J a    J a

Thus the known variation formulae for the Green's function permit a

determination of the change of eigenvalues X,-, and then by the inte-

gral equation

cb 8\i rb
Svi(x) + Xf       G(x, QtoiiQdt =-Vi(x) - X,-       8G(x, £)*(£)#

Ja Xf J a

lead to a determination of the variation 8v¡ of the eigenfunctions. As

in previous applications, we may easily derive from Equation (14), in

the case of important special forms of the differential system,

monotony properties for the eigenvalues.
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