
THE IDENTITIES OF PI-RINGS

S. A. AMITSUR

1. Introduction. Let 5 be a ring with a ring of operators ß. The

ring S is said to be a Pi-ring (that is, a ring with a polynomial

identity) over ß if S satisfies a polynomial identity g(xi, • • • , xn) =0

with coefficients in ß. We make correspond to every Pi-ring 5 a uni-

versal Pi-ring which satisfies the identities and only the identities of

S. The universal ring is maximal in the sense that the rings satisfying

the identities of S are characterized as the homomorphic images of

the universal ring. The Jacobson radical [3 ] of the universal ring is

shown to be its maximal nil ideal. This fact and the study of the

universal rings which correspond to total matrix algebras yield a

representation of the free ring over ß, which in turn implies that

every ring (not necessarily a Pi-ring) is a homomorphic image of a

subdirect sum of total matrix rings of finite order over the ring of all

integers. In particular, if the ring considered is nilpotent, the orders

of the matrix rings are bounded. Another result obtained by study-

ing the radical of the universal rings is that every Pi-ring satisfies an

identity of the form : $£„(x) = 0 where Sin (x) is the standard polynomial

of degree 2» (see [2]).

2. Universal Pi-rings. In what follows we assume that ß is an

integral domain which contains an infinite number of elements and

such that: (1) aS = 0, a£ß, implies a = 0. (2) a(rs) = (ar)s=r(as)

for every a£ß and r, s E S. Let{x} be an infinite set of indeterminates

over ß. We denote by ü[x] the free ring generated by the set {x} and

ß. Following Specht [l, p. 565] we call an ideal Q in ü[x] a T-ideal

if (1) ap(x)EQ, aEtt, a = 0, implies p(x)EQ, and (2) QTQQ for
every homomorphism T: x^*t(x) of ß[;e] onto its subrings.

If 5 is a PI-ring over ß, the totality of the identities of S constitute

a nonzero P-ideal Qs in Q[x]. We refer to this ideal as the ideal of

identities of 5 and the quotient ring ß[#]/(2s will be called the

universal ring of S.

It was shown in [l] that in the case of Pi-rings of characteristic

zero, which is the case where ß is the integral domain of all integers,

the converse also holds. That is: if Q is a nonzero T-ideal, then

ß [*]/(? is a PI-ring whose ideal of identities is the ideal Q. The fol-

lowing lemma is a generalization of this result:
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Lemma 1. Let P be an ideal in ßfje].1 The quotient Q[x]/P is a PI-

ring if and only if P contains a nonzero T-ideal; and if this condition

holds, the ideal of identities of £l[x]/P is the maximal T-ideal contained

in P.

Proof. The set of all polynomials g(x)EP such that g(x)TEP for

every homomorphism T constitute the maximal P-ideal Q contained

in P. If Qt^O, let g(xi, ••-,*») be any nonzero polynomial of Q.

Since Q is a T-ideal, for any set of polynomials h(x), • • • , tn(x),

g(h(x), • • • , t„(x))EQ- Thus if ' denotes reduction modulo P, it fol-

lows  by P2<3 that:

g'(h(X),  •■■   , tn(x))   =   g(ti(x),  ■■■   , *.'(*))   =   0.

This proves that g(xu ■ ■ • ,x„)=0 is an identity satisfied by

ß[x]/P. Conversely, if g(xi, ■ ■ • , xn) =0 is satisfied by ß[x]/P,

for any set of polynomials h(x), • • • , tn(x) we have g(t{(x), • • • ,

t„ (x)) =0. This means that g(h(x), ■ • • , tn(x)) EP, which proves that

the T-ideal generated by g(x) is a P-ideal contained in Q. Hence

g(x)EQ and the proof is completed.

Note that if the set {x} is sufficiently large, the ring 5 is a homo-

morphic image of its universal ring. Let R be a PI-ring which satisfies

the identities of S; then Qr^Qs, where Qr and Qs are the ideals of

identities of R and S respectively. Hence the universal ring of R is

a homomorphic image of the universal ring of S. In particular, if the

cardinal number of the set \x\ is not smaller than the cardinal num-

bers of R and S, the ring R is also a homomorphic image of the uni-

versal ring of S. On the other hand, by Lemma 1 the universal ring of

5 satisfies the identities of S; it follows, therefore, that every homo-

morphic image of the universal ring of 5 satisfies the identities of S.

Thus we have proved:

Theorem 1. A ring R satisfies all identities of S if and only if R is a

homomorphic image of the universal ring of S.

It should be remarked that if the set {x} is fixed, the preceding

theorem holds only for rings R with cardinal number not greater than

that of the set {x} ; but if R is given, one can choose {x} so that the

preceding theorem will be true.

In what follows "radical" and "semisimplicity" will be used in the

sense of Jacobson [3].

Let Q be a nonzero JMdeal.

Lemma 2. Let p(xu • ■ ■ , x„)EQ and let

1 We assume that from ap^O, a£ a, ap(x)EP it follows that p(x)EP-
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P(xi, ■••,*»)«"£ p,(xx, ■ ■ • , Xn)

where each p, is homogeneous in Xi and of degree v in Xx\ then p,EQ,

v = 0, 1, • • • , m.

The proof of this lemma is similar to that of [4, Lemma 3]. That is:

let atGß, then p(a{xi, • ■ • , x„) = 2» a'iPÁxi, • • • • xn). Choosing m

different elements «i, • ■ • , am oí ß, one can find also X,„EQ such that

2i hi,p(aiXi, • • • , xn) =Ap,(xi, • • • , xn), where A= H«* («»—«*)•

This implies Ap,(x)EQ; hence p,(x)EQ-

Lemma 3. Lei p =p(xi, ■ • • , xn) be a homogeneous polynomial in X\.

The polynomial p is quasi regular modulo Q if and only if p is nilpotent

modulo Q.

It is obvious that if p is nilpotent mod Q, then p is also quasi regular

mod Q. Conversely, if p is quasi regular, then p — q+pqEQ for some

polynomial q. Hence q=.p+pq=.p+p2+pq=. • • ■ ==p+p*+ . . .

+pn+l+pn+lq (mod Q). Let q= ^7-o <Z* De the decomposition of q as

a sum of homogeneous polynomials in Xi of degrees v = 0, 1, • ■ • , m.

Thus g= £î+1 p»+ Er.o Pn+%~ ET-0 Î.G0- Now choose »>».
Then one observes that one of the elements of the decomposition of

g as a sum of homogeneous polynomials in Xi of different degrees must

be p"; hence by the preceding lemma it follows that p"EQ- q.e.d.

Theorem 2. // 5 is a PI-ring without nilpotent ideals, then the uni-

versal ring R' = ß [*]/(?s is semisimple.

Proof. Let p(xu • • • , xn) be a polynomial belonging to the radical2

of R'. Take as xn+i any of the indeterminates of the set {x} not ap-

pearing in p(x). Evidently, p(x)xn+i also belongs to the radical. Since

this polynomial is homogeneous in xn+i, the preceding lemma yields

(p(x)xn+x)mEQ for some integer m. This evidently implies that if

Sx, • ■ ■ , sn are any elements of S, the ideal p(si, • • • , sn)S is a nil

ideal. From the results of [5] it follows that Pi-rings which do not

contain nilpotent ideals also do not contain right nil ideals; hence

P(si, • • • , sn)S = 0. The absence of nilpotent ideals implies also that

P(si, ■ • • , sn) =0. Thus S satisfies the identity p(xi, • ■ • , xn) =0.

By definition of Qs, p(x)EQs and the proof is completed.

Applying the preceding result we are able to prove :

Theorem 3. // Q is a nonzero T-ideal, then the radical of ß| x\ /Q is

its maximal nil ideal.

1 This means, of course, "p is a representative of a class of the quotient Si[x]/Qs

which belongs to the radical."
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In fact, we show that the radical coincides with the lower

radical [6]. Let J, L be the ideals of fl[x]. such that J/Q, L/Q are
respectively the radical and the lower radical of ß [#]/(). It is

well known that J'Q.L'DQ. The quotient ß[x]/L is a PI-ring3 since

it is a homomorphic image of ß [*]/(?> hence by Lemma 1, L contains

the ideal of identities L0 of this ring. Since Q,[x]/L^(Q,[x]/Q)/(L/Q),

£l[x]/L does not contain nilpotent ideals; it follows, therefore, by

the preceding theorem that ß[#]/Lo is semisimple. Now J/(J(~\Lo)

=(J, Lo)/Lo. Since the first is an isomorphic image of the quasi

regular ring J/Q, it is also quasi regular. But this implies that

(J, Lo)/Lo is quasi regular which is possible only if (J, L0) =Lo, i.e.,

L0^2J. Thus /2L2Lo3/, which completes the proof.

The equality J=Lo proves that:

Corollary 1. The ideal J is a T-ideal.

3. The free ring Q[x]. There is particular interest in the ideals

of identities of the total matrix rings ßn of order « over ß. Let Mn

denote the ideal of identities of ßn, then we have ilfi^Mj^ ■ ■

Each of the quotients ß [x]/Af„ is, by Theorem 2, a semi simple PI-

ring. From [7, Theorem 2] we deduce that these rings are subdirect

sums of central simple algebras of bounded degree. In the present

case we can obtain the stronger result:

Lemma 4. The quotient Sl[x]/Mn is a subdirect sum of total matrix

rings of order n over ß.

Indeed, let r be a homomorphism: Xr~*fi of ß[x] onto ßn, where

{r<} is a set of generators of ß„. Let QT be the kernel of t. Thus

Q[x]/QT=Çln. If r ranges over all possible homomorphisms of this

type, then (]QT = Mn. For, by Lemma 1, it follows that4 QT=\Mn for

every r. Hence (iQr^Mn. Conversely, if g(xit • • • , xn)EÇ\Qr, let

»"i, • • • , r„ be any set of matrices of ß„. Let r be the homomorphic

mapping: #<—»r,-, i=l, • • • , n, and let the correspondence x—*r for

the rest of the set {x \ be defined so that the set {r} will contain a

set of generators of ß„. Then we obtain g(n, ■ ■ ■ , rn) =0. This proves

that g(xi, • • • , xn)EMn, and the proof is completed.

A subdirect sum of rings isomorphic with ß„ is a subring of a

complete direct sum of such rings. The latter is isomorphic with a

total matrix ring of order « over a complete direct sum R of rings iso-

morphic with ß. The ring R is known to be free of nilpotent elements

since ß is an integral domain. Hence :

* One readily verifies that L satisfies the assumption of the footnote 1.

4 QT evidently satisfies the assumption of footnote 1.
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Corollary 2. ß[x]/Jlf„ is isomorphic with a subring of a total

matrix ring of order « over a commutative ring which does not contain

nilpotent elements.

It follows, therefore, by Theorem 1 that:

Theorem 4. A ring S satisfies all identities of the total matrix ring ß„

if and only if it is isomorphic with a subdirect sum of rings isomorphic

with ß„; an alternative necessary and sufficient condition is that S be

isomorphic with a subring of a total matrix ring of order n over a com-

mutative ring.

Lemma 5. f\Mn=0.

For if g(xi, • ■ • , xm)EMn, then g = 0 is satisfied by the ring of all

finite matrices over ß but no such identity exists by consequence 2 of

[5]. Hence g = 0, i.e., fl-^» = 0-
It follows now in view of Lemma 4 that:

Corollary 3. The free algebra ß [x] is a subdirect sum of total matrix

rings of finite order over ß.

We now apply the preceding result to the case ß = 7, the ring of

all integers. Since every ring is a homomorphic image of the free ring5

l[x], we obtain:

Theorem 4. Every ring is a homomorphic image of a subdirect sum

of total matrix rings of finite order over the ring of all integers.

Since the ring / is a subdirect sum of prime fields, the preceding

theorem yields:

Corollary 4. Every ring is a homomorphic image of a subdirect sum

of total matrix rings of finite order over prime fields.

Consider the T-ideal Nn oí l[x] generated by the polynomial

XiX2 • • • xn. This ideal contains all the polynomials with degree à».

From consequence 2 of [S] we know that the minimal degree of the

polynomials of the ideal Mk is greater than or equal to 2k. Hence

Nn^Mk where k = [(« + l)/2]. Since every nilpotent ring is a homo-

morphic image of l[x]/Nn,6 we obtain, by Theorem 3:

Theorem 5. Every nilpotent ring of index of nilpotency « is a homo-

morphic image of a subdirect sum of total matrix rings over I of order

bounded by [(«+l)/2].

By the arguments of Theorem 3 this readily implies:

8 If the set {x} is sufficiently large.
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Corollary 5. Every nilpotent ring of index of nilpotency « is homo-

morphic with a subring of a total matrix ring of order [(« + l)/2] over a

commutative ring which does not contain nilpotent elements.

Remark. If one considers algebras over a field F, then Pean replace

the integral domain / of all integers, and in this case the commutative

rings obtained in Theorems 4, 5 and in Corollary 5 are either F or

commutative algebras over F.

4. The semisimple universal Pi-rings. The main object of the

present section is to prove:

Theorem 6. The ideals Mn are the only T-ideals P of ß[x] such that

ß[x]/P is semisimple.6

To prove this theorem we need the following generalization of [4,

Lemma 3]:

Lemma 6. Let C be a commutative ring with a unit element. The ideals

of identities of a PI-ring S and of the direct product SXC (over any ex-

tension of ß) coincide.

The proof of this lemma was published in Hebrew in [8]. The fol-

lowing proof is simpler.

Put Xj= ^2i un, and write g( ^uu, • • • , ^m«) = IZ* g*(«y») as a

sum of homogeneous polynomials gk- It follows now by Lemma 2

that the identities gk = 0 are satisfied by 5. Let x¡ = a¡, a¡ESXC,

then a¡= 2Z¿ SjíCjí, SjíES, c¡íEC. Since the polynomials gk are homo-

geneous, it follows that gk(sjiCji)=gk(sji)c = 0, where c is an ele-

ment of C. By substituting uh = SjíC¡í we immediately obtain that

g(au ■ ■ • , an)=0. q.e.d.

The ideal Mn is evidently also the ideal of identities of the total

matrix ring Rn of order « over any commutative ring R which pos-

sesses a unit element. Now if A is any central simple algebra of order

«2 over its center F, one can find an extension F oî F such that

A X F=Fn. In view of these facts, the preceding lemma implies that

the ideal of identities of any central simple algebra A of order n2

over its center is also Mn. With the aid of this result we can now prove

Theorem 6.
Let P be a P-ideal such that ß[x]/P is semisimple. Let k be the

minimal degree of the polynomials of P. By [7, Theorem 2] it follows

that this ring is a subdirect sum of central simple algebras Am such

6 This is equivalent to the fact that the only universal semisimple Pl-rings are

the quotients íí[x]/ilí„.
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that «2 is the upper bound of their orders over their centers. Since

the ideal of identities of these algebras are the ideals Mi, it follows

readily that the ideal of identities of the subdirect sum is Mn. Thus,

Lemma 1 yields that P = Mn, q.e.d.

Let 5 be a PI-ring. By Theorem 6 and by Corollary 1 it follows that

the radical of the universal ring ß[x]/Cs is the quotient ideal

Mn/Qs-1 From the main result of [2] it follows that Mn, «^1, con-

tains the standard polynomial S2n(x) = X)±xh ' * " *•», where the

sum ranges over all permutations (i) of 2» letters and where the sign

is taken positive for even permutations and negative for odd permu-

tations. We shall use also the notation: So(x) =Xi. Applying Theorem

3 we now obtain that S2n(x)mEQa for some integer m. Hence:

Corollary 6. Every PI-ring satisfies the identity S2n(x)m = 0.

The preceding corollary was proved under the assumption that ß

is infinite; nevertheless, it is true for every PI-ring. For if ß is a

finite integral domain, we consider the ring S[t] of all polynomials

over 5 in a commutative indeterminate /. Since 5 satisfies linear

identities [4, Lemma 2], S[t] also satisfies these identities. This ring

can be considered as a PI-ring over the infinite integral domain

ß[/]. Hence, by the preceding corollary, S[t], and therefore also S,

satisfy the identity S2n(x)m = 0.

Denote by S„ the P-ideal generated by the standard polynomial

S2n(xi, ■ • ■ , Xtn). That is, 2„ contains the polynomial of the form

(I) h(x) = £ a(x)S2n(fi(x), ■■■ , f2n(x))b(x).

From the main theorem of [2] we readily deduce that the total

matrix ring ß„ satisfies the identities A(x)=0, A(x)£2„. Naturally,

this suggests the question whether the polynomials of 2„ are the

only polynomial identities satisfied by ßn. In the notation of the

present paper this problem is equivalent to the assertion of the

equality Af„=2„.

From [2] it follows that Afn32„. On the other hand, consequence

3 of [5] implies that the minimal degree of the polynomials of Mn+i

is greater than or equal to 2(« + l). Thus, the results of Corollary 1,

Theorems 6 and 3 imply that Ain/Sn is the maximal nil ideal of

ß[x]/Sn. This yields the following characterization of the polynomial

identities satisfied by ßn (i.e., the polynomials which belong to Mn):

Theorem 7. The identity g(x) =0 is satisfied by ß„ if and only if for

We use the notation Afo = ß[*].
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some integer m and for some indeterminate Xt not appearing in g(x),

the polynomial (g(x)xk)m has the form (I).

This theorem provides only a partial answer to the problem of de-

termining the identities satisfied by ß„. We conclude with the remark

that the preceding theorem reduces the proof of a positive answer to

the question raised above to the assertion that the quotient ring

ß[x]/2„ does not contain nilpotent elements. This is the case for

» = 1, since ß[x]/2i is a commutative ring without zero divisors,

hence il/i=2i. We conjecture that this holds for every «.
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