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1. Domains with a distinguished boundary surface. Functions of

the extended class. The real and imaginary parts of a function of «

complex variables are harmonic functions of 2n real variables. Using

Green's theorem one can transform Dirichlet integrals over a 2m-

dimensional domain, say D, into integrals over the (2n — ̂ -dimen-

sional boundary of D. Using this procedure (and exploiting some

further properties of harmonic functions) one obtains generalizations

of the Cauchy formula (see Bergman [l],2 Bochner-Martin [5],

Martinelli [8]), certain generalizations of Nevanlinna's theory of

meromorphic functions, etc. Recently, applying Green's transforma-

tions, Garabedian obtained an important generalization to the case

of several variables of formulas connecting Green's and Neumann's

functions with the kernel function [6]. Further, Garabedian and

Spencer [7] showed that these methods can be extended to the

theory of "analytic tensors" defined on certain Kahler manifolds. On

the other hand, the real and imaginary parts of functions of n com-

plex variables, «> 1, represent a very special class of harmonic func-

tions and by the above theorems the possibilities of using theorems of

Green's type are in no way exhausted. One can apply, in this special

case, reduction of Green's type of ¿-dimensional integrals, for k>n,

repeatedly.

In the present paper we shall discuss an example of such a proced-

ure in the case of functions of two complex variables. In order to ex-

plain our approach it will be useful to discuss more in detail the geo-

metrical situation which we meet in this theory. For the sake of

simplicity, we shall limit ourselves to the case w = 2 and consider

only a very special type of domains.* As has been indicated in [3; 2,

chap. I ], the geometry of the space of functions of two complex vari-

ables differs in many respects from the geometry of four-dimensional

Euclidean space. One of the reasons for this situation is the fact

that analytic surfaces and segments of these surfaces take over to a

certain extent the role of points in Euclidean geometry. For in-
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1 This paper was done under Contract N5ori 76/XVI NR 043 068.

1 In particular, see p. 389.

» In the general case it is convenient to use a certain symbolism (e.g., that of

Cartan's "exterior forms").
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stance, a function / of two complex variables assumes a constant

value only in an analytic surface and / is itself an analytic function

of one complex variable in every analytic surface. In developing the

theory of two complex variables it is useful to pay special attention

to domains which are bounded by a finite number of segments of

analytic hypersurfaces (one-parameter families of analytic surfaces).

On the boundary of such a domain lies the distinguished boundary

surface (the totality of the intersections of at least two segments of

the analytic hypersurfaces belonging to the boundary). The dis-

tinguished boundary surface plays in many respects a role similar to

that of the boundary curve in the case of the theory of functions of

one variable. For instance, the maximum of the absolute value of a

function is assumed not only on the boundary but even at a point of

the distinguished boundary surface. There exists an analogue of the

Cauchy formula representing the function/(zi, z2), z*=x2*_i-Hx2*,

¿ = 1,2, inside the domain in terms of the values on the distinguished

boundary surface. There is, however, an important difference be-

tween the situation in one and two variables. If a real, continuously

differentiable function is prescribed on the distinguished boundary

surface, there does not in general exist a 2J-harmonic function (real

part of an analytic function of two complex variables) which assumes

on the distinguished boundary surface the prescribed values. In

order to develop techniques along lines similar to those used for func-

tions of one variable (for instance, to be able to apply potential-

theoretic methods), it is useful to introduce in addition to 5-har-

monic functions a larger class of functions, those of the so-called ex-

tended class [3; 4]. They include the 5-harmonic functions; on the

other hand, this class is sufficiently large so that the boundary value

problem with the values prescribed on the distinguished boundary

surface has always a unique solution. The extended class of functions

depends upon the domain. The doubly-harmonic functions, i.e., func-

tions u which satisfy

(d\/dxlk-i) + (d'u/dxlk) = 0, ft - 1, 2,

form the extended class in the case of a bicylinder.

In order to use potential-theoretic methods it is necessary often to

derive theorems of Green's type for functions of the extended class.

A theorem of this type will be proved in the next section.

In the following we shall consider a special subclass of domains of

the above type. (The method used here can be easily extended to

more general domains with distinguished boundary surface.) These

domains can be defined as follows. We consider the fi, f2-space where



104 STEFAN BERGMAN [February

f* = £tt-i + *£u = P*eiXt, k = 1, 2.

Let

(1.1) Ä(fi, r») = A(1)(pi. Xi; p2, X2) + ¿ä<2>(pi, Xi; P2, X,)

be an analytic function of fi, f2 in [l—6<pi<l+€, p2^l], which for

fixed f2 is a single-valued and univalent function of fi, for 1—e<px

< 1 +€. Let Zk = x2k-i+ix2k, ¿ = 1,2, denote two complex variables, and

let p(fS), liílál be the curve

(1.2) [zi = h(eM, t°2), 0 ^ Xi ^ 2tt, z2 = £].

By the definition of A(fi, f2), p(f!j) will be a simple closed curve lying

in the plane z2 = if2> of the Zi, z2-space. The interior of p(f2) in this

plane we shall denote by P($). We note that p(Ç2) varies continu-

ously as f2 varies, | f¡¡| á 1. The domain D of the zu z2-space which we

shall consider in the following is defined by

(1.3) d= x; pa*).
IfjKi

The boundary of i> consists of two segments of analytic hypersur-

faces:

(1.4) c=     £    P(eixi)    and    ¿=     X)    W^O
OáXjSüx 0âXiS2r

where

(1.5) Bi(e«i) = [zi = h(e>\ f2), 32 - £,; | f,| á l].

We note that d can be represented also in the form

(1.6) ¿=   Z #(fi).
BilSi

Thus the domain Z? is defined in the Zi, z2-space by the fact that its

boundary c+d is given by a mapping of the boundary of the unit

bicylinder in the fi, f2-space.

(1.7) S=Z     p(«**)
0SX2a2r

is the distinguished boundary surface of D.

A function H(xi, x2, xs, x4) =H(zi, z2) of the extended class in D

(which class we shall denote by E(D)) is defined by the following two

properties.

Io. For every fixed z\, |z!j| ^1, H(zlt z\) is harmonic in xu x2 for

ZiEP(&), and continuously differentiable in P(fj}), z^fjj, P = P+p.
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2°. For every fixed ft, |fi| =1, H(zu z2)=H[h(Çi, f2), f2] is a har-
monic function of £3, & for |f2| <1 and continuously differentiate for

I r*|ái, &-&+*&.
2. A theorem of Green's type. Let iP"' (xi, x2, x3, x4), »> = 1, 2, be two

functions of the class E(D). By the definition of D we may consider

HM as a function of fi, f2 in the domain

(2.1) Ä- [l-e<piál,Pt£l].

We may consider an arbitrary function Q(zi, z2) as a function of

fi, f2 in P. We shall indicate this by adding *. Thus

(2.2) «2(z1( «,))*« Ô(*(fi, fi), f«).

Using this notation we define

(2.3) GM(fb f.)•- (ITW(ii, *,))*, r-1,2,

o /dHM(zi,z2)\*
(2.4) L*(fi,f2) = (-f--) , r-1,2; ft-1,2.

\       ôx*       /

Further, let

(2.5) S(GW) = GW - ¿tfV",
*=i

-(-• -)■

We introduce the following integrals:

F(H^,H^;D)

(2.6) rrrr2*fd2Hm d2m»cere 4^4^fdm   d2Hm\
=  1111   LL L    .      ,    .     )dxidx2dxidxi;

J  J  J  J D k=lm=3\dXkOXm  dXkdXm/

ixm», m»;d)

-/://,[(— s^i

2        (t)      (d   Ó\S(G<2>)1
+ Z, (VÄ    -VL* ) —-\dhidui-,

k-l dpi     J

'Xi

(2.7) *   /   ;

¿w2 = ¿£3¿&;
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t(mi\ H™;d)

cu, -cni^m^ñ
A ,(*)   r(D    3   /      (2) 2      m      (,)\"1

+ 2_,Ä   VL*-(vG     -2JL,Vh    \\d\idwi;
k—l dpi \ _i / J

Z>(H»>, flW;5)

(2.9) /*2x f2x /3G(1)      2    „) a*f«\as(G<»)
I——•- 2-^*   -7—)—-d\xd\2;

J \y-0 J Xj-0 \   0P2 t-1 Op2   /        dpi

d(ff(»,ffW:5)

(2.10) f2*   /*2* d  r<3G<2>        *     (i) a*wn1 =1     S(G<»)—  — - Z¿    —-UiáX,-
•J Xi-o »> Xj=o dpi L dp2 3pí J

Here J5-[| %!<!].

Theorem. Let H(1) and H{2) be two functions of the extended class in

the domain D. Then

(2.11) F(Hi, Hù D) = D(H™, H™;S) + T(H«\ ff<2>; d)

(2.12) = d(H<», ff <2> ; 5) + t(H™, ff <2> ; d).

Proof. Since Hi2) for a fixed x8, X\ (x\+x\^l) is a harmonic func-

tion of Xi, x2 in P(zt), continuously differentiate in Pfe) +p(zi),

F(H™, H™;D)

(2.13) ffif        " aflU)    3   /d#<2»
=   - I    ( Z  -7— —(—-)d5i)¿X,dx4

J J b\J p<.z.) m-i   dXm    dni\ dxm /      /

where nx is the interior normal to p(Çi) and dsi the line element of

p(Çi). Since Ä(fi, f2) for fixed f2, | f2| < 1, 1 — e < | fr| ^ 1, is an analytic

function of ft,

(2.14) — -
oni

dk(Su f2)

dfi
->   dsi =
OP!

ÖÄ(fi, fi)

aíi
d\i

and therefore

F(H«\H™;D)

(2.15)

J J B J\!-0    Lm-3\  dXm  /       dpi |_\   dxm  /  JJ

In the following the subscript m after a function will indicate a

partial derivative with respect to £m, e.g., G«' =dGir)/d^m. Obviously,
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-—) = Gm - ¿ ¿¡FlEr, t - 1, l\m - 3, 4.
OXm   / k-1

Thus,

Fiff«1', #<2>;/J>)

(2.17)

(2.18)

--r((i\(o:'-tcc)
J\l-oJ  J B   m-»L\ k-1 /

•(¿(¿"-¿¿"*i"))]«.*

-/7/(¿[(?)«--*(?,íw•/ Xi-0«/   •/ B  \<i=jL\ Opl /m r-1 \ »Pi

\ dpi / m I k-1 \ dpi /m

2       Î    /

zz(
,_1 k-1 \

(*)

2  * / ... dL,
m

•    2J Z ( L*     -— km   km
dpi

—J hm Ujditditikx

dV
TA-dsi

b       dn2

\ dpi

If we assume that F is a harmonic function of £s and £4 in B

= [(&+&) <l] and T, A, and Fare continuously differentiable in B,

then

ff   ¿TAmVmd^d^^ ( [' TvA-WdiJSt
J  J B    m— S J  J B

(2.19) --J

-  f f ^VP-VF¿f,d{4

where m2 denotes the interior normal to b= [^+^=1] and ¿s2 the

line element of b.

According to our assumptions G(1), A(t), ft = l, 2, are harmonic

functions of £3, £4. Substituting these functions for V, replacing d/3«2

by ô/dp2, dsi by dX2, and rearranging the terms, we obtain (2.11)

from (2.18).

Similarly, using the fact that dG<2)/dpi, dh<-k)/dpi, k = l, 2, are also

harmonic functions of £3, £4, we may substitute these quantities for
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F into (2.19). In the same way as before we obtain (2.12) from (2.18).

3. Some applications of the theorem of §2 to the theory of func-

tions of two complex variables. The introduction of the operators

permits us obviously to generalize a number of procedures in the

theory of functions of one complex variable to the case of two com-

plex variables. It is, for instance, clear that

(3.1)     T(H, H;d)+ D(E, E; S) = t(E, H;d) + d(H, E; S)

is an increasing functional of the domain, i.e., if we have two domains

of the structure described in §1 such that one domain lies inside the

other, then (3.1) for a (nonconstant) biharmonic function B is larger

than the corresponding expression for the smaller domain.

Remark. Since the real part B of a function of two complex vari-

ables satisfies the equations

d2B d2B d2B d2B
(3.2)

âxi5x3 dxidx* dx2dx3       dxidx4

we see that F(BW, Bi2); D) can be simplified by substituting

1    2    «    d2B™   d*B™ *    d2B™   ô2P(2)

"7T 2-12—1 ~z    «    T    I      " 2—1
2 m-in-3 dXmdXn 9xm3xn       B=s dxidxn  dxidx„

(3.3) 2       ô2£(l)      02£<2)

= 2-,-= • • • .
m—1   dXmdXi   3XmdX3

It is further quite simple to obtain quantitative inequalities for the

functionals (3.1). As an example for the application of this procedure

we shall formulate the following:

Lemma. Let a function

(3.4) /?=    Z   amnZlZi
m.n—1

of two complex variables be regular in a (closed) domain D. Let us further

assume that a Reinhardt circular domain

(3.5) R= [|Zl|2<Z(|z2|2), |z2|2<«2]

lies inside of D. Then

T(E,E;d)+D(E,E;S)

è  2v2 Z   (M + 1)(« +  D* I 0»+l.n+l |2   f " T2»[K(T*)]^d(T2).
m,n— 0 J T-0
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Proof. A function / of two complex variables can be represented

in R by the power series (3.4) which converges in R uniformly and

absolutely. Due to the orthogonality of powers z?, z\, in R,

J J J J n\ dzidz2
dm

(3.7)        =  ¿ (m + l)2(n + 1)2\ am+i.n+i |2 f f f f | Zi \2m | z2 \2ndw
m,n-0 J J J J R

= r2 ¿ (m + í).(n + ip| a^,.n+l |2 f °'r2\K(r2))^d(r2).
m,n—0 J r—0

But, using formula (3.2) we see that if f=H+iBt,

a2/
(3.8)

dziôz2

^ 1_ 2    * I d2E y

2   m^ln-»\dXmdXn/
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