
FUNCTIONALS OF FINITE DEGREE AND THE CONVERGENCE
OF THEIR FOURIER-HERMITE DEVELOPMENTS

ROSS E. GRAVES

1. Introduction. In this paper we define a class of functionals on

the Wiener space C which play in the theory of functionals on this

infinite-dimensional space a role quite analogous to that of the poly-

nomials on a space of finite dimension. These functionals we call

functionals of finite degree; in particular we define functionals of

degree n. As in the finite-dimensional case we first define a functional

to be of degree n with respect to a fixed orthogonal coordinate sys-

tem, and then show that the property of being a functional of degree

n is invariant under orthogonal transformation of coordinates. After

a preliminary investigation of functionals of finite degree we estab-

lish the principal result of the paper, to the effect that the Fourier-

Hermite expansion of such a functional converges almost everywhere

on C. This result is of interest in connection with the theory of mul-

tiple stochastic integrals developed by R. H. Cameron and the

author, to appear in a separate paper.

Throughout this paper we use ||/|| to mean the Hubert (L2) norm

of/. This convention applies both to functions defined on [0, l] and

to functionals defined on C.

In the work to follow we shall have occasion to use the generaliza-

tion of the Riemann-Stieltjes integral due to Paley, Wiener, and

Zygmund [3]. This integral, written fof(t)dx(t), has the advantage

that it is defined for almost all x(£C for each/GLî on [0, l]. If /(f)
is of B. V., this generalized integral agrees with the ordinary Rie-

mann-Stieltjes integral almost everywhere on C. lif(t) is real and of

class L2 on [0, l] and if F(u) is Lebesgue measurable on (— °o, oo),

then

(1.1) /"*[/ f(t)dx(l)]dwx = r-"2 jMF[\\f\\u]e-^du,

where the existence of either side of (1.1) as an absolutely con-

vergent integral implies that of the other and the equality. For the

explicit definition of the generalized integral, and for the proofs of

the above assertions and other properties of the generalized integral

to be used in the sequel, we refer the reader to the original paper of

Paley, Wiener, and Zygmund.
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Definition 1. Let

¥»,.....,,*(*) = Ilff^rj* «*(0á*(0j

(N=l,2,... ;mk = 0,1,2, .■• ),

where the Hm's are the partially normalized Hermite polynomials de-

fined by

Hm(u) = (-l)ro2--/2(w!)-1/2eu2-(e""2)       (m = 0, 1, 2, ■ ■ • ),
dum

and where {«t(0 } is a C. O. N. (complete orthonormal) set (in the L2

sense) of real-valued functions on [0, l]. Then the set {<kmi,...,míí(x)}

will be called the set of Fourier-Hermite polynomials (or functionals).

We note that

Vmi.-.-.m^x)   m  ^ml...-.mN,0.....o(x), ^o(x)   =   1.

It has been shown by Cameron and Martin [l] that the Fourier-

Hermite functionals form a closed (in the L2(C) sense) orthonormal

set of functionals. More explicitly, if for F(x)£L2(C) we define

r(x)y¥mil.. ■ ,mn(x)dwx,
c

then

/» w j N\P(x) —       Z       Ami,...,mif¥mu...,mN(x)

and the Parseval equation holds in the sense that

dwx = 0,

Z \Am1.....mll\2=    C\F(x)\HwX.
• •.mw=0 J C

lim

If we wish to call attention to the C. O. N. set {«*(/)} used in the

definition of the F. H. polynomials, we write -&„},...,■«(*) and

Ami,...,mN in place of ^....«(jc) and Am^-.-.m».

Definition 2. The degree of the F. H. polynomial ^m^,...,mN(x)

is the non-negative integer nti+ • ■ • +mN.

Definition 3. A functional F(x) on C is said to be of degree n

with respect to the (real) C. O. N. set {ak(t)} if it is of class L2(C)

and if its F. H. development in terms of the functionals determined

by {ak(t)} contains no terms of degree greater than n and at least one

term of degree n. As a matter of convenience, a functional which is
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zero almost everywhere is assigned the degree — 1.

2. Invariance of the degree of a functional. We require a pre-

liminary lemma.

Lemma 1. If f(t)E.Li on [0, l], if Cj=flf(t)a¡(t)dt where {a¡(t)}
is a real C. 0. N. set, and if p is any positive number, we have

lim   f   I f   f(t)dx(t) - ¿ cj f  aj(t)dx(t)
„-»CO     J  Q     |  J  0 )—l J 0

P

dwx = 0;

that is, Zj-i cJoai(l)dx(t) converges to flf(t)dx(t) in the LP(C) mean for

every positive index p.

Proof. Without loss of generality we may suppose that /(/) is

real-valued. Upon setting fr(t) = Zi-i ciai(l), we have from (1.1)

/tul    /il y /» 1 p

j    f(t)dx(t) - Z cy I    0Lj(t)dx(t)    d„x
c   \J 0 j-1      J 0

= 11/-/'IK-1/2 f |«|'^-*¿«.
J -O0

As {a}(t)} is closed, ||/—/,||—>0, and the result follows.

We are now in a position to prove the invariance theorem.

Theorem 1. If F(x) is of degree n with respect to a C. 0. N. set

{ak(t)}, then it is of degree n with respect to any real C. 0. N. set.

Proof. Let {ßk} be any real C. O. N. set and for brevity write

bk(x)=flßk(t)dx(t). With the notation of the introduction, by mean

convergence and the fact that F(x) is of degree n with respect to

{ak} we find that

A mi, . . . .mjf  —     I       C \X) xmj, ■ • • .mfj\X)Uy,^

J c

(2.1)
=   lim X)       A^,...,ßM í   *¿")....w(x)

M^"°     0i+---hijf5» Je

' »mi, • . . ,mu\X)aV)X.

Each integral f1^^..... «rfaO^ÏÎ,. ■ • ,m„(x)dwx is a finite sum of terms

of the form

/ " { H J'1 fi<&*®\ C • • • .mN(x)d,X,

where/yGLs on [0, l] and where q^n. From Lemma 1 and the prop-

erties of mean convergence we may conclude that
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(2.2)

fW{ïïf1fÂt)dx(t)}*ml--.rnN(x)d»X

=  lim   I    ^n    2Zcjkbk(x)\\^ml....mlf(x)dwx,
,-.» J c   \ i-i L *-i J /

where cjk=f01fj(t)ßk(t)dt. It is readily seen that üí-JZí-i Cjkh(x)]
is expressible in the form

(2-3) IT i Z c,M*)\ = Z CfiT(x),
j—1 L  fe-1 J r=l

where the GT(x)'s are Fourier-Hermite functionals ^f¿...¡ÍL(x) oí de-

gree not greater than q. Thus if mi+ • • • +mjf>n, we must have

(2.4) fVw*^.....»»(*)<*.* = 0.
Je

Combination of (2.1), (2.2), (2.3), and (2.4) shows that

(0)
(2.5) Ami.....mN = 0        (mi + • • • + mN > n).

From (2.5) we conclude at once that F(x) is a functional of degree

mSn with respect to {ßk}. If we now interchange the roles of {ak}

and {ßk} in the above argument, we conclude that n^m, and the

equality follows at once.

In view of Theorem 1 we are justified in speaking of a functional

of degree n without reference to any specific real C. O. N. set {«*(/)}.

More generally if F(x) is a functional of degree n for some unspecified

integer n, we may speak of F(x) as a functional of finite degree.

Examination of the proof of Theorem 1 enables us to draw another

useful conclusion, which we state as a corollary.

Corollary. .If F(x) is a (finite) linear combination of functionals

of the form JJj.i [fofi(l)dx(t)] where q^n, then it is a functional of

finite degree; in fact, the degree of F(x) does not exceed n.

The next theorem is of some intrinsic interest and will be very

useful in the paper on multiple stochastic integrals to which reference

was made in the introduction to this paper.

Theorem 2. Let F(x)=L.I.M.M-.a FM(x) where, for each M, FM(x)

is a functional of degree less than or equal to n. Then also F(x) is a func-

tional of degree less than or equal to n.

Proof. By mean convergence,
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Fif (*)*«!. • • • .m¡f(x)dwX,
c

and, by hypothesis, if mi+ • • • +mN>n, the integral on the right in

(2.6) is zero for each M.

3. Convergence of Fourier-Hermite developments. If F(-v)GLs(C),

it may be developed in a mean convergent series of Fourier-Hermite

polynomials,

F(X)   =   L.I.M. ¿Z Aml,....mll*ml,...,mlf(x).
N-"»        m i,---, m#=-0

If n is any positive integer, we define Sn(x) by

*JN\X)   =              /  . Amy. • ■ ..mtf * mlt • • ..mjf\X).

m¡-\--t-mjr-n

Then { Sn(x) } converges in the Lt(C) mean, so that we may define a

functional 5(ac)GLs(C) by the equation

S(x) = L.I.M. SN(x).
AT—o

Lastly, for any positive integers N and K and for any positive number

« we define a set En.k.i by

EN,K,t = {x: max | £#+*(*) - SN(x) | > «}.
tax

We are now in a position to establish an important preliminary

inequality.

Lemma 2.1 w„(£JVlK,.)áe-2||.Stf-Mt;-'Stf||í-

Proof. For brevity we write E=£at,x,.. Define E* by

Ek= [x: max | SN+i(x) - SN(x) | g t, \ SN+k(x) - SN(x) \ > i}

(1 g k £ K).

The sets £* are disjoint and £ = Uf_! £*. We have

(3.1)

WSk+k - SN\\* ̂  f   I -W(x) - SN(x) \*d„x
Jb

= Z f " I >?*+*(*) - 5*(*) |s¿„* = ¿ /t.
*-l J Et *-l

1 This lemma is an extension of the celebrated Kolmogoroff inequality [2] to the

type of problem which concerns us here.
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We have also

| SN+k(x) - SN(x) \2d„x + 2 Re   I    [S¡r+h(x) - SN(x)]
Et J Et

J. w
| Sn+k(x) — SN+k(x) \Hwx.

Et

The second integral on the right-hand side of (3.2) is a finite linear

combination of terms of the form

(3.3)   JbAí=1        LJo A\+k

{n ff«[/ «iW¿*w]j*.*,

where for at least one j, say jo, we have

Mio ̂0    and   iV + k < j0 ^ N + K.

As the random variables X,=fla,(t)dx(t) are statistically inde-

pendent [3] and as Ek is determined wholly by the values of the

X,'s for l^v^N+k, (3.3) becomes

G(x)dwx-  I    7JMJ   I    ah(t)dx(t) \dwx,
Et Je LJo J

where G(x) is a certain polynomial in flar(t)dx(t) for 1 gpg N-f-if

and where vj^jo- As pj^O, the value of the right-hand integral in

(3.4) is zero. It follows that the second integral on the right-hand side

of (3.2) vanishes, so that we certainly have

(3.5) /* à  I     I SN+k(x) - SN(x) \H„x ^ i*m„(Ek).
J Ek

From (3.1) and (3.5) we obtain at once

K

\\Sn+k - SN\\2 ^ e2Z m„(Ek) = i2mw(E),
k=l

from which the assertion of the lemma follows.

It is now a simple matter to establish the convergence theorem

mentioned in the introduction.

Theorem 3. The Fourier-Hermite expansion of a functional F(x) of

finite degree converges almost everywhere on C. More explicitly, with the

notation of the introduction, we have
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N

lim X)     Ami,...,mN¥ni.....mii(x) = F(x)

for almost all xGC".

Proof. It is obviously sufficient to prove the theorem for the case

where the F. H. expansion of F(x) contains only terms of degree n.

With this understanding and with the notation introduced at the

beginning of this section, we have F(x)=S(x) a. e. on C. For any

€ > 0 and for any positive integer N, define the set £jv,t by the equation

ENtf = {x:sup \SN+k(x) - SN(x)\ > e}.
täi

Now En,i = limir-oo EN,K,t, and, on noting that this equality implies

that limx_oc mu,(Eif,K,,)=mv,(Eir,t), we conclude at once by mean

convergence and Lemma 2 that

(3.6) mK(EN,t) ^ e-2\\S - SN\\K

Since \\S—Sn\\—*0, (3.6) shows by use of a standard argument that

the sequence { Sn(x) } converges almost uniformly, and hence almost

everywhere on C. This remark establishes the theorem.

4. Conclusion. The use of the statistical independence of the

functionals X, = f01a,(t)dx(t) at the crucial point in the proof of Lemma

2 is worthy of note, as it illustrates the utility of the methods and

concepts of mathematical probability in the investigation of an

analytical problem. Such statistical arguments will appear again in a

critical lemma in the paper on multiple stochastic integrals to which

reference was made in the introduction. We take this occasion to

point out that the occurrence of statistical arguments at certain

crucial points is more or less to be expected in the light of the fact

that the Wiener theory is a special case of the general theory of

stochastic processes.
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