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A Banach algebra A is a right H*-algebra in case A is a Hubert

space and for each x in A there is an x* in A such that (icy, z) = (x, zy*)

for every y and z in A, i.e., R* = Ry: Ambrose1 [l] determined the

structure of A under the additional assumption that L?=LX: The

purpose of this note is to offer modifications of some of the arguments

of Ambrose which will yield the structure of right ii*-algebras which

are proper in the sense that Ax = 0 implies that x = 0. Briefly, our

result is that a proper right /f"*-algebra is merely a proper Z/"*-algebra

in which the norm has been changed to a certain equivalent norm in

each of the simple components. As a consequence we observe that a

proper right ii*-algebra is a dual ring in the sense of Kaplansky [2].

We are indebted first to H. T. Muhly whose question on the inde-

pendence of the assumptions of Ambrose was the starting point of

this investigation, and second to Kaplansky who pointed out to us

that the continuity of the mapping x—>x* in a proper right ii*-alge-

bra (which we had originally assumed) is a consequence of a very

interesting result of C. E. Rickart [3, Lemma 5.3].

As an example of a right i7*-algebra, consider a set /, a fixed com-

plex-valued function a(i, j) on JXJ which satisfies

(1) <*(j, i) = ä(i,j),

(2) EIx(i)ME*(*X*\ j)*(j) ̂mZ\ *(*)I2-
» i.i i

where If is a real number greater than 1 and x(i) is a complex-

valued function on J. The set A oí all complex-valued functions

a(i, j) on JX J for which

(3) £ a(j, i)a(j, l)d(l, iX + co
i.i.l

becomes a Hubert space if we set

(4) (a, b)=  Z <j, i)«(j, DKh i).
i.j.l

We complete the definition of A as in Example 1 of [l]. The in-

equalities (2) insure that multiplication is continuous and that the

mapping x—>x* is onto A. We call this example a matric right H*-
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1 The numbers in brackets denote the references at the end of the paper.

1



2 M. F. SMILEY [February

algebra, and note that A will be an iï*-algebra if and only if all

a(i, j) are equal (and that then our example is Example 1 of [l]).

We shall prove that every proper right H*-algebra is a direct sum (in the

sense of [l]) of mairie right H*-algebras.

From now on let A be a proper right i7*-algebra. Then x—>x* is an

involutorial anti-automorphism of A and xx* = 0 (or x*x = 0) im-

plies that x = 0. If R is a right ideal of A, so is RF. In order to estab-

lish the same property for two-sided ideals of A, we have the follow-

ing lemmas.

Lemma 1. If Lis a left ideal of A and AxQL, then xEL.

Proof. Write x = xi+x2 with XiEL, x2ELF. Then zx = zxi+zx2

and zx2EL for every z in A. Then (zx2, x2)=0 = (z, x2x2*) for every

z in A, and x2 = 0, x = XiEL.

Lemma 2. If I is a two-sided ideal of A, then I* = 1.

Proof. We have xy = 0 for every xEIp and y El because Ip is a

right ideal. Hence (xy, z) = (x, zy*) =0 for every z in A and Ay*QI,

y*EI by Lemma 1. Thus I*QI and I = I**QI*, I* = I.

Lemma 3. If I is a two-sided ideal of A, so is Ip.

Proof. We have (AIP, I) = (A, I(IP)*) = (A, (IPI*)*) = (A,0)=0,

AIpQIp.

The proof of Theorem 3.1 of [l] shows that if x^O in A, then the
subalgebras generated by x*x and by xx* each contain a nonzero sa

idempotent. We shall call an idempotent eEA w-primitive in case e

is not the sum of two doubly orthogonal sa idempotents.

Lemma 4. The sa idempotent e of A is w-primitive iff eA is a minimal

right ideal of A.

Proof. Let R be a right ideal of A such that OEREeA. Then R

contains a sa idempotent/ and e=\f+g with (f, g)=0 and X£C

Hence ef=f=\f+gf and (l-\)f=gf. But (gf, f) = (g, f) = 0 so that
X = l and gf=0. Since g is sa,fg = 0, and eg = g = g2. If g = 0, then e=f
and eA =fA Ç1R, a contradiction. We have proved that e is not

«/-primitive if Ae is not minimal. The converse is clear.

Lemma 5. Every sa idempotent e in A is a sum of a finite number

of doubly orthogonal w-primitive sa idempotents which are in eAC\Ae.

Proof. Assume, inductively, that e= E?-i /•> where /,•

(i=l, • • • , n) are doubly orthogonal idempotents, and that/i = gi

+hx, where gi and hi are doubly orthogonal sa idempotents. Then
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figi=gifi = gi and fihi = hifi = hi so that, for k t± 1, fhgi =fkfigi = 0, and
likewise gifk = hifk =fkhx = 0. Then also (gu /*) = (gu fkgî) = (hu /*) = 0,

and gx, hi, f2, • • • ,fn are doubly orthogonal sa idempotents. This

process cannot go on forever since the norm of an idempotent is at

least one. Since e/< =/,c =/,-, we see that fiEeAi~\Ae.

Now choose (using Zorn's lemma) a maximal set \e¡; jEJ] of

doubly orthogonal w-primitive sa idempotents of A. Let R be the

closure of the algebraic union of the right ideals R¡ = e¡A for jEJ-

Suppose that the left annihilator L oí R is nonzero. Then L has a sa

idempotent e and hence also a w-primitive sa idempotent g, by Lemma

5. But then ge¡=0, 0 = (gej)* = ejg, and (g, e3) = (g, e,g)=0 for every

jEJ. This contradicts the maximality of [e}; jEJ] ■ Hence L = 0 and

this is equivalent to (AR*)P = 0, AR* = A, RA=AQR, A=R. (Cf.

[2].)
We can now insert the word "right" before each of the H*'s in the

statement of Theorem 4.2 of [l]. We delete the first and third

paragraphs of the proof given by Ambrose and add the following

remarks: If I(Rj)?¿I(Rí), then I(Ri)I(Rj) = 0, 0 = (I(Ri)I(Rj), A)
= (I(Ri), AI(Rj)), by Lemma 2. Thus AI(Rj)çz(I(Ri))p, and Lemma

1 yields I(R-)Q(I(Ri))p. It follows that A is the direct sum (in the
sense of [l]) of the simple right iî*-algebras I(Rj).

Now apply the Pierce decomposition in a simple right i3"*-alge-

bra A and define matric units c<3- as in [l]. However, we have only

that (en, eki)=0 for jj*l and (ejit eu) = (eík, e¡k)=a(j, l)=ä(l,j) for

all i, j, k, IEJ. To see that A a span A, we first write2 x= E/ eix>

then xf= E» c.M.y, x¡= E« u*fi*, x= E»'> eiu*jei, where we have used

the continuity of multiplication and of the mapping x—>x*. Then, as

in [l], x= E»j aifin, where the ai}- are complex numbers uniquely

determined by x. We easily find that (1), (3), and (4) hold. We then

obtain the inequalities (2) from ||*y|| ^||x|| ||y|| and the continuity of

the mapping x—>x*. As in [l ], it is now clear that A is isomorphic and

isometric with a matric right iï*-algebra.

(Added June 23, 1952.) At the suggestion of the referee, we shall

give an indication of our proof of (2). We first show that every finite

principal submatrix of a has characteristic values which are greater

than or equal to 1. Let a = (jp; p = 1, • • • , m) be a finite subset of /

1 (June 23, 1952.) The following neat proof of this expression is due to the referee.

Since the involution is continuous, it suffices to show that x = JZí xe¡. We set x,

= ^Ltixe¡; jE") for a finite subset <rof 7 and compute ||*v||J= 2~li II^jII*: jEc) and

||a:— *»||, = ||*||, — ||*v||JêO. It is an easy consequence that £í xe,- converges uncondi-

tionally toan element y of A for which (x—y)e¡ =0 for every jEJ. But then *—y=0,

as desired.
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and let a, be the corresponding principal submatrix of a. Then

/3 = M*or„M = diag (Si, • • • , ßm) for a suitable unitary matrix u. Let

Xp be the w-rowed square matrix with 1 in the (p, p) position and

zeros elsewhere (p=l, • • • , m). Then üXpuT is idempotent and the

corresponding element fp of A is also idempotent. It is also easy to

see that ||/P||2 = trace (uXpu*a,uXPu*)=ßp^l (p=l, • • • ,m). Now

let ir„ (n = 1, 2, • • • ) be a sequence of finite subsets of / and suppose

that the corresponding principal submatrices of a have char-

acteristic values which are not bounded. Then, if we set <r„

= U(7Tm;w = l, • • • ,n), the principal submatrices an of «correspond-

ing to crn will also have characteristic values which are not bounded.

We then have ßn = u*anun = diag (p\„, • • • , p\,„) for suitable uni-

tary matrices «„, and by deleting certain of the an, we may assume

that j3^„^22n, while 1 eßintüs lor all « and some fixed s. Let Xn be

the &n-rowed square matrix with 1/2" in the (1, kn) position and

zeros elsewhere, and let xn in A correspond to «nXn«J. Then ||#n||2

=trace (XlßnXn) =ßm/22», while ||*„*||2 = trace (XJßnXl) =ßKn/22n.

Thus Xn approaches 0 while x* does not approach zero and this is

contrary to the continuity of the involution. Armed with these facts,

it is an elementary exercise to complete the proof of (2).
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