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A CONVEX METRIC WITH UNIQUE SEGMENTS

R. H. BING

1. Introduction. If D(x,y) is a convex metric for a continuous

curve M (compact, locally connected, metric continuum), then for

each pair of points p, q of M there is an arc pq in M from p to q such

that pq is isometric to a straight line interval. We shall call it a seg-

ment.

Each continuous curve has a convex metric [l;3;5;6;2]. However,

if D(x, y) is a convex metric for M, there may be two segments from

p to q. If M = Si is the surface of a sphere, D(x, y) is the size of the

central angle subtended by x and y, and p, q are diametrically opposite

points, then there are many segments from p to q. In fact, we show

in §4 that if D(x, y) is any convex metric whatsoever for Si, each

point of 52 belongs to a pair of points which are not joined by a

unique segment.

There is a dense subset W of 5» such that no two points of W are

diametrically opposite. If D(x, y) is the previously mentioned convex

metric for 52, then each pair of points of W are joined by one and

only one segment. We shall show that for any continuous curve there

is such a dense subset and such a convex metric.

Theorem. Each continuous curve M has a dense subset W and a con-

vex metric D(x, y) such that each pair of points of W belongs to a unique

segment.

We shall prove this result in much the same manner that it was

shown that any continuous curve can be convexified. The metric is
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an adaption and modification of that described in Theorem 4 of [S].

We consider a decreasing sequence of core partition ings of M, assign

sizes to the pieces of the partitionings, and define the distance be-

tween two points in terms of the sizes of the chains joining them. The

convex metric D(x, y) is described in §2 and the dense set W is given

in §3.

We recall the following definitions. A partitioning of M is a finite

collection of mutually exclusive connected open subsets of M whose

sum is dense in M. A sequence of partitionings is decreasing if for

each integer i, Gi+i is a refinement of G< (each element of G,+i lies in

an element of G<) and the mesh of G< (maximum of diameters of

elements of Gi) approaches 0 as i increases without limit.

A partitioning is regular if each of its pieces is the interior of its

closure. If the partitioning H is a refinement of the regular partition-

ing K, the elements of H which have a boundary point in common

with a boundary of an element of K are called border elements.

Other elements are interior elements.

We call H a core refinement of K if each is regular, H is a refinement

of K, each border element of H is adjacent to an interior element,

and the sum of the interior elements of H in each element of K has a

connected closure.

2. A convex metric for M. In this section we describe a convex

metric D(x, y) for M. We find in §3 that there is a dense subset W

of M such that under D(x, y), each pair of points of W belong to a

unique segment.

Description of convex metric D(x, y). It was shown in [3] that M

has a decreasing sequence Gx, Gi, • • • of regular partitionings such

that each is a core refinement of the preceding and each element of

Gi+i is of diameter less than one-third the distance between any two

nonadjacent elements of G,-.

Suppose the elements of the partitioning G, are ordered gn, ga, • • •,

gini- We assign sizes to the elements of G< as follows. The element giy

of Gi is assigned a size 1/4». Each interior element g2j of G2 is assigned

a size l/4i+ni where «i is the number of elements in Gi. If g2¡ is a border

element of G2, its size is one-half the size of the element of Gi con-

taining it plus l/4'+B1. In general, the size of g,y is the first or second

of the following expressions according as g,y is an interior of a border

element of G,.

Í1/4j'+»i+»i+ • • "t-ní-l  or
i/4í+ni+nrf ...+«í-i _|_ 1/2 size of element of

G,_i containing giy.
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Had we not been interested in building a convex metric with unique

segments, we would have made the following simplification in the

definition of the sizes of the elements of G<: each interior element of

Gi would be given a size 1/(2* •«,) and each border element of G,-

would be given a size of one-half the size of the element of G,_i

containing it.

If g is an element of Gi, we denote its size by 5,(g). If p is a point

of g, we shall also denote Si(g) by 5,-(p). If G is a collection of ele-

ments of Gi, the sum of the sizes of the elements of G is denoted by

Si(G).
Suppose ii is a continuum which is the closure of the sum of a sub-

collection of Gi. The sum of the sizes of the elements of G¿ in K is

called the tth size of K and is denoted by Si(K).

If p and q are two points of M, we define Ei(p, q) to be the minimum

of all numbers Si(K) where K is a continuum with ith size which

contains p+q. We may regard E{(p, q) as the ith approximation to

the distance between p and q. Then D(p, q) =lim Ef(p, q).

Existence of lim E{(p, q). Suppose K is a continuum containing

p+q and having an ith size of Ei(p, q). It is the closure of the sum of

a chain of elements of Gi such that p and q lie in the closures of the

end links of this chain. There is a continuum K' in K containing

p+q such that K' has an (t+l)st size but does not contain three

border elements of G,+i in the same element of G<. Then Si+i(K')

a5,(X)4-l/4l+Bl+- •+Bi+ • • • + 1/4B'+B'+-••+»<+!. Therefore

(1)  Ei+1(p, q) + 1/(3-4«»+-»+ •••+»«•!) ̂ Ei(p, q) + 1/(3•4"'+"»+•••+"•)•

Now inequality (1) implies that {E{(p, q) +1/(3 4ni+"1+-"+"')} is a

monotone nonincreasing sequence of positive numbers. Hence

lim Ei(p, q) exists.

In fact, Ei(p, q) converges to D(x, y) uniformly since it can be

shown that \D(p, q)-E((p, q)\ <2/2\
That D(x, y) is a convex metric for M follows by an argument

similar to that used in [3] to show that a continuous curve has a

convex metric.

3. Unique segments in M. In this section we show that if M is

given the convex metric D(x, y) described in the last section, there

is a dense subset W of M such that each pair of points of W belongs

to a unique segment.

Description of set W. Let Gx, G2, • • • be the decreasing sequence of

core partitionings of M described in the last section. Let C,- be the

sum of the core elements of G< and Wi be the intersection of C,-, C,+i,
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C,+2, • • • . Then Wi is a closed set that intersects each element of

G,_i. We shall show that each pair of points of W= Wt+Wt+ • • •

belongs to a unique segment in M.

A unique shortest ith chain from p to q. Ii g and g' are two elements

of Gi, the denominators of 5,(g) and 5,(g') will lie between

4i+nl+.-.+ni-i ancj 4ni+nj+.-+n< inclusive but they will not be equal.

Therefore, if Pi and P2 are two subcollections of G,-,

(2) | Si(Fi) - Si(F2) | ^ l/4B'+">+- • •+«.

Hence, for each pair of points p, q there is a unique continuum K

containing p+q such that Si(K) =Ei(p, q).

Finding a continuum H of ith size near a continuum K of (i+l)st

size. If JIT is a continuum with an (t+l)st size and glt g2 are two

elements of G, intersecting K, there is a continuum H with an tth

size such that H contains gi+g2, H is adjacent to each element of G<

that is adjacent to K, and

(3) Si(H) < Si+i(K) + Si(gx)/2 + Si(gi)/2.

We obtain the continuum H in the following fashion. Let G' be the

collection of border elements of G,+i that lie in K and G" be the col-

lection of all elements g of G' such that g lies in neither gu g2, nor any

element of G< containing two elements of G'. Then G" is the sum of

two mutually exclusive subcollections Gi", G2" such that each ele-

ment of G" is adjacent to an element of (G'—G") +Gi" and also to an

element of (G'-G")4-G2". Let Gk" be the one of Gi", G2" such that

the sum of the (î'4T)st sizes of its elements is the smaller. Then H

is the closure of the sum of all elements g of G, such that g contains

an element of (G'-G")4-G4".
Since each element of G' is adjacent to H and the mesh of G,+i

is less than the distance between nonadjacent elements of G<, each

element of Gf that is adjacent to K is also adjacent to H.

Let F' be the collection of elements of Gi which contain an element

of G' — G" and F" be the collection of those that contain an element

of Gi'. Since Si(F")<Si+i(G") and Si(F') <5,+1(G'-G")+5<(g1)
+Si(g2), inequality (3) follows.

Unless the collection of elements of G< that irreducibly cover the

sum of the elements of Gi" is the same as those that irreducibly cover

the sum of the elements of G2", it follows from inequality (2) that

Si(F") + l/(2-4:^+^+---+n')<Si+i(G"). Hence, unless H contains K,

we obtain the following strong form of inequality (3) :

(4) Si(H) + 1/(2.4"i+"*+ •••+-<) < Si+x(K) + Si(gi)/2 + Si(g2)/2.
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Shortest (i+l)st chain lies in shortest ith chain. Suppose p and q

are two points of Wi and H, K are the two continua such that each

contains p+q, Si(U)=Ei(p, q), and Si+i(K) =Ei+i(p, q). We shall

show that K lies in H.

There is a continuum K' in H containing p+q such that Si+i(K')

^Si(H)-Si(p)/2-Si(q)/2 + l/V+'"+--+«<+ • • • +l/4Bi+B«+"-+B<+i.
Therefore

Si+i(K) g Si(H) - Si(p)/2 - Si(q)/2
-)-   l/(3.4ni+ni+•••+!•<)   _   J /(3.4ni+nt+---+n¡+A

Now it follows from "inequality (3) that there is a continuum H'

containing p+q such that Si(H') <Si+i(K)+Si(p)/2+Si(q)/2. This
and inequality (5) implies that Si(H')-Si(H) <1/4B'+B'+ •••+■< and

inequality (2) shows that H'=H.

Unless K lies in H'=H, it follows from inequality (4) that Si(H)

+ l/(2A"+*>+---+»<)<Si+x(K)+Si(p)/2+Si(q)/2. This is impossible
because of inequality (5). Therefore K is a subset of H.

The unique segment. Suppose p and q are two points of W and K{

is the continuum containing p+q such that Si(K~i) = Ei(p, q). If m

is an integer such that p and q belong to core elements of G„ if » ^ m,

we find that KmDKm+iDKm+iD • • • . In fact, since the chain of

closures of elements of Gm+,+i whose sum is Km+i+i runs straight

through the chain of closures of elements of Gm+¿ whose sum is

Km+i without doubling back and zigzagging, KmKn+x- • • • is an

arc pq from p to q. We show that pq is a unique segment from p to q by

showing that any point not on pq is not between p and q.

Suppose r is a point between p and q but not on pq. Let Hi be the

sum of the closures of all elements of G< adjacent to Ki. Then there

is an integer t greater than m such that r does not belong to Ht.

Furthermore, for each positive number e there is a positive integer

5 and a continuum R, containing/)4-r+q such that St+$(R,) <D(p, q)

+€. We show that there is no such point r by showing that there is

no integer s for € = 2/(3-4B1+B,+••+»<).

The continuum R, is adjacent to M—Ht. By inequality (3) there

is a continuum R,-x containing p+q such that R^-x is adjacent to

M-Ht and

St+,-x(R,-i)< St+,(R.) + S,+.-x(p)/2 + St+,-x(q)/2

< D(p, q)+i + St+,-x(p)/2 + St+.-x(q)/2.

Furthermore, there is a continuum R,-t containing p+q such that

R,-t is adjacent to M—Ht and
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St+,-i(R.-i) < St+.-i(R.-i) + St+,-2(p)/2 + Si+.-i(q)/2

< D(p, q)+i + St+,-i(p)/2 + S,+.-i(q)/2

+ St+.-i(p)/2 + St+.-i(q)/2.

Continuing in this manner we find that there is a continuum i?0

containing p+q such that i?0 is adjacent to M—Ht and

S,(R0) < D(p, q) + i

(6) + St(p)/2 + St+i(p)/2 + ■■■+ St+.-i(p)/2

+ St(q)/2 + St+i(q)/2 +■■■ + St+.-i(q)/2.

Since Kt is not adjacent to M—Ht, Ro^Kt and it follows from

inequality (2) that

(7) St(Kt) + l/4^+B^- • •+-* = St(Ro).

It follows from inequality (5) that

D(P, q) ^ E*(P, q) - St(p)/2 - St+i(p)/2-

- St(q)/2 - St+i(q)/2-+ 1/(3 -4"'+»*+ •••+-.).

But inequalities (7), (6), and (8) imply that

1/4„1+ni+...+B, < f _ St+,(p)/2 - St+.+i(p)/2-

- St+.(q)/2 - St+,+i(q)/2-

4- 1/(3 •4Bi+B2+--•+"').

Hence, if we take « = 2/(3 •4B1+nH" ••+'"), we find that the supposition

that there is a point r between p and q which is not on pq leads to a

contradiction.

4. Examples and questions. Even though a continuous curve has

a convex metric, this metric may be quite different from a Euclidean

metric. For example, if 5 is a horizontally based square plus its in-

terior in the plane and D(p, q) is defined to be the sum of the absolute

values of the difference of the ordinates and the difference of the

abscissas of p and q, each point of S lies on some segment between

opposite vertices of S. It is of interest to get convex metrics that

resemble Euclidean metrics.

Continuous curves each of whose segments is unique. If /" is a cube

plus its interior in Euclidean »-space, its Euclidean metric causes

each pair of its points to belong to a unique segment. Also, if if is a

continuous curve each of whose nondegenerate cyclic elements is

topologically a cube of some dimension, M has such a convex metric.

Hence, each unicoherent plane continuous curve has such a metric.
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If C is a cone whose base is a figure eight, C may be regarded as the

sum of two closed discs that are sewn together along a radius of each.

This shows that I2 is not the only continuous curve which is 2-dimen-

sional at each of its points and has a convex metric under which all

segments are unique.

Suppose M is a continuous curve with a convex metric under which

each pair of points belongs to a unique segment. Then for each point

p of M there is a continuous transformation F(m, t) (m element of M,

t element of [0, l]) of the cartesian product of M and a straight line

interval onto M such that F(m, l)=m, F(m, 0)=p, F(F(m, h), k)

= F(m, tx, t2). By letting-ti = 0 we find that the last equation implies

that F(p, t)=p. We can define F(m, t) as the point which divides

the segment from p to m in the same ratio that t divides the interval

from 0 to 1.

The interior of each sphere of M is contractible to its center.

Questions. Does the existence of such a transformation F(m, t)

guarantee that M can be assigned a convex metric under which seg-

ments are unique?

Not only would it be interesting to know a topological characteriza-

tion of continuous curves which have convex metrics with only unique

segments but it would also be interesting to know which continuous

curves have the following type of convex metric. If two segments in

Euclidean space intersect in more than one point, their sum is a

segment. If an «-dimensional continuous curve has such a convex

metric, is it necessarily topologically equivalent to an ra-cube I"?

The surface of a sphere has a convex metric under which nearby

pairs of points belong to a unique segment. One might wonder if the

local structure of a continuous curve determines whether or not it has

such a convex metric—that is, does a continuous curve M have such

a metric if for each point p of M there is an open subset Np of M

containing p such that NP is topologically equivalent to a set with

such a metric?

Continuous curves with nonunique segments. The surface of a sphere

5" in Euclidean («4-1) -space has the property that if p is one of its

points there is a point q of it such that there is not a unique segment

from p to q. We know this because Sn is not contractible—that is,

it cannot be shrunk to a point [4]. Similarly, a continuous curve

which is not unicoherent is not contractible [7] and therefore does

not have a unique segment between each pair of its points.

Not each contractible continuous curve has a convex metric with

only unique segments. Suppose that in the plane /,• (t = l, 2, • • • )

is a circle with radius 1/i and center at (i/i, 0). If C is a cone with
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Ji+J*+ • • • as a base, it is contractible but it does not have a con-

vex metric with only unique segments because there is no con-

tractible neighborhood not containing the vertex about the point

(0, 0) of the base.
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