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It follows that the left member of (3.3) is positive for 42£l.
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If » is an integer [positive or negative or 0], and if the elements x

and y in the group G meet the requirements

(xy)n = xnyn   and   (yx)n = y"xn,

then we term the elements x and y n-commutative. It is not difficult

to verify that »-commutativity and (1—»)-commutativity are

equivalent properties of the elements x and y, that ( — ̂ -commuta-

tivity implies ordinary commutativity, and that commuting ele-

ments are »-commutative.

From any concept and property involving the fact that certain

elements [or functions of elements] commute, one may derive new

concepts and properties by substituting everywhere «-commutativity

for the requirement of plain commutativity. This general principle

may be illustrated by the following examples.

n-abelian groups are groups G such that (xy)" = x'ty'' for every x

and y in G. They have first been discussed by F. Levi [3 ] ; and they

will play an important rôle in our discussion. Grün [2] has intro-

duced the n-commutator subgroup. It is the smallest normal subgroup

J oí G such that G/J is «-abelian ; and J may be generated by the

totality of elements of the form (xy)n(xnyn)~1 with x and y in G. Dual

to the «-commutator subgroup is the n-center. It is the totality of

elements z in G such that (zx)n=z"xn and (xz)n = x"zn for every x in G;

see Baer [l] for a discussion of this concept.
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The concept of «-abelian group leads naturally to the concept of an

»-soluble group as a group possessing a composition chain with

«-abelian factors. Likewise one may generalize the concept of

«-center to the concept of the upper «-center chain and this leads to

the concept of «-nilpotent groups.

It is well known that finite abelian or nilpotent groups are direct

products of their primary components; and Ph. Hall has shown that

finite soluble groups may be represented as products of subgroups

of all possible relatively prime orders. It is our objective here to ob-

tain similar factorization theorems for »-abelian groups [Theorem

A], «-soluble groups [Theorem B], and «-nilpotent groups [Theorem

c].
We restrict our attention throughout to finite groups, since there

the essential points of our problem may be brought out without con-

flict with the rather sophisticated problems of a totally different kind

which arise when attempting to remove this finiteness hypothesis.

Some indications as to the possibilities are given in the appendix.

1. Notations. We collect here a few concepts in the form most

convenient for our discussion. All groups under consideration will be

finite; the order of the group G will be denoted by o(G) and the order

of the element g will be denoted by o(g).

Products of groups. The group G is the product of its subgroups U

and V if every element in G may be represented in one and only one

way in the form uv with u in U and v in V; and this is equivalent to

requiring that every element in G may be written in one and only

one way in the form v'u' with u' in U and v' in V. Clearly products

of normal subgroups are just the direct products.

If in particular U and V are subgroups of relatively prime order of

the group G and if o(G) =o(U)o(V), then G is easily seen to be the

product of its subgroups U and V.

It is clear how to define products of more than two factors.

n-elements and n-groups. The element g of the group G is said

to be an «-element if gn* = 1 for some suitable positive integer i. This

is equivalent to requiring that every prime divisor of o(g) be a factor

of «. If o(t) is prime to n, then the element t in G is termed a Pn-

element.

A group is an «-group [P»-group] if all its elements are «-elements

[P»-elements]. The totality of «-elements in the group G is the

»-component G„ of G; and the P«-component GP„ is the totality

of Pw-elements in G. Note that components are, in general, not sub-

groups.

n-commutativity. The elements x and y are «-commutative if
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(1.1) (*y)n = x"yn   and    (yx)n = ynxn.

It is known and easily verified that

(1.2) n-commutative elements are (l—n)-commutative;

(1.3) n-commutativity of the elements x and y implies x*~lyn=y"*"-1.

See Baer [l, p. 173, Lemma 5].

2. n-abelian groups. The group G is termed n-abelian whenever

any two of its elements are «-abelian; and this is equivalent to re-

quiring

(xy)n = xnyn for every x and y in G.

It is clear that abelian groups are «-abelian and that «-abelian groups

are (l-«)-abelian [by (1.2)].

Theorem A. Every n-abelian group is the direct product of an

n-group, a (l—n)-group, and an abelian Pn(l—n)-group.

Proof. If G is an «-abelian group, then we show first that

(a) the «-component G„ of G is a subgroup of G.

To prove this we note first that mapping the element xin G upon

its «th power xn constitutes an endomorphism of the »-abelian group

G. Hence mapping x onto xn' is likewise an endomorphism of G whose

kernel K(n{) is the totality of elements t in G such that tn' = 1. These

normal subgroups K(n{) of G form an ascending chain, since K(n*)

^K(ni+1); and it is clear that Gn is the set-theoretical join of these

normal subgroups K(n'). Hence Gn is a normal subgroup of G, as we

wanted to show.

(b) The (1 —«)-component Gi_„ of G is a subgroup of G.

This follows from (a) once we recall that «-abelian groups are

(l-w)-abelian [by (1.2)].

(c) P«(l—«)-elements commute.

To see this consider P«(l—»)-elements x and y in G. Since the

order of x is prime to », we have x = x'n for suitable x' in G; and since

the order of y is prime to « — 1, we have y = y'"-1 for y' in G. Since G

is w-abelian, we deduce now from (1.3) that

xy = x'ny'n~x = y'n~1x'n = yx,

as we claimed.

(d) The P«(l — «)-component Gpn(i_„) of G is an abelian subgroup

of G.

This is an almost obvious consequence of (c).

Our Theorem A is an immediate consequence of (a), (b), and (d);
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since components are fully invariant subgroups whenever they are

subgroups.

Corollary, n-abelian Pn(l —n)-groups are abelian.

This is an obvious consequence of Theorem A.

The reader should note the impossibility of proving decomposability

or commutativity of the »-component of an »-abelian group. For

every group G which satisfies G" = l is «-abelian and such groups

may have a great variety of structures. That this rather trivial

example does not exhaust the possibilities in the least may be seen

from the following remark: If the index of the center Z(G) in G is «,

then the transfer <r of G into Z(G) maps every element in G upon its

«th power. But the transfer is a homomorphism ; and thus we see

that a group G is n-abelian whenever [G:Z(G)] = n. For the necessary

properties of the transfer, see Zassenhaus [4, pp. 131-132, in particular

formulas (19) and (20)].

3. «-soluble groups. Following Grim [2] we define as the «-

commutator subgroup [G, G; w] of G the intersection of all the

normal subgroups N oí G such that G/N is »-abelian. Then

G/[G, G;n] is likewise «-abelian; and [G, G;n] may be generated by

the elements (xy)"(xnyn)~1 for x, y in G. It follows from (1.2) and the

definition of the «-commutator subgroup that [G, G ; « ] = [G, G ; 1 — « ].

The n-derived series is now defined inductively by the rules:

G = G^n\ G(<+1:n) = [G(<:**),G(<;n);w].

It is clear that the «-derived series is a descending chain of fully in-

variant subgroups of the groups G; and that G(i:n) = G(i;1_n).

Proposition. The following properties of the group G are equivalent.

(i) If M is a normal subgroup of G and M<G, then there exists an

n-abelian normal subgroup, not 1, of G/M.

(ii) G possesses a composition chain with n-abelian factors.

(iii) G possesses a normal chain with n-abelian factors.

(iv) The n-derived series terminates with 1.

We omit the simple proof of this proposition, as we are not going

to make much use of it.

If the group G satisfies the four equivalent conditions (i) to (iv)

of this proposition, then G is termed n-soluble. It is clear that «-solu-

ble groups are likewise (1—»)-soluble and that subgroups and quo-

tient groups of «-soluble groups are also «-soluble.

Theorem B. If the order o(G) of the n-soluble group G is the product
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of relatively prime numbers h and k such that n as well as 1 — « is prime

to at least one of the numbers h and k, then G is the product of subgroups

of orders h and k respectively.

Proof. Since h and 4 are relatively prime and o(G) =hk, it suffices

to prove the existence of subgroups of orders h and 4 respectively;

and for reasons of symmetry it suffices to establish the existence of

a subgroup of order h.

We prove our theorem by complete induction with respect to the

order of G. Since our theorem is certainly true for groups of order 1,

and since quotient groups of «-soluble groups are «-soluble, we may

assume the validity of our theorem for every proper quotient group

ofG.
Since G is «-soluble, there exists an «-abelian normal subgroup

N^l of G. We denote by h' the g.c.d. of h and o(G/N) and by 4' the

g.c.d. of 4 and o(G/N). Then o(G/N)=h'k', the numbers V and 4'

are relatively prime, and w as well as 1—« is relatively prime to at

least one of the numbers h' and 4'. We apply the inductive hy-

pothesis. Consequently there exists a subgroup H* of order h' of

G/N; and there exists one and only one subgroup H' of G such that

N^H' and H'/N=H*.
Let h = h'h" and 4 = 4'4". Then h" and 4" are well determined

relatively prime integers such that o(N)=h"k" and such that « as

well as 1 — « is relatively prime to at least one of the numbers h" and

k". Since N is »-abelian, it follows from Theorem A that N is the

direct product of its «-component Nn, its (1—»)-component Ni-n,

and of an abelian P»(l —»)-group M. The latter group M is the di-

rect product of its primary components; and now one sees without

difficulty that N is the direct product of uniquely determined sub-

groups H" and K" of orders h" and k" respectively. Since H" and

K" are fully invariant subgroups of N, as are all components, H"

and K" are normal subgroups of G. This implies in particular that

K" is a normal subgroup of H'. The orders of H'/K" and of K" are

the relatively prime integers A and k" respectively; and now we de-

duce from Schur's Splitting Theorem the existence of a subgroup H

of H' such that H'=HK" and l=Hf\K"; see, for instance, Zassen-

haus [4, p. 125, Theorem 25]. Since H and H'/K" are isomorphic,

H has order h; and this completes the proof.

Corollary 1. Every n-soluble group is the product of an n-group, a

(l—n)-group, and a soluble Pn(l—n)-group.

Proof. It is a consequence of Theorem B that the »-soluble group

G is the product of an »(1 — «)-group T and a P»(l — «)-group S. The
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»(1 — »)-group T is »-soluble as a subgroup of the «-soluble group G;

and it follows from Theorem B that T is the product of an «-group

i/and a (1 —«)-group V. It is clear that G is the product of U, V, S.

Finally 5 is «-soluble as a subgroup of the «-soluble group G. The

factors of a composition chain of 5 are «-abelian P«(l—«)-groups;

and it follows from the Corollary to Theorem A that they are abelian.

Consequently 5 is soluble, as we wanted to show.

Corollary 2. If the order o(G) of the n-soluble group G is the prod-

uct of the relatively prime integers h and k, and if n(l — n) is relatively

prime to h or to k, then any two subgroups of order h of G are conjugate

in G.

Proof. Since our proposition is certainly true for groups of order 1,

we may make the inductive hypothesis that our proposition holds

for every «-soluble group whose order is smaller than o(G).

Suppose now that o(G) = hk, that h and 4 are relatively prime and

that «(1 — ») is relatively prime to h or to 4. Consider two subgroups

if and H* oí order h oí G. Since G is »-soluble, there exists an «-abelian

normal subgroup N^l of G. Then G/N is an «-soluble group of

order smaller than o(G) ; and thus it follows from our inductive hy-

pothesis that our proposition holds in G/N. We let h = h'h" and

4 = 4'4" where the integers h', h", k', k" are determined in such a

way that o(G/N) = h'k', o(N) = h"k". It is clear that h', k' are rela-
tively prime, that n(l—n) is prime to at least one of the numbers

h' and k', and that h" and 4" are relatively prime, that »(1— w) is

prime to at least one of the numbers h" and 4". We apply Theorem A

on the «-abelian group N and find that N is the direct product of

groups H" and K" of orders ft" and k" respectively. Next we note

that the subgroups NH/N and NH*/N of G/N have both order ft'.
We deduce from the inductive hypothesis the existence of an element

g in G such that

NH = N(g-W*g);

and we let H**=g~1H*g.
Since NH has order A4", one verifies that

NH = K"H = K"H**   and    1 = K" H H = K" C\ H**.

If «(1 —«) is prime to 4, then K" is abelian as an «-abelian P»(l —«)-

group [Corollary to Theorem A]; and if «(1—«) is not prime to 4,

then w(l —») is prime to ft and the «-soluble groups H and H* oí

order ft are P«(l —»)-groups which implies their solubility [by Corol-

lary l]. Thus K" is abelian or NH/K" is soluble. Hence we may
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apply a Theorem of Witt-Zassenhaus asserting that H and H** are

conjugate in NH; see Zassenhaus [4, p. 126, Theorem 27]. Conse-

quently there exists an element t in NH such that H=t~1H**t

= (gt)~1H*(gt). This completes the proof.

Remark 1. Whether or not it would suffice to make in Corollary 2

the weaker hypothesis of Theorem B is an open question whose

answer depends essentially on the solution of the corresponding prob-

lem whether the Theorem of Witt-Zassenhaus which we applied holds

without any solubility hypothesis.

Remark 2. The preceding results are obvious generalizations of Ph.

Hall's theorems for ordinary soluble groups. Noting that «-groups

need not be «-soluble, it does not seem possible to show that the

property of Theorem A is characteristic for «-solubility.

4. «-nilpotent groups. The »-center Z(G; n) of the group G is the

totality of elements z in G with the property:

(4.1) (zg)n = z"gn and (gz)n = g"zn for every g in G.

It is easily seen that Z(G; ») is a characteristic subgroup of G; and

it follows from (1.2) that

(4.2) Z(G; n) = Z(G; 1 - «).

If we denote by U{ the subgroup of G which is generated by all the

ith powers of elements in U and by [U, G] the subgroup generated

by all the commutators [u, g] = u~1g~1ug with u in U and g in G,

then we may restate the following well known and easily verified

results.

(4.3) If the normal subgroup N of G is part of the n-center of G, then
(a) NnC\N]-núZ(G);

(b) [N, G]"<1-"> = 1;

(c) Gnr\G1~" is part of the centralizer of N in G.

For proofs see Baer [l, pp. 173-174, Folgerung 2, 3, 4].

Lemma 1. If the normal subgroup N of G is part of the n-center of G,

and if S is an n-abelian subgroup of G, then NS is an n-abelian sub-

group of G.

Proof. Suppose that u, v are elements in N and that s, t are ele-

ments in 5. Then svs~* belongs to N; and we deduce from (1.1), (4.1),

and (1.3) that

[(us)(vt)]n = [u(svt)]n = un(svl)n = «"[(íw-1)*/]"

= un(svs~1)"(st)n = un(svns~1)s"tn

= u"svnsnr-1tn = mbî*W = (us)n(vt)n;
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and this shows that the elements in NS are «-commutative.

Corollary 1. G=Z(G; n) whenever G/Z(G; n) is cyclic.

Proof. If G/Z(G; «) is cyclic, then there exists a cyclic subgroup

5 of G such that G=Z(G; n)S. Cyclic groups are abelian and conse-

quently «-abelian. Application of Lemma 1 shows that G is «-abelian

or G=Z(G; »).
The upper n-center chain Zi(G; «) of the group G is defined induc-

tively by the following rules:

1 = Z0(G; «),Zi+i(G; n)/Zi(G; n) = Z[G/Zi(G; n); »].

Clearly these are characteristic subgroups of  G; and

Z,(G;»)=Z<(G;1-«).

Lemma 2. If N is a normal subgroup of G such that Ni\Zi(G; «)

9^1, then NC\Z(G; n)^l.

Proof. By hypothesis there exists a smallest integer 4 such that

Nr\Zk(G; n)**l. It is clear that 0<4 and that ArHZt_i(G; «) = 1.
Consider now an element z in NC\Zk(G; «). If g is any element in G,

then it follows from the normality of N that

(zg)n m gn m zngn modulo N,

since z=l modulo N; and it follows from the definition of the upper

«-center chain that

(zg)n m zngn moduloZ*_i(G; »),

since z belongs to Zk(G; »). Thus we see that (zg)n(zngn)~1 belongs to

Nr\Zk-x(G; «) = 1. Hence (zg)B(zBf)_1 = l or (zg)n = zngn and (gz)n

= gnzn is seen likewise. This proves that z belongs to Z(G; «) ; and thus

we have shown that 1 <NP\Zk(G; n) ^lN(~\Z(G; «), as we wanted to

show.

The group G shall be termed n-nilpotent if its upper «-center chain

terminates in G. Clearly «-nilpotent groups are also (1 — «)-nilpotent.

There exist many equivalent definitions of «-nilpotency, for instance

in terms of the lower «-center chain. As we are not going to use them,

we omit their discussion.

Corollary 2. Subgroups and quotient groups of n-nilpotent groups

are n-nilpotent.

The fairly obvious argument may be omitted.
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Corollary 3. // N¿¿ 1 is a normal subgroup of the n-nilpotent group

G, then NC\Z(G; «)^1.

This is a fairly immediate consequence of Lemma 2.

Lemma 3. If G is n-nilpotent, if x is an n-element and y a Pn-element

in G, then xy=yx.

Proof. Let S= {#, y] and C= [S, S], Then C is generated by
c= [x, y] and the elements conjugate to c in 5. Thus C = l if, and

only if, c = l. Assume now by way of contradiction that C^l. Then

there exists a maximal normal subgroup M of 5 such that M<C. It

is clear that C/M is a minimal normal subgroup of S/M.

We deduce from Corollary 2 that S* = S/M is an w-nilpotent group.

It will be convenient to let s* = Ms for s in 5 so that c*= [x*, y*],

C* = C/M. From C*j¿1 and Corollary 3 we deduce now that C*

C\Z(G*; n)?*!; and this implies because of the minimality of the

normal subgroup C* of 5* that C*C\Z(G*; ») = C* or C*^Z(G*; «).

We interrupt our argument to verify the following simple fact

which will be used several times.

(+) If x*c* = c*x*, then o(c*) is a factor of o(x*) ; and if y*c* = c*y*,

then o(c*) is a factor of o(y*).

It is clear that it suffices to verify one of the facts. Assume there-

fore that y*c* = c*y*. Then we deduce from y*~xx*y* = x*c* that

y*-ix*y*i = x*c*i hoidg for every i. Hence

so that o(c*) divides o(y*).

We return to the main part of our argument. We form [C*, S*].

This is a normal subgroup of S* which is part of C*. Because of the

minimality of C* there arise only two possibilities: either [C*, S*] = 1

or [C*,S*] = C*.

Assume first that [C*, S*] = l. Then C* is part of the center of S*.

Hence x*c* = c*x* and y*c* = c*y*. It follows from (+) that o(c*) is

a common factor of the orders o(x*) and o(y*). But o(x*) is a divisor

of o(x) and o(y*) is a factor of o(y). Thus o(c*) is a common divisor

of the relatively prime numbers o(x) and o(y). Hence o(c*)= 1 so

that c* = 1 and this implies C* = 1 which is impossible.

Next we consider the other possibility, namely [C*, S*] = C*.

Since the normal subgroup C* oí S* is part of the «-center of S*, it

follows from (4.3, b) that

C*»(l-„)   _    [C*j 5*]n(l-„)   =   1

Since C* is part of the »-center of S*, C* is «-abelian. We have
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shown just now that C* is an «(1 —w)-group. It follows from Theorem

A that C* is the direct product of an «-group and a (1—«)-group.

These direct factors of C* are the «-component and the (1—»)-

component of C* and as such they are characteristic subgroups of C*.

But characteristic subgroups of a normal subgroup of S* are normal

subgroups of S*. Now it follows from the minimality of C* that one

of these factors equals 1 and the other factor equals C*. In other

words: C* is either an »-group or a (1 — «)-group.

Assume first that C* is an »-group. Since C* is part of the «-center,

it follows from Lemma 1 that \C*, y*\ is «-abelian. Since

{C*, y*}/C* is a cyclic Pw-group and C* is an «-group, it follows

from Theorem A that the «-abelian group {C*, y*} is the direct

product of C* and {y*\. This implies in particular that c*y*=y*c*;

and it follows from (+) that the order of the »-element c* is a divisor

of the order of the P«-element y*. The order of c* is therefore 1 so

that c* = l and C*=l. This is impossible.

We assume next that C* is not an «-group. Then C* is a (1—»)-

group. If we substitute now in the argument of the preceding para-

graph of our proof everywhere x* for y*, then we find again that

c* = l and C* = l. Thus we have been led to a contradiction by

assuming that [S, S]^l. Hence [S, S] = l so that in particular

[x, y] = l or xy=yx, as we wanted to show.

Lemma 4. If the Pn(l —n)-group S is part of the n-center of G, then

S^Z(G).

Proof. Since the «-center is »-abelian, it follows from Theorem A

that the «-center of G is the direct product of an «(1—«)-group U

and a P«(l—«)-group V. Since V is the P«(l— «)-component of

Z(G; «), it contains all the P«(l—»)-elements in Z(G; «). Hence

S^V. Since F is a characteristic subgroup of the characteristic sub-

group Z(G; n) of G, F is a characteristic subgroup of G. It follows

from (4.3, b) that

[V, G]"'1-"' = 1.

But V and its subgroup [V, G] are P«(l — «)-groups; and thus it fol-

lows that [ V, G] = 1. This is equivalent to saying that V is part of the

center of G. The subgroup S of V is consequently part of the center

of G.

Corollary 4: An n-nilpotent Pn(l —n)-group is nilpotent.

This is an almost immediate consequence of Lemma 4 and the

definition of «-nilpotency.
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Theorem C. Every n-nilpotent group is the direct product of an

n-group, a (1 —n)-group, and a nilpotent Pn(l —n)-group.

Proof. It follows from (4.2) that the w-nilpotent group G is like-

wise (1—«)-nilpotent. Since the «-center is always «-abelian, «-nil-

potent groups are also «-soluble. Thus it follows from Corollary 1 to

Theorem B that G is a product of an «-group A, a (1— «)-group B,

and a P»(l—«)-group C. It follows from Lemma 3 that every

element in A commutes with every element in B or in C and that

likewise every element in B commutes with every element in A or in

C. Now it is clear that G is the direct product of A, B, and C and

that therefore A is the «-component of G, B the (1—«)-component,

and C the P«(l —«)-component of G.

C is a subgroup of the «-nilpotent group G. The P«(l — »)-group C

is therefore itself «-nilpotent. Now it follows from Corollary 4 that

C is an ordinary nilpotent group.

Corollary 5. If the group G is n-nilpotent, and if the greatest com-

mon divisor of « and o(G) as well as the greatest common divisor of

1 — « and o(G) is a prime power, then G is nilpotent.

Proof. It follows from Theorem C that G is the direct product

of an «-group A, a (1 —«)-group B, and a nilpotent P«(l — »)-group.

It follows from our hypothesis that the orders of A and B are prime

powers. Hence A and B are nilpotent groups; and G is nilpotent as a

direct product of nilpotent groups.

Appendix: Extension of results to infinite groups. The careful

reader will have observed that the assumption that all groups are

finite has not been used in all places with equal force. As a matter of

fact some theorems remain true if we omit this hypothesis whereas

in other cases some slight changes in wording or argument are neces-

sary. But in some cases the finiteness hypothesis is quite essential.

We give a short survey of the situation.

One sees easily that the argument used in proving Theorem A may

actually be used to prove the following result:

The elements of finite order in an «-abelian group form a sub-

group which is the direct product of an «-group, a (1 —«)-group, and

an abelian P«(l—«)-group.

All the results of §4 which precede Theorem C remain true without

the finiteness hypothesis, provided we introduce the transfinite terms

of the upper «-central chain [in the obvious manner]; but it should

be observed that in the proof of Lemma 3 some more sophisticated

arguments have to be employed to get around the missing finiteness.
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But the proof of Theorem B cannot easily be extended to infinite

groups, since Schur's Splitting Theorem which we employed rather

forcefully does not possess a generalization to infinite groups that

could be employed here. If finitely generated groups all of whose

elements are of finite order were finite, then these results could be ex-

tended too—this applies also to Theorem C. But the celebrated

Problem of Burnside is still unsolved.
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