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CONGRUENCES CONNECTED WITH THREE-LINE
LATIN RECTANGLES
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1. Introduction. In a recent paper [1], J. Riordan set up the
recurrences

(1.1) Ko = 1Ko 1+ (8)2Kn_2 + 2(8)sKn_s + ka,
where (n),=n(n—1) - . - (n—r+1), and
(1'2) ko + nkpy = — (" - 1)2”;

here K,=K(3, n), the number of reduced three-line latin rectangles.
He also proved the congruences

(1.3) k,H., = 2k,., K’H—P = 2K, (mod P),

where p is a prime >2.
In the present note we shall extend (1.3). We show first that for
arbitrary m,

(1.4) Enim = 2™kn,  Kuim = 2™K, (mod m).

More generally if we define

(1.5) Af(n) = f(n + m) — 27f(n),  A%(n) = AA"f(n)
for fixed m =1, then

(1.6) Ak, = 0 = A'K, (mod m")

for all r=1.

2. Proof of (1.4). In (1.2) replace n by n+m so that
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RBotm+ (8 + M) bpima = — (n + m — 1)2ntm,
Comparison with (1.2) yields
(kntm — 2™kn) + n(kntm—1 — 2™kn—1) + M(knym + 2*™) = 0

or more briefly, using (1.5),

2.1) Ak + 10y + M(Enpmy + 27™) = 0.
Clearly (2.1) implies
Ak, = (—1)"n!Ak, (mod m).
Since by (1.2)
Aky = km — 2™k = 2™ — 2™k = 0 (mod m),

it follows at once that Ak,=0 (mod m). This proves the first half of
(1.4).
In the next place, using (1.1) we get

(2.2) Kuim = n'Knim1+ (8)2Knim2 + 2(0)sKnim—3s + Enim
so that
2.3) AK. = n*AKn_1 + (n):AKs_s + 2(n)sAKn_s.
Since by (1.1)
Kn=kn Kni1 = Kn+ ki1 = b + Enp1 = 0,
Knis =4Kmp1+ 2K + bny2 = 2km + kmy2 =0

(using the special values ko=1, ky=—1, ky=—2, K¢=1, K;=K,;=0),
it follows that

2.9 AK, = AK, = AK, = 0 (mod m).
Clearly (2.3) and (2.4) imply
(2.5) AK, = 0 (mod m)

for all 20. This completes the proof of (1.4).

3. Proof of (1.6). We shall require an extension of (2.1). Replacing
n by n+m, we get

A2k, + 1Ak, + 2mARpm = O,
and it is then easy to get the general formula

3.1) Atky + A Rp_y + rMA™ Ry = 0 (n=0)
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for r=2. We now use (3.1) to prove
3.2) Atk, = 0 (mod m") r=1).

Indeed we have already proved (3.2) for the value r=1. If then we
assume (3.2) for the value r—1, (3.1) implies

3.3) Ak, = — nAkp1 = (—1)"nlATk,.
Now if we take =0 in (3.1) we get
Athy = — rmA™ 1k, = 0,

by the inductive hypothesis. Hence (3.3) reduces to (3.2). This
proves the first half of (1.6).
We now prove

3.9 ATK, = 0 (mod mr) (rz1).

By (2.5), (3.4) holds for r=1; we therefore assume that it holds for
the value r—1. Now it follows from (1.1) that

A'Kn = ”zA'K»-I + (")ZA'K:»—2 + 2("))A'Kn—8 + A'kn

(3.5) + r{(An2)A™ 1K pym1 + (A(7)2)A™ K pym—2

+ 2(A(n);)A"1K,,+,,,_,} + .-
for all #20. Since A*n*=0 (mod m*) for k20, it is evident from (3.5)
that we need merely examine A’K, for =0, 1, 2. In the first place
(3.5) implies A’K (=0 (mod m") by the inductive hypothesis. Secondly
for n=1, we see that A’K;=ArK,=0, and for n=2, A'K,=4A'K;
+2ArK,=0. Thus A’K,=0 for all #20. This completes the proof of
(1.6).

REFERENCE

1. John Riordan, A recurrence relation for three-line latin rectangles, Amer. Math,
Monthly vol. 59 (1952) pp. 159-162.

Duke UNIVERSITY



