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It is the purpose of this note to indicate some readily proved re-

sults concerning the pth derivatives of convergent sequences of func-

tions of a real variable; these results are associated with repeated

term-by-term differentiation, and involve especially values assumed,

total variation, and modulus of continuity of pth derivatives.

As an illustration of this material, we remark that it is intuitively

obvious that if a sequence of functions fn(x) possessing derivatives

approaches the function cos x in the interval — 1 ̂ x^ +1, not neces-

sarily uniformly, then for « sufficiently large the function /„' (x) has

at least one zero for some x near x = 0 ; the same conclusion holds if

the sequence fn(x) approaches the function \x\ in the interval
-1-S*S+1.

Although the two investigations were undertaken independently,

the present note has close connections with a forthcoming paper by

Ulam and Hyers. The latter authors emphasize consequences of

uniform convergence of a sequence, but under appropriate circum-

stances study the values taken on by, and especially the vanishing of,

the pth derivatives of the functions of an approximating sequence;

they also investigate analogous problems for functions of several

variables.

Theorem 1. Let the functions fn(x) converge to the function f(x) in

the interval I: a^x^b, and let bothfn(x) andf(x) possess derivatives of

order p ( > 0) at every point of I. Let there be given a point x0 of I, and

positive numbers ô and e. Then there exists N such that for every n>N

the function f^ (x) takes on a value f„\xn) which satisfies

(1) | flP\xn)  - /'"M |   < 6

at some point xn of the interval \x — x0\ <8.

Consider first the case p = l. At a suitably chosen point x¿ of I

near Xo we have

< — > I Xo — xó I < 5.
2

For « sufficiently large we have by the convergence of the sequence
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(2)
fW) -/(*o)

Xo   — Xo
- f'(xo)
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fn(x) in the points x¿ and Xq

(3) \U(x¿)-U(Xo)

xó Xo xó Xo

t
< —

2

But the first fraction in (3) has the value /« (xn), where xn is a suit-

ably chosen point in the interval \x — Xo\ <8, so inequality (1) for

p = 1 follows from (2) and (3).

It is now clear how the proof of Theorem 1 can be completed by

induction. Assume the theorem true for the index p — 1 ; we prove the

theorem for the index p. We chose x¿ in / satisfying

(4)
/«»-»(«o') -/'"-'H*»)

#o  — Xo
- fpKxo) < e, | xo — xó | < 5.

The function f<-p~V) possesses a derivative and hence is continuous in

/, so the corresponding inequality is valid if in the denominator of the

fraction the values x¿ and Xo are replaced by arbitrary values Xó

and Xo in suitable neighborhoods N(x¿) and N(x0) of x¿ and x0

respectively (these neighborhoods are to be chosen to lie in |;e —x0|

<ô), and if in the numerator of the fraction the values /(p_1) (xó )

and f{p~1)(x0) are replaced by arbitrary values g' and g satisfying

suitable inequalities

(5) | /<>-»(*»' )  - ¿ |   < €If | /'""»(So)  - g |   < 61.

That is to say, if XÓ and Xo lie in N(x¿ ) and N(x0), and if (5) is valid,

then we have

(6)
¿~g

Xo  — X o
-f"Kxo) < e.

By Theorem 1 as assumed true for the index p — 1, there exists N so

that for n>N the function ^'^(x) takes on a value g' satisfying

(5) in some point X¿ oí N(x¿ ) and simultaneously takes on a value

g satisfying (5) in some point X0 oí N(xo) ; here X¿ and Xo naturally

depend on «. For such values of « we have

K—-fpKxo)
f^W)

Xo  — Jo
<«.

The fraction is equal to f^(xn) in some point xn between Xó and

Xo, so xn lies in the interval | x—x0\ <S, and Theorem 1 is established.

We remark that at the end points of / we deal wholly with one-

sided derivatives of f(x) and f»(x) ; it follows that the prescribed

interval for xn may be restricted to a one-sided neighborhood also if
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Xo is an interior point of I.

Ulam and Hyers consider Theorem 1 in the case/<p)(a;o) =0, where

f(p)(x) changes sign at x=xt, and require uniform convergence of the

sequence fn(x) ; their method involves the use of with differences, and

can be combined with the present methods to establish Theorem 1.

Proof of the following is essentially contained in the discussion as

given :

Corollary 1. Under the hypothesis of Theorem 1, let xi and xt ( <xi)

lie in I; then for w sufficiently large there exist Xi and X2 in I depending

on » such that

\iï\xi)-jr(Xi) r(xi)-j"\xi)
Xi — Xi Xx — Xi

< t

for some points Xx and X2 with \Xx—Xi\ < 5, ¡ Xt—xt\ <b.In particular

iff»+1)(x) exists at every point of I, for « sufficiently large there exists

some point X, x2<X <Xx, such that we have

,0*1).v,     fM(xx) - /<"(**)
Jn (-X-)

Xi — Xt
< e.

// xi and xt (<Xi) are arbitrary points of I, and if we have /(p,(*i)

>/(p)(*2) [or <f(p)(x2)], and if f^(xx)>A>f^(x2) [or f™(xx)<A

<flp)(x2)], then for n sufficiently large fn\x) takes on the value A in

some point Xn, Xi<Xn<xt.

The last remark follows from Theorem 1 and the classical property

of the derivative/¡"'(x).

Both Theorem 1 and Corollary 1 are of significance in the study of

approach by functions fn(x) having more derivatives than the limit

function/(x). The interval / of Theorem 1 may be only a subinterval

of a larger interval of convergence. For instance suppose fn(x)-^f(x)

= \x\ in /': — l^rc^l. Suppose /„' (x) exists at every point of I',

and let 5(>0) be given. For « sufficiently large, it follows from

Theorem 1 that /„' (x) takes a value near unity in a neighborhood of

the point 5/2 and takes a value near minus unity in a neighborhood

of the point —b/2, hence that /„' (x) takes the value zero in some

point of the interval \x\ ^S; compare the second part of Corollary 1.

If /„"■(*) exists and is continuous in V, the equation

fñ(xi) - fñ(xt) =  ftlfñ'(x)dx,
J   X»

where xx and xt are near 5/2 and —5/2 respectively, shows that for
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« sufficiently large, /„" (x) takes some value numerically greater than

1/5 at some point of the interval \x\ <5. Extension of this reasoning

shows that if f^\x) exists and is continuous at every point of I', and

if If and 5 are arbitrary, then for « sufficiently large^(x) takes some

value numerically greater than M in the interval \x\ <5. Of course

Corollary 1 extends to higher difference quotients.

These remarks concerning approximation to the function | jc|

are closely related to the more obvious fact that if f(x) is defined

throughout the interval / but is discontinuous at the point xa oí I,

and if the sequence of functions fn(x) continuous in / converges in

I tof(x), then if M and 5(>0) are given, for « sufficiently large the

difference quotient of fn(x) is numerically greater than M at some

point of the interval | jc — 3Co| <5; if fñ(x) exists throughout /, then

for « sufficiently large /„' (x) is numerically greater than M at some

point of the interval |x — x0\ <5; a similar conclusion applies to the

higher derivatives of /„' (x) if they exist, for we cannot have here

fn(x)~*+ °° or/» (x)—>— » in an interval, as is shown in Lemma 1

below. It follows similarly that if f(x) is continuous in I but has no

derivative at the point Xo of /, if the sequence of functions fn(x)

continuous in / converges in / to f(x) and if /„' (x) exists in /, then

if M and 5 (>0) are given, for « sufficiently large the difference

quotient of /„' (x) is numerically greater than M at some point of the

interval \x — x0\ <5; if /»".(*) exists throughout I, then for « suffi-

ciently large the second derivative/«" (x) is numerically greater than

M at some point of the interval | x — Xo\ <5; a similar conclusion ap-

plies to higher derivatives if they exist.

Corollary 2. Under the conditions of Theorem 1 we have

lim inf [Total variation of /„  (x) in /]
n—*«

è [Total variation of fip)(x) in /],

Corollary 2 is a direct consequence of Theorem 1 and the definition

of the total variation of flp)(x) in / as

K

l.u.b. E I fM(tk+x) - /«(&) |,    a = {, < fc < • • • < iK < U+i = b;
4-0

the proof is left to the reader.

Corollary 3. Under the conditions of Theorem 1, if w„(5) is a mod-

ulus of continuity in I for the function fj?\x) (assumed continuous), and

w(5) is the least modulus of continuity in I for fip)(x) (assumed con-

tinuous), then we have for every 5
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lim inf «„(5) ^ w(5).
n—»no

The function w(5) is said to be a modulus of continuity for the con-

tinuous function ip(x) in I if we have \\f/(x+h)—d'(x)\ ^w(5) when-

ever x and x+h lie in I, with \h\ ^5, and if limj..o w(5) =0. Under the

hypothesis of Corollary 3 let 5 and «( > 0) be arbitrary. There exist x

and x+h in I satisfying \fp)(x+h)-fp\x)\^u(Ô)-e/3, \h\ <5.
Choose 5i(>0), |â| +25i^5. For « sufficiently large we have for some

xi and Xi (depending on »)

\/nP\xi)-fP\x)\<*/3,        \x-xx\<5i,

I fn\x2)  - f'\x +h)\< 6/3, | X + h - Xi |   < 5„

from which we may write (since |xi —xt\ <5)

<0B(5)   ̂   | fn\xi)   - fn\x2) |   ^  W(5)   -  6,

whence the conclusion follows.

In this same circle of ideas we prove

Theorem 2. Suppose all the functions f^(x) are continuous and

have the modulus of continuity co(5) in the interval I: a^x^b, and

suppose the sequence fn(x) converges to a function f(x) on I. Thenfip)(x)

exists on I and has there the modulus of continuity w(5).

The functions fn(x) are in fact equicontinuous on I, so it is suffi-

cient to suppose the sequence /»(x) convergent to/(x) on a set every-

where dense in 7; indeed it is sufficient for the existence of f(x) to

assume the sequence/B(x) convergent in p + 1 points of I. To prove

Theorem 2 in the case p>l we need two lemmas.

Lemma 1. If fñ (x) is continuous in I and becomes positively infinite

there uniformly, then there is at most one point in I at which /B(x)

converges or is bounded. If such a point £ o exists, in any closed subinterval

of I to the right of £0 we have uniformly fn(x)—>+ », and in any closed

subinterval of I to the left of £0 we have uniformly /B(x)—»— ».

If there exist two points £0 and & (>£o) in I at which /»(x) con-

verges (or is bounded), we have

/.(£»)-/.(&>)-  (1fñ(x)dx-
Jio

+   »,

which is impossible.

This last equation also shows that if /„(£o) converges, then /„(£i)

—>+ » for every £i in / with & >£o, and a similar equation shows that
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if/B(|i)—♦+» then /„(x)—*+ » uniformly in I for x^£i. It may be

proved similarly that if /B(£o) converges, then at every x in I to the

left of £o we have/B(x)—>— », uniformly on any closed subinterval

of I to the left of £0.

Lemma 2. Iff„\x) is continuous in I and becomes positively infinite

there uniformly, there are at most p points of I at which the sequence

fn(x) converges or is bounded. If there are p such points of I, these

points divide I into at most p+1 subintervals Ij; interior to each If

we havefn(x)—*+ » orf„(x)—>— », uniformly on any closed subinterval

interior to I¡.

Lemma 2 is a consequence of Lemma 1, by application of Lemma 1

to the subintervals of I in which f^_1\x) becomes positively and

negatively infinite, respectively. Under the hypothesis of Lemma 2

with p = 2, suppose the sequence /„' (x) convergent or even bounded

in a point £o interior to I; it cannot occur that/»(x) should converge

at ¿jo as well as at a point £i(>£o) of I and at a point £2 (<£o) of I,

for under those conditions by Lemma 1 we should have/„(x)—>+ »

or /»(x)—>— » uniformly in a subinterval of each of the intervals

£j<x<£o, £o<x<£i; each of the latter intervals contains for « suffi-

ciently large a maximum or minimum of/B(x) and thus at least one

zero of /„' (x), so for » sufficiently large I contains at least one zero of

/»" (x), in contradiction to our hypothesis. Indeed it follows from this

same reasoning applied to a suitable subsequence that (p = 2) if the

sequence /»(x) converges in each of two points ni and r¡i (< Vi) of

I, then in each of the subintervals of I that exist : a g x < rn, rn < x < ijx,

7]i<x^b we have/»(*)—»+ » or/„(x)—>— » and uniformly in each

closed subsubinterval. Continued application of this argument estab-

lishes Lemma 2.

The number p+1 oí subintervals Ij of Lemma 2 may actually be

attained, as is shown by the example

»(x) S «( x-)[x-) • • • { x-),
V    p+iJ\    p+ij     \    p+i/'

I:   0 ^ x ^ 1,

a polynomial of degree p, whose pth derivative becomes positively

infinite. The relations /»(x)—*+ » and /»(«)—>— » of Lemma 2 do

not necessarily hold in alternate intervals /,-, as we see from the

example/»(x)=«(x-l/2)2, I: Ogx^l, with p = 2; we have /¿"'(x)
=- 2«-»+».

We return to the proof of Theorem 2. The functions fn\x) are
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equicontinuous on I, so every subsequence which is bounded in a

point of I is uniformly bounded in /; any subsequence which becomes

positively (or negatively) infinite in a point of I becomes positively

(or negatively) infinite uniformly in I. From Lemma 2 it follows that

no subsequence can become positively or negatively infinite uni-

formly in /, so the functions f„\x) are uniformly bounded in I. The

functions/»""''(x) have their first derivatives uniformly bounded in I,

hence are equicontinuous in /. By the argument just given for the

functionsfn\x), and by application of Lemma 2, it follows that the

setf^~v(x) is uniformly bounded in I, and by continuing this argu-

ment it follows that each of the sets /iP_2)(x), • • • ,/» (x), /B(x) is

uniformly bounded and equicontinuous in /. Then for a suitably

chosen sequence of integers «*, it is true that at a set of points every-

where dense in I, each of the sequences /»t(x), /.^(x), • • • , f$(x)

converges, hence converges uniformly in / to some limit function;

we denote these limit functions by Fo(x), Pi(x), • • • , FP(x). From

the hypothesis of Theorem 2 we have Fo(x)=f(x). From the uni-

formity of the convergence of the sequence /»t(x) it follows by the

classical theorem on term-by-term differentiation of series that/'(x)

exists and we have Pi(x)s=/'(x). Repetition of this reasoning shows

that f"(x), • • ■ ,/<p>(x) all exist and we have Ft(x)=f"(x), • • • ,

Fp(x)=fip)(x). The remainder of Theorem 2 follows from Corollary

3 to Theorem 1.

Under the hypothesis of Theorem 2, we have essentially shown that

every subsequence of the functions f*\x) contains a new subse-

quence which converges uniformly in / to/(p)(x), from which it fol-

lows that the sequence /¿"'(x) itself converges uniformly in I to

/"»(x), and that the sequences {/»^"(x)}, {/¿"-"(x)}, • • • , {/»(x)}

converge uniformly in I to the respective limits /<p-1>(x),

f*r-*(x), •■•,/(*).
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