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1. Introduction.1 The object of this paper is to consider a class of

open doubly-connected Riemann surfaces2 and to show that the mem-

bers of the class are images of the complex plane less two points;

also a representation of the mapping function is obtained. To this

end a class of open simply-connected Riemann surfaces is defined

and the members shown to be parabolic and a representation of the

mapping function is obtained.

The methods employed involve approximation by sequences of

elliptic surfaces developed by G. R. MacLane [8]3 and the use of the

results of Carathéodory [2] on the mapping of a sequence of plane

domains by a family of functions.

In the terminology of I versen [7] certain members of each class

of surfaces exhibit indirectly critical singularities.

2. Description of the class of simply-connected surfaces. A sur-

face J oí this class is defined by two infinite sequences of real numbers

{an}, {bn} (« = 1, 2, ■ ■ • ) with 0<ai<Z>i, Ö2*±i>a2*, &2*-i>a2*-i,

a2k>b2k- y consists of sheets Si, S2, • ■ ■ , Sk, ■ ■ • , each sheet being a

slit copy of the Mi-sphere. Si is cut along the positive real axis from

w = ai to w = bi. Sk (k>l) is cut along the real axis from a*_i to

bk-i and from ak to bk. Si and S2 are joined along their cuts from

ax to bi forming first order branch points over ai and bi. S2k and S2k+i

are joined along their cuts from a2k to b2k, S2k and S2k-i are joined

along their cuts from a2k-i to b2k-X forming first order branch points

over w = an and w = bn, n = l, 2, 3, ■ ■ • . J is topographically equiva-

lent to a semi-infinite cylinder, hence is open and simply-connected.

Therefore J is either hyperbolic or parabolic.

The nature of the singularities of J depends on the sequences

{an\, {bn}- (1) If neither sequence has a limit, J has no singularities.

(2) If one of the sequences has a limit or if both have the same limit,

Presented to the Society, December 28, 1950; received by the editors April 24,

1952.
1 This paper is an extract from a thesis presented to the Faculty of the Rice In-

stitute in June, 1950.

! The author is greatly indebted to Professor Gerald R. MacLane for calling his

attention to this problem and for his friendly encouragement and valuable counsel.

3 Numbers in brackets refer to the references listed at the end of the paper.
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J has one indirectly critical singularity. (3) If an—Hi?¿ a> and £>„—><»,

J has two indirectly critical singularities.

3. Description of the class of doubly-connected surfaces. A sur-

face J of this class is defined by two infinite sequences of real numbers

{an}, {bn}, n=±l, ±2, ±3, • ■ ■ , with ô_i<a_i<0<ai<&i, On.±1

~>a2k, b2k-i~>a2k-i, a2k>b2k, <i-2*><i-2*±i> #-2*-i>&-2*-i, &-2*>#-2*,

k^l.y consists of an infinite number of sheets

• ■ • i S-k, >S-*+i, • • • , S-i, Si, S%, • • • , Sk, Sk+i, • • • ,

* - 1, 2, 3, • • • ,

each sheet being a slit copy of the ïf-sphere. Sj,j= —1, +2, ±3, • • •,

is cut along the real axis from a¡ to b¡ and from a¡-i to b¡-i. Sx is cut

from ax to bi and from a_i to b-X. S,- and Sj+i are joined along their

cuts between a¡ and b} for jj± — 1. 5_i and Sx are joined along their

cuts between a_i and £>_i. Branch points of first order are formed

over w = a¡ and w = b}-, j=+l, +2, ±3, • • • . y is topologically

equivalent to an infinite cylinder, hence is open and doubly-con-

nected. By the uniformizing principle [ó], y can be mapped onto the

f-plane slit along two line segments parallel to the real axis and

thence onto the annulus 0^r<|z|<i?ga> in the z-plane [3, pp.

71-72].
y can have no, one, two, three, or four singularities. For consider

y as made up of two surfaces /*i and y2 where Jx consists of sheets of

positive subscript and y% of sheets of negative subscript, and the

singularities of Ji and y2 can be classified as in §2. So any singularities

of y will be indirectly critical.

4. Proof that all surfaces of the first class are parabolic. Let

J, a member of the class of simply-connected surfaces, be mapped

onto the circle \z\ <R^<x> by the function

(1) 2 = <b(w),    w = /(z),   /(0) = 0G5,,   /'(0) = 1.

To determine the images in the z-plane of the branch points of y,

consider the two symmetric halves of y obtained by slicing each sheet

along the uncut portion of the real axis (i.e., 5* is sliced from bk to

( — l)*+1°o, from bk-x to ( —1)*», and from ak to ak-x). The half of y

containing the upper half of Si can be mapped on a semi-circle \z\

<R^ °°, 3(z)>0, so that the point over the origin in Si is mapped

onto z = 0, the point over °° in Si is mapped onto z = yi<0, the edges

of the slices from — a> to ai and from a*_i to ak are mapped on the

diameter — R < z < R to the right of 71, and the edges of the slices from
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bk to ( —1)*+1 oo are mapped on the diameter to the left of 71. This map-

ping carries the branch points over {an} into a monotone increasing

sequence of points {«„} on the positive real axis and the branch

points over {&„} into a monotone decreasing sequence of points

{ßn} on the negative real axis of the z-plane. The point over » in

St is carried into the point 7* on the real axis with ßk<yk<ßk^x- If

we apply the Schwartz reflection principle to the inverse of this

mapping function and normalize, we are led to the function (1), so

f(z) is real for z real and the image of the branch point of y over ak

is z=ak with 0<ai<aj< • • • <a*<at+i< • • • and the image of

the branch point of y over bk is z=ßk with 0>j3i>/32> • • • >ßk

>ßk+i> • • • and the image of the point of y in Sk over w = » is

z=7* with 0>7i>/3i>72>/32> • • • >ßk-i>yk>ßk> ■ ■ • . Si is

mapped on a portion of | z\ <R bounded by a simple closed curve G,

symmetric about the real axis and cutting the real axis in ai and p\

only. Sk (k>l) is mapped on a portion of \z\ <R bounded by two

nonintersecting, simple, closed curves Ck-x and Ck, each symmetric

about the real axis with Ck-x cutting the real axis at a*_i and j3*_i

only, and with Ck cutting the real axis at ak and ßk only. The uncut

segment of the real axis of Si corresponds to the segment (ßit ai) and the

two shores of the cut from ai to £>i correspond to the two symmetric

halves of G- The uncut segment (a*_i, ak) of Sk (k> 1) corresponds to

the segment (a*_i, ak) and the remaining uncut portion of the real

axis of Sk corresponds to the segment (ßk-i, ßk). The shores of the cut

(c*_i, &*_i) correspond to the two symmetric halves of G-i and the

shores of the cut (ak, bk) correspond to the two symmetric halves of

G- The curves G and the real axis are the paths on which w =f(z) is

real.

Consider the elliptic surface Jn which consists of the first « + 1

sheets of y with the cut from an+i to bn+i healed. 7„ is a simply-con-

nected closed surface with 2« first order branch points over

ai, a2, • • • , an, bi, bt, • • ■ , bn and with » + 1 points over w= ».

Hence yn is the Riemann surface of the inverse of a rational function

w = Rn(z) which can be normalized so that Rn(0) = 0ESi, Rñ (0) = 1,

i?n(°°)= » £S„+i. Rn(z) has «+1 simple poles, « of them at the

images 71,„, yi¡n, 7j,„, • • • , y„,n of the points over w= » in the

sheets Si, • • • , S„ and one at 2= », and Rn'(z) must have 2» first

order zeros at the images <*i,„, atl», • • • , a„,„, ßi,n, ß2,n, • ■ • , ßn,n of

■i» ' '. • 1 a„, bi, • • • , bn and no other zeros, where p\,,n<7n,n<|Sn-i,»

< • • • <i8i,n<7i.»<0<o!i,»<a2.»< • • • <««.». Hence Rn(z)

= Pn(z)/Qn(z) where P„ is a polynomial of degree « + 1 and Qn is

a polynomial of degree «,  and we can write Rn(z) = fóRñ (t)dt,
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Rn (»)- Iß-i (l-z/a*,n)(l-z//3t,»)/(l-z/7t.»)* where the residues

of Rñ (z) at the poles are zero.

Let Dn be the z-plane cut from «„,„ to » along the positive real

axis. Z>„ is mapped by w = R„(z) onto yn with the sheet Sn+i cut from

a„ to( —1)"» along the real axis. But Ç=d>(w) maps this cut surface

one-to-one on the domain A„ of the f-plane bounded by the curve

G+i and the segments (ßn+i, 7»+i), (a„, a„+0 and containing f = 0. So

f=(b[Rn(z)] =^n(z) provides a schlicht mapping of Z>„ onto An with

lAn(0)=0 and ^„'(0) = 1. The following is an immediate corollary of

Koebe's distortion theorem: Let w=f(z) be holomorphic in the

z-plane slit from z = i? > 0 to +» along the real axis and map this

Schlitzbereich on a plane domain A of the w-plane subject to the

conditions/(0) =0,/'(0) = 1. Then the distance from w = 0 to the

boundary of A is greater than or equal to R. Applying this, we have

that the distance from f = 0 to the curve Cn+i is greater than a„,„.

For 0 <*<«!.„ II2-1 (l-z/ßk,n)/(l-z/yk.n)<l, IB-i U-«/?*..)
>1. 1T2-1 (1-«/«».»)>0, 0<Pn'(z)< IIï-i (1-*/«*.„), and if 1/a«
= (l/n) Zl-i Udk.n, R:(z)<[(l/n) Zl-i (l-zM.B)]« = (l-z/an)».
So ai=/u'1"i?„' (z)dz< Jp»(l -z/änYdz< f%*(l -z/än)ndz = a„/(«+1),

and since ]£ï_i l/ctt,„<«/(« + l)oi<l/ai we have for any?, l^v^n,

v/a,,n<^Ji-i l/ak.n<l/ai, or a,,n>axv for v = l, 2, • • • , n; n

= 1,2, • • • . Therefore the distance from the origin to C,+i is greater

than ai« for all «, and y is parabolic.

5. Structure of the mapping function for surfaces of the first class.

We have shown above that Dn converges to | z\ < » and A„ converges

to |f| < », and using the form of Carathéodory's theorem [2, pp.

118-126] on families of schlicht mappings which is stated in Bieber-

bach [l, p. 13], we conclude: tb[Rn(z)]—>z uniformly in \z\ ^r for

any finite r and i?„(z)—x£-1(z) =/(z) uniformly in |z| ^r. By Hur-

witz' theorem [5, p. 249], lim»,«, ak,n = ak, limn^ßk.n=ßk, lim„^007i,n

= 7t-
There exists a 6>0 and an integer «0 such that for 0:§ |z| <3 and

«>«o, f'(z) and Rñ (z) differ from zero and log Rn' (z)—>log f'(z),

where we take the determination of the logarithm which is zero for

z = 0. Now

n

log Rn(z) = z £ (2/7*.„ - 1/ak.n ~ 1//?*,»)
k-l

+ (z2/2)t (2/(yk,n)2 - l/(ak,n)2 - l/(/3*.„)2) + • • • .
k-l

Hence lim«^«, | 2*-i (2/7t,n-l/a*.n-l/j3t,»)|  exists and is finite.
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Since ßk,n<fk,n<0, we have - » <limB.„ 2?_i(-2/|7»,B| -l/a*,„

+ l/|j8*.»|X-lim sup».« E*-i(l/|A.»| +l/«*.»)<0. So
n n

lim sup X 1/«*.* < °° »        lim sup X V I ftfe.n | < «,
n—►*>        fc«! n—»<*        fc«i

(2)

lim sup X V | 7i.» | < »,
n-»«>       fc_i

and hence

(3) ¿1/«*, ¿1/||5»|, ¿Vi 7* |        all converge.
*=1 *=1 k-l

Because of (3) the product tt(z) = n*"-i (1 -a/«*)(l -*/ft)/(l -z/y*)2

converges, and for \z\ <5, lim„.„ log Rñ (z)/ir(z)=logf'(z)/ir(z).

logRñ(z)/ir(z) = ¿  («-/») {( ¿ 2/(7*.-)" - ¿ 2/(7*)m)
m=l VA *=1 *=1 /

- ( ¿ U(«k.n)m - ¿ í/(ak)m)

\ k-l k-l /

- ( ¿ l/(ft.»)m - ¿ l/(ßk)A\ .
\ k-l *-l /)

Since limn<00 7*,„=7*> |hm sup„.M ( YS-i 1/(7*.«)"- SiT-i l/(7*)m)|
= |lim sup„.M (£?_,,„ l/(7*,n)m- Er=»0 l/(7t)m)|, and using (2)

and (3), we have |lim sup„.M ( X*°-»0 l/(7*.»)m- Zt"-n0 l/(7*)ro)|

^2 X]"-«,)!/^"' for all «o sufficiently large. So

Ihn (¿1/(y*.„)",-¿ 1/(7*)m) = 0, »è2.
»-»"»   \ *=1 *-l /

Similarly we have

n->

and

lim

lim ( ¿ l/(ak.n)m - ¿ l/(ak)A = 0
»-»«   \ *=1 k-l /

a ( ¿ 1/(0*.»)ra - ¿ 1/(0*)m) = 0 for m è 2.
« \ *-i *-i /

Therefore log f'(z)/ir(z) = hz, 5 real and/'(z) =elir(z).

ir(z) is a canonical product of genus zero, and for

0 < £i á arg z á li < »,        t < £2 Ú arg 2 g »?2 < 2*-,
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it can be proved [9, chap. VIII] that |ir(z)| =0[exp (e|z|)] and

l/|ir(z)| =0[exp (e|z|)] for any e>0. Hence

exp (&1R(z) - « [ z | ) g | /'to | á exp (S3t(z) + *\z\).

Suppose 5>0 and let z—►» with 7r/6^arg z^7r/3; we can find e>0

such that exp (53f(z)—e|z| )—»■». If z—>■» with 27r/3áarg z^57r/6,

we can find e>0 such that exp (59t(z)+e|z|)->0. Now/(z) =flf'(t)dt

so that there will exist a curve Ti in 2ir/3 ^ arg z ^ 57r/6 extending to

» along which \f(z) \ —* a finite value c, and there will exist a curve T2

in 7r/6^ arg z^ir/3 extending to » along which |/(z)|—»». Consider

the upper part of the path of reality Gy and let z move along this

path starting at a2j. If 5>0, as z moves along Gy for j sufficiently

large \f(z) | will attain an arbitrarily large value and then decrease to

a finite value ci (arbitrarily near c). But the image w=f(z) will move

on the real axis starting at a2j and moving monotonically to the left

to b2j, which is a contradiction and hence 5 cannot be positive. If

5<0 we are not led to a contradiction, for in this case |/(z)| —»c as

z moves along the curve T2 to » and |/(z)|—»» as z moves to »

along Ti. So that as z moves counterclockwise on Ctj or Gy+i, |/(z)|

will increase from Ci to an arbitrarily large value, and the image

w=f(z) will move either to the left on the real axis from a2k or to

the right on the real axis from a2k+i. We have proved the following

Theorem 1. Any Riemann surface belonging to the class described in

§2 is parabolic and the mapping function is given by

f(z) =   f "f'(t)dt,    /'(z) = e^fl (1 - z/ak)(l - z/ßk)/(l - z/yk)2
Jo *=i

where ô is a nonpositive real number, ^¿"-i l/ak < », J^-i 1/| ßk\ < »,

E?-i 1/|7*| <*,•■• , ßk<yk<ßk-i< ■ ■ ■ <ßi<yi<0<ai<a2

< • • • <ak <ak+i< ■ ■ • , and the residues of f'(z) at the poles 7* are

all zero.

6. Proof that the members of the  class of doubly-connected

surfaces are images of the entire plane less two points. Let 7, a

member of the class of doubly-connected surfaces, be mapped onto

the annulus 0^r<[z| <i?^» by the function z = <p(w), w=f(z).

This mapping will be unique if we require /(l)=0£Si and/'(l)>0.

By the methods mentioned in §4 the following can be obtained.

(1) f(z) is real for z real.

(2) The image of the branch point over b¡ is /?,-, the image of the

branch point over a¡ is a¡, the image of the point of J on S,- over
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w=eo isz=7y,j'= ±1, ±2, ±3, • • • , with • • ■ ßk<yk<ßk-x< • • •

</31<71</3_1<7_i< • • • </3^<7_*<j8^t_i< • • • <-r<0<r

< • • • <a_t<a_t+i< • • • <a-x<l<ak<ak+i, k = l, 2, 3, ■ ■ • .

(3) Si is mapped on a portion of the annulus bounded by two non-

intersecting, simple, closed curves G and C-x, symmetric about the

real axis with G cutting the real axis in ai and ßi only, and C_i cut-

ting the real axis in a_i and j8_i only. Sy, jVl, is mapped on a

portion of 0^r<|z|<i?^» bounded by two nonintersecting,

simple, closed curves C¡ and Cj-i, symmetric about the real axis with

Cj cutting the real axis in a, and ßj only, and G_i cutting the real

axis in aj-i and ßj-x only.

That r = 0 and R = » follows from the parabolicity of the surfaces

of the simply-connected class. Consider y as made up of two surfaces

7i and y2:7i consisting of sheets Si, St, S%, - - - ,J% consisting of sheets

S_i, S-i, S_3, • • • , with Ji and J% joined along the cut from o_i to

¿>_i. Then Ji is mapped on a domain Ai of the z-plane bounded by the

curve C_i and \z\ =R. But by the results of §4, 7i can be mapped

onto the plane |f | < » with the cut over (a-i, b-i) being mapped

into a portion of the real axis (a, b). Hence the punched f-plane cut

along the real axis from a to b can be mapped onto Ai by a regular

function with the cut (a, b) corresponding to C-i. But then R must be

infinite, for otherwise the circle \z\ =R< » would be the image of

the point f= » by a regular function, which is impossible. By a

similar argument we can show r = 0. Therefore y can be mapped

on the z-plane less the two points z = 0, z= ».

7. Structure of the mapping function for surfaces of the second

class. We have the portion of the z-plane exterior to the curve

C-x mapped one-to-one on yx by w=f(z). But from the results of §4

we have the f-plane less the point f = » and the segment C oí the

real axis from 4>(a-x) to <f>(b-x) mapped one-to-one on Ji by w = Gx(Ç).

Hence, the punched f-plane cut along C can be mapped schlichtly

by z = A(f) onto the portion of the z-plane exterior to G_i in such a

way that f = 0 corresponds to z = 1, C corresponds to C-x, and f = «

corresponds to z= », i.e., A(f) must have a simple pole at f = ». So

Ä(f)=ftKD where \[/(Ç) is regular at f=» and u^(»);¿0, or A(f)
= cr+î(D where g(f) is regular at f = » and hence bounded in the

neighborhood of f = ». So we can write A(f) =f+0(l) ($"—►»). So

d(D-/[*(D]. G'(r)=/'(z)A'(r), A'GVO for r sufficiently large.
From the results of §5 we know that if the zeros of G{ (f ) are denoted

by ft, then ^Zt_i 1/| f*| < ». Since z~cÇ as f —»• », the zeros ak and

ßk of f'(z) are such that
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(4) ¿1/|«*|<«. ¿1/|/3*| < ».
*-i *-i

In a similar manner we have the f-plane cut along a segment C"

of the real axis mapped one-to-one by z=g(f) onto the portion of the

z-plane interior to G in such a way that as f—♦ », g(f)—>0, i.e., g(f)

must have a simple zero at f = ». So g(f) =iKf)/f where v^'(»)?i£0

and i¡/(t) is regular at f=», or g(f)=c/f+£(f) where £(f) is

0(l/|f|2) as f—*». Then if w=f(z) is the function mapping the
interior of G onto the surface Jt and w = Gf(f) is the function map-

ping the f-plane less the point f = « and the cut C" onto y2, G(f)

=/k(f)], Gi(T)=/W(r), «'(D^O for f sufficiently large. Again
from the results of §5 we know that if the zeros of G{ (f) are ft, then

¿LjT-i l/|r*| < » so that, since z~c/Ç as f—>», the zeros of/'(z),

a_t, /3_t, are such that X)*"-i I«-*I < °°»  YJ-i \ß-A < »•
Consider the surface 7 as the limit of a sequence of surfaces {y„},

where 7„ consists of the 2n+l sheets S_«, S_„+i, • • • , S_i, Si, • • ■ ,

S„+i with the cuts (a_„_i, ¿>-«-i) and (a„+i, bn+x) healed. yn is the

Riemann surface of the inverse of a rational function w = R„(z),

Rn(z)=Pn(z)/Qn(z), Rn(D=0ESi, Rñ(D>0, *„(») = »eSB+i,
Rn(0)= » ES-n, where Pn(z) is a polynomial of degree 2« + l and

Qn(z) is a polynomial of degree 2«.

Ó (1 - z/ak.„)(i - z/ßk,n)(l - a-kJz)(l - ß-kJz)

R'n(z) = Kn "~l -—-,

n(l-*/7*..)2n(l-7-*.»/z)'
4=1 4=1

-K"B>0, where ay,B, /3,-,n are the images of the points in the surface over

a¡, b¡, and 73-,„ is the image of the point over » in sheet S,-, and the

residues of Rñ (z) at the poles are zero. Rn(z) =f¡Rñ (t)dt. Now

Ç=<p[Rn(z)] maps the z-plane cut from z=an.n to » and from z = «-„,„

to zero along the real axis schlichtly onto a domain bounded by

Gt+i, C-n-i cut along the segments

(an, an+x),    (a-n-i, a_n),    (ßn+i, 7»+i).    and    (y-„, ß-n-i).

So using the fact that r = 0 and R = », and applying the theorem of

Carathéodory mentioned in §5, we have

lim Rn(z) = f(z)    and     lim Rñ (z) = f'(z) uniformly.
n—»« n—»»

Hence limn^M ay,B=a;-, limB<00 ß,-,n=ßj, limB<0O 7y.n = 7y. j= ± 1. ±2,

±3, • • • , and we know
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*=1    I «* I 4-1    | ßk I 4=1    I 74 I

¿l«-*h      ¿|0-*h      ¿|7-*|*_i *-i

all converge. For |z—l| <pand«>«owehave/'(z)^Oandi?n to^O,

so for these values of z, lim«..«, log Rñ (z) =log f'(z), taking the de-

termination of the logarithm which is real for z=l. If we choose ko

so that, for \z—1\ <p and «>w0, max [|z/3*0| ; [ß_*0, „/z| ]<1 we

can write

-*»    (1 - z/«tlB)(l - z/ßk,n)(l - a-k,n/z)(l - ß-kJz)
log Rn(z)  = log II-—-—-

*-i (1 - z/7*.»)2(l - 7-*.n/z)2

n

+ z E (2/7*.„ - l/«*.„ - l/ßk,n)
*~*o

+ T    ¿    [2/(7*.»)í -   l/(«*.„)2 -   l/(0*.n)2] +  • • •
2    k~k,

1    "-1
-\-S (27-*.n — «-*.» — ß-k.n)

Z     *=40

+ 4l   E   [2(7-*.n)2 - (a-*,„)2 - 0?-*.„)2J + • • •
ZZ*    k-k.

-[-

a-»,n (a-n.n)2

z 2z2     +

0-n.» Q3-»,»)*

z 2z2

+ l9g Kn.

Hence lim„^M | £?_», (2/7*,» — l/a*,„ — 1//3*,„)|   and

lim
n—»*>

L   (27-*+i.» — a-*,« — j3_*,n) — «*„,„ — ßko,n
*=*o+l

exist and are finite. We have 0>yk,n>ßk.n or — l/|7*,n| <— l/jpV„|.

Thus we have — » <lim„^00 2Z"-t0 ( —2/|7*,»| —l/a*,»+l/|0*,n| )

<lim supB,M [- Yà~t, (l/a*,n+l/|ft.„|)]<0. Therefore

n n

lim sup    £ 1/ | ßt.n I < »,        lim sup    ^2 1/a*,» < »,
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lim sup    X) 1/1 7*.n| < ».

Also 0>/8^t,n>7_jt+i,n or - |7-*+i.»| < - |ß-*,»|, hence

-   »   <  lim ¿    (-2 | 7-*+l.» |   - CC-k.n + | ß-k.n I )
n->«> L*-*0+l

— a_*0,n + | ß-k„,n |

< lim SUp - ¿    (a-k,n + I ß-k.n I ) + <*_*„,„ - I ß-k„.n
»-*"        L*-.*0fi

Therefore lim sup„.„ 53"-*,, «-*.»< », lim sup«..«, 2Z"-*0 li3-*.«
lim sup»-«, Xïli0 |7-*,n| < ». Let

00

II (1 - z/«*)(l - z/ßk)(l - a_*/z)(l - ß-k/z)

tt(z) = -ü-•

II (1 - z/7*)2(l - 7-*/z)2
4-1

Then

log [#ItoAto]

= ±K\(±-ï_±-L)
™=i \m LV*=4„ (yk,n)m      *=*„ (74)"7

-ft-i_¿-U
\*-*0 (oik.n)m       k=k0  (ak)m)

-C¿-i_¿-Mil
\*=40 (0*,n)m *»*„   (foW-U

+ ¿I—iï2 2(7-*.n)m-   ¿ 2(7-*)A
m-1  \.«IZmL\*=40 *=*o /

(n—1 M \

23 («_*.„)m- E («-*)*")

-   (Z    ̂ -4.n)m-    ¿    ÜS-*)"Y|}
\*=*o 4=*o /J/

+ log #„ + Tn(z),

where Tn(z) =o(l) as n—>».

As in §5 it can be shown that, for m~=2,
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lim(¿  l/(7*,n)m-   ¿  1/(7*) »Y   Ihn (2 (y-k.»)~ -  ¿ (7-*)m),
«->•> \*_*„ *-*0 /      n—» \*_*0 *_*„ /

lim(¿ l/(«*..)--  ¿ l/(«*)-Y   limf ¿ (<*_*.„)"-  ¿ (a-*)-Y
»-•• \*_*0 *„*„ /      n-» \*_*0 *_*, /

lim(¿ 1/G9*..)--  ¿ 1/03*)-Y   lim(¿ (0-*..)--  ¿ (0_4)-)
n-»«> \*_*0 *_*„ /      n-»« \*_*0 *-*, /

all exist and are zero, and we have

log/'toAto
= lim log Rn(z)/r(z)

n—*<*>

= zlim((± 2/7*.„ - ¿ 2/7*) - ( ¿ V«*.» " ¿ V«*)
n->«    V\*=*0 k-k, / \*-*o *-* /

- ( ¿  1/0*.. -  ¿   1/0*)}
\*=*0 4-*0 //

+ (1/z) lim {( £ 27-*.„ - ¿  27_*)
n->»    V\*=*0 *=*0 /

(n                              oo              \            /    n oo \ \

23   O-t.n —   23 «-*) - (   23   0-*.n — 23   0-*)f
*-*0                              *-*0              /            \*-*0 *=*D /'

+ log K,

log f'(z)/ir(z) =o-iZ-T-tr2/z-|-log K where K and ai, <r2 are real. So

f'(z)=K [exp (o-iz+oVtoVto.
With an argument similar to the one used in §5 it may be shown

that <ri and a2 cannot be positive, so we have

Theorem IL Any Riemann surface belonging to the class described

in §3 is the image of the z-plane less the two points z = » and z = 0 by a

function w=f(z) where

f(z)= j"f'(t)dt,

-/x     v         ,             ,     «    (l-z/ak)(l-z/ßk)(l-«-k/z)(l-ß-k/z)
f'(z) = K exp (oiZ+a2/z) II -

(l-z/7*)2(l-7-*A)2

where K>0, o~i, o2, a¡, 0,-, y¡ (j = l, ±1, ±2, ±3, • • • ) are real with

■ • • 0*<7*<0+*-i<  • • • <0!<7i<0-i<7-i<  • • • <0-*<7-*<
• • • <0< • • • <a_*_i<a_*< • • • <a_i<«i • • • <a* • « • ,
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E V«*<«;     23i/|0*l<w;      £i/|7*|<*;
Jfc-1 Jfe-1 Jb-1

n co oo

E<4<»;     E|0-*l<°°;       E|7-*|<»,
4-1 4=1 4=1

and the residues of f'(z) at the poles are all zero, and alt <r2 are nonposi-

tive.

8. Partial converse of Theorem I.

Theorem III. Let w=f(z) be meromorphic in \ z\ < » with f(0) = 0,

/'(0) = 1.  If f(z)  has the form f(z)=zes'Ux-i  (l-z/ck)/(l-z/yk)
where Ck,yk, bare real, 8^0,yk+i<yk<Q<Ck<Ck+i (fc = l, 2, • • • ) with

E*"-i l/c*<»,  E**-i 1/|741 <», then the Riemann surface of the
inverse of f(z) is a surface of the class described in §2.

Note that if in §2 the sequence {a*} is required to satisfy a2*<0

<a24±i, the function of Theorem I would satisfy the hypotheses of

the above. The proof of Theorem III rests on the construction of a se-

quence of rational functions (i?„(z)} which converges uniformly to

f(z) and whose members have derivatives of the same form as the

Rñ (z) in §2. The author has been unable to show that such a con-

struction is possible without restricting the location of the zeros of

f(z) and so has been unable to give a proof of the complete converse

of Theorem I although he conjectures its validity.

We distinguish two cases.

Case I : S = 0. We may construct a sequence of rational functions

{i?„(z)| which converges uniformly to f(z) by setting Rn(z)

= zIT*-i (I-z/ck)l(l— z/yk). R„(z) has simple poles at z = 7*,

& = 1, 2, 3, • • • , w, and at z= », and the residues at adjacent poles

will differ in sign. Therefore there are at least « points z = 0*,„,

k = l, 2, 3, •••,«, on the negative real axis such that i?„'(0*,„)=O

and the points will be distributed as follows: — » <0„,n<7n<0n-i,n

< • • • <7*+i<0*,„<7*< • • • <0i,n. There will also be at least »

points z = ak,n, k = l, 2, 3, • • • , «, on the positive real axis such that

Rñ (otk.n)=0 and these points will be distributed as follows: 0<ai,„

<Ci<a2,„< • • • <c*_i<a*,„<c*< • • • <a„,„<c„. Hence

*»to  =  ft (I - z/«*.n)(l  - z/ßk.n)/(l  - Z/7*)2
4-1

and Rñ (z)—rf'(z) uniformly.
It is obvious that the paths of reality consist of « simple, closed

curves, symmetric about the real axis and intersecting the real axis
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at the points z = a*,„, z = 0*,n, k = l, 2, 3, • • • , n. We assert that

0y,n, 0*,n, k^j, cannot lie on the same path of reality. For suppose

that ßj,n, ßk.n are both on the same path of reality C, then:

(1) If k,j are both odd or both even there will be an odd number of

branch points between 0y,n, and ßk.n and hence at least one path of

reality would have to cross C at some point not on the real axis,

which is impossible.

z-plane

z-plaae

Z = V3.n \Z = 72.,

(Ul=oo) ¡(w=<x>)l

3-ft,„ Z=P3.n z=ft.„    z=ßi.a    z=-ri.»    Z = 0
(w= » )

Fig. 1

(2) If k and j are not both odd or both even, as z traverses the path

of reality around the domain D interior to the path, Rn(z) would take

on all real values twice (see Fig. 1), which is impossible. It is now

apparent that the path of reality C¡ through 0;,„ will intersect the

real axis in the point a¡,n,j=l, 2,3, • ■ • , n.

R„(z)=Pn(z)/Qn(z) where Pn(z) is a polynomial of degree w + 1

and Qn(z) is a polynomial of degree «. Since Rn(z) =Rn(z) and

Qn(z) = Qn(z) the equation of the paths of reality is given by

2iS[Rn(z)]   =   Pn(z)/Qn(z)   -  Pn(z)/Qn(z)   =   0

or

F(x, y) = Pn(x + iy)Qn(x - iy) - Pn(x - iy)Qn(x + iy) = 0.

From considerations of degree we see that any line arg z = 0o, Öqt^O, ir,
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will intersect the upper part of the paths of reality only once and the

lower part of each of the paths of reality only once.

Collecting the foregoing we have: For any «, Rn(z) is real for z on

the real axis and for z on the noninteresecting, simple, closed curves

G,n, G.n, • • • , Cn.n symmetric about the real axis with G,n inter-

secting the real axis in the points z = ak,n, z = ßk,n. Furthermore, the

curves G.n are star-shaped (any ray from the origin intersects each

curve only once).

If we denote by ak and ßk the zeros of f'(z), then a*.n—nxk and

ßk,n—*ßk as «—>», and G,n will tend to a limiting curve G which is

star-shaped, symmetric about the real axis, and passes through the

points z=ak and z = ßk. We wish to show that the curve G has no

points at z= ». Consider the domain Dk,n which contains G.n and

is bounded by G+i,n and G-i.n- Dk.n is mapped by Rn(z) one-to-one

onto a two-sheeted surface 2*,„ consisting of two slit copies of the

w sphere S' and S". S' is slit between Rn(ak-i,n) =a*_i,„ and R„(ßk-i,n)

= bk-i,n and between Rn(ak,n) =ak,n and Rn(ßk.n)=bk.n. S" is slit

between a*,B and bk,„ and between Rn(ak+i,n) =ak+i.n and Rn(ßk+i.n)

= bk+i.n- The sheets are joined along their cuts from a*,„ to &*,„, and

Rn (^^) = a E S",       Rn (=~^j = K.

2*,„ can in turn be mapped by Ç = G(w) onto the domain A*,„ which

is the f-plane slit from G(ak-i,n) to G(bk-i,n) and from G(ak+i,n) to

G(bk+i,n). The segment (a*,n, bk,n) is mapped onto a closed curve

r*,„ and G(a£S")=0, G'(a£S") = l. The sequence of domains

A*,B converges to its kernel A* which is the f-plane cut from G(ak-i)

to G(bk-i) and from G(ak+i) to G(bk+i) where a, = lim„,o0 Rn(aj),

¿j = lim„^00 Rn(ßi). Since the sequence of functions {G[¿?n(z)]} is

schlicht and converges, and since G,n converges to C, we may apply

the variation of Carathéodory's theorem mentioned in §5 and find

that f(z) is regular at every point of G and hence G cannot have

any ends at z= ». So the paths of reality of f(z) are the real axis and

the star-shaped curves G, symmetric about the real axis, intersecting

the real axis in z = ak and z = ßk with G having no points at z= ».

Consider the domain D bounded by the upper halves of C¡ and Cj+i

and the segments (ay, aj+i) and (0y, 0y+i). In this domain 3(w) has

the constant sign ( — 1)' and hence in D[w]?¿( — l)i+1i. The real part

of w varies monotonically from ( —1)»+1» to ( — 1)'» as z traverses

the boundary of D in the positive direction starting from z=73+i. Ap-

plying the theorem of Darboux we have: D is mapped schlichtly by

w=f(z) onto the half-plane ( — l)'^(w)>0. Therefore, if 5 = 0, the
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surface of the inverse of w =f(z) is a surface of the first class.

Case II: S<0. We may construct a sequence of rational functions

(P„(z)} which converges uniformly to f(z) in any closed bounded

region by setting Rn(z) =z(l+5zA»)X"IIï-i (1 -z/c*)/(l -z/y*) where

{X„} is a sequence of positive integers increasing to infinity and

chosen so that |\„/5| >c„. Then Rñ (z) = (l+bzfKnY'-xMn(z)/Nn(z)

where N„(z) = U*-i (1—z/7*)2 and M„(z) is a polynomial of degree

2« +1. By the same argument used in the preceding paragraph we find

that Rñ (z) has at least 2« zeros at points a*,„, 0*,„, ¿ = 1,2,3, • ■ • , «,

With     0n,n<7n<   ■   •   '   <0*.n<7*<   '   -   -   <01,n <7l <0 <<*l.n <Cl <«2,n

< ■ • • <a„,„<c„. Since i?„(z) is zero when z=—XB/5, there is at least

one zero of Rñ (z) at a point z = e„ where c»<e„< —X„/5. Since the de-

gree of Mn(z) is 2n + l we can write

iCn(z)=(l+5z/Xn)X"-1(l-zAn)   Û (1-z/«*.„) (1-z/0*,n)/(l ~z/7n)2-
4-1

Concerning the paths of reality for Rn(z) we have:

(1) The real axis is a path of reality.

(2) The only points at which two paths of reality can intersect are

z=ay,B, z = 0y,n (j=l, 2, • • • , «), z = e„, z= -X„/5, z= ».

(3) There is one path of reality intersecting the real axis at each of

z=t*y.n, z=0y,n, z = e„ since each of these points is a branch point of

order one.

(4) There are Xn —1 paths of reality intersecting the real axis at

z=-X„/Ô.
(5) There are X„ paths of reality besides the real axis through

z= ».

(6) As in case 1, no two 0y.„ can lie on the same path of reality.

(7) No path of reality can pass through any ß},n, and z = e„ for

this would result in the intersection of two paths of reality at some

point not included in (2).

(8) an,n and en cannot lie on the same path of reality since the

real part of Rn(z) is a monotone function as z traces a path from e„

to a„,n along the real axis and from a,,» to e„ along a curve in the

upper half-plane.

(9) No ay,«, ;V», can lie on the same path of reality as e„ for the

same reason as in (7).

(10) No 0y,„ or a¡,n can lie on the same path of reality as — X„/5

for the same reason.

(11) As in (8) no path of reality can pass through en and —X„/5.

(12) No path of reality through any ay,„ or 0y,„ can pass through
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z = », for this would require more than X„+1 paths of reality through

2= oo or would contradict one of the statements (1)—(11).

Therefore the paths of reality must consist of » curves G,n,

k = l, 2, • • • , n, and X„ curves Dk,n, k = l, 2, • ■ • , XB. The curves

G.» are simple closed curves, nonintersecting and symmetric about

the real axis with Cj,n intersecting the real axis in z = «,-,„, ßj,„. The

curves J0*,„ are simple, nonintersecting, and symmetric about the

real axis with Dx,n passing through z=e„ and z= », and Z>*,„, k = 2,

3, • • • , XB, passing through z = — X„/ô and z = ».

As «—>» the point z = eB and the curves Dk,n disappear from con-

sideration, for if Dk,n had points interior to | z\ <R< » for infinitely

many «, there would be points of G.» interior to \z\ <R for all

j^n. None of these intersect and in the limit there would be some

point z = z0, |zo| <R, |z0—7*| ep>0 for all k, such that in the neigh-

borhood of z0 there would be segments of infinitely many nonintersect-

ing paths of reality of f(z), which is impossible since f(z) is mero-

morphic in \z\ < » and hence holomorphic at z = z0. So the paths of

reality of f(z) in case II are the same as in case I, and by the same

argument we conclude that if ô<0, the surface of the inverse of

w=f(z) is a surface of the first class, which completes the proof of

Theorem III.

9. Partial converse of Theorem II. By obvious extensions of the

methods used in paragraph 8 we can prove

Theorem IV. Let w=f(z) be meromorphic in 0<|z| < » with f(l)

= 0 andf'(l) >0. If w=f(z) has the form

f(z) = K(z — 1) exp (<riz + <r2/z)

Ê (1 - zA*)(l - c-k/z)/(l - 2/7*)(1 - 7-*/z)
4-1

where K is real, Oi, a2 are real and nonpositive, and

— » < 7*+i < 7* < 7_* < 7_*_i < 0 < c_*_i < c_* < 1 < c* < Ck+i

(k= 1, 2,3, •••).
00 00

E i/c* < », E c-* < »,
*-i *-i

¿1/|7*|<«=, E|7-i|<*.
4-1 *=1

then the Riemann surface of the inverse of w =/(z) is a surface of the

class described in §3.
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