DETERMINATION OF THE TYPE AND PROPERTIES OF THE MAPPING FUNCTION OF A CLASS OF DOUBLY-CONNECTED RIEMANN SURFACES

HOWARD E. TAYLOR

1. Introduction.¹ The object of this paper is to consider a class of open doubly-connected Riemann surfaces² and to show that the members of the class are images of the complex plane less two points; also a representation of the mapping function is obtained. To this end a class of open simply-connected Riemann surfaces is defined and the members shown to be parabolic and a representation of the mapping function is obtained.

The methods employed involve approximation by sequences of elliptic surfaces developed by G. R. MacLane [8]³ and the use of the results of Carathéodory [2] on the mapping of a sequence of plane domains by a family of functions.

In the terminology of Iversen [7] certain members of each class of surfaces exhibit indirectly critical singularities.

2. Description of the class of simply-connected surfaces. A surface \mathcal{J} of this class is defined by two infinite sequences of real numbers $\{a_n\}$, $\{b_n\}$ $(n=1, 2, \cdots)$ with $0 < a_1 < b_1$, $a_{2k+1} > a_{2k}$, $b_{2k-1} > a_{2k-1}$, $a_{2k} > b_{2k}$. \mathcal{J} consists of sheets S_1 , S_2 , \cdots , S_k , \cdots , each sheet being a slit copy of the w-sphere. S_1 is cut along the positive real axis from $w=a_1$ to $w=b_1$. S_k (k>1) is cut along the real axis from a_{k-1} to b_{k-1} and from a_k to b_k . S_1 and S_2 are joined along their cuts from a_1 to b_1 forming first order branch points over a_1 and b_1 . s_2 and s_2 are joined along their cuts from s_2 to s_2 and s_2 and s_2 are joined along their cuts from s_2 to s_2 and s_2 and s_3 are joined along their cuts from s_2 to s_2 and s_3 and s_3 are joined along their cuts from s_2 to s_3 and s_3 and s_3 are joined along their cuts from s_2 to s_3 and s_3 and s_3 are joined along their cuts from s_3 and s_3 are joined along their cuts from s_3 and s_3 are joined along their cuts from s_3 and s_3

The nature of the singularities of \mathcal{J} depends on the sequences $\{a_n\}$, $\{b_n\}$. (1) If neither sequence has a limit, \mathcal{J} has no singularities. (2) If one of the sequences has a limit or if both have the same limit,

Presented to the Society, December 28, 1950; received by the editors April 24, 1952.

¹ This paper is an extract from a thesis presented to the Faculty of the Rice Institute in June, 1950.

² The author is greatly indebted to Professor Gerald R. MacLane for calling his attention to this problem and for his friendly encouragement and valuable counsel.

³ Numbers in brackets refer to the references listed at the end of the paper.

 \mathcal{J} has one indirectly critical singularity. (3) If $a_n \rightarrow a \neq \infty$ and $b_n \rightarrow \infty$, \mathcal{J} has two indirectly critical singularities.

3. Description of the class of doubly-connected surfaces. A surface \mathcal{J} of this class is defined by two infinite sequences of real numbers $\{a_n\}$, $\{b_n\}$, $n=\pm 1$, ± 2 , ± 3 , \cdots , with $b_{-1} < a_{-1} < 0 < a_1 < b_1$, $a_{2k\pm 1} > a_{2k}$, $b_{2k-1} > a_{2k-1}$, $a_{2k} > b_{2k}$, $a_{-2k} > a_{-2k\pm 1}$, $a_{-2k-1} > b_{-2k} > a_{-2k}$, $k \ge 1$. \mathcal{J} consists of an infinite number of sheets

$$\cdots$$
, S_{-k} , S_{-k+1} , \cdots , S_{-1} , S_1 , S_2 , \cdots , S_k , S_{k+1} , \cdots , $k = 1, 2, 3, \cdots$,

each sheet being a slit copy of the w-sphere. $S_j, j = -1, \pm 2, \pm 3, \cdots$, is cut along the real axis from a_j to b_j and from a_{j-1} to b_{j-1} . S_1 is cut from a_1 to b_1 and from a_{-1} to b_{-1} . S_j and S_{j+1} are joined along their cuts between a_j and b_j for $j \neq -1$. S_{-1} and S_1 are joined along their cuts between a_{-1} and b_{-1} . Branch points of first order are formed over $w = a_j$ and $w = b_j$, $j = \pm 1$, ± 2 , ± 3 , \cdots . \mathcal{J} is topologically equivalent to an infinite cylinder, hence is open and doubly-connected. By the uniformizing principle [6], \mathcal{J} can be mapped onto the ζ -plane slit along two line segments parallel to the real axis and thence onto the annulus $0 \leq r < |z| < R \leq \infty$ in the z-plane [3, pp. 71–72].

 \mathcal{J} can have no, one, two, three, or four singularities. For consider \mathcal{J} as made up of two surfaces \mathcal{J}_1 and \mathcal{J}_2 where \mathcal{J}_1 consists of sheets of positive subscript and \mathcal{J}_2 of sheets of negative subscript, and the singularities of \mathcal{J}_1 and \mathcal{J}_2 can be classified as in §2. So any singularities of \mathcal{J} will be indirectly critical.

4. Proof that all surfaces of the first class are parabolic. Let \mathcal{J} , a member of the class of simply-connected surfaces, be mapped onto the circle $|z| < R \le \infty$ by the function

(1)
$$z = \phi(w), \quad w = f(z), \quad f(0) = 0 \in S_1, \quad f'(0) = 1.$$

To determine the images in the z-plane of the branch points of \mathcal{F} , consider the two symmetric halves of \mathcal{F} obtained by slicing each sheet along the uncut portion of the real axis (i.e., S_k is sliced from b_k to $(-1)^{k+1}\infty$, from b_{k-1} to $(-1)^k\infty$, and from a_k to a_{k-1}). The half of \mathcal{F} containing the upper half of S_1 can be mapped on a semi-circle $|z| < R \leq \infty$, $\mathfrak{F}(z) > 0$, so that the point over the origin in S_1 is mapped onto z = 0, the point over ∞ in S_1 is mapped onto $z = \gamma_1 < 0$, the edges of the slices from $-\infty$ to a_1 and from a_{k-1} to a_k are mapped on the diameter -R < z < R to the right of γ_1 , and the edges of the slices from

 b_k to $(-1)^{k+1} \infty$ are mapped on the diameter to the left of γ_1 . This mapping carries the branch points over $\{a_n\}$ into a monotone increasing sequence of points $\{\alpha_n\}$ on the positive real axis and the branch points over $\{b_n\}$ into a monotone decreasing sequence of points $\{\beta_n\}$ on the negative real axis of the z-plane. The point over ∞ in S_k is carried into the point γ_k on the real axis with $\beta_k < \gamma_k < \beta_{k-1}$. If we apply the Schwartz reflection principle to the inverse of this mapping function and normalize, we are led to the function (1), so f(z) is real for z real and the image of the branch point of \mathcal{I} over a_k is $z = \alpha_k$ with $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_k < \alpha_{k+1} < \cdots$ and the image of the branch point of \mathcal{J} over b_k is $z=\beta_k$ with $0>\beta_1>\beta_2>\cdots>\beta_k$ $>\beta_{k+1}>\cdots$ and the image of the point of \mathcal{I} in S_k over $w=\infty$ is $z = \gamma_k$ with $0 > \gamma_1 > \beta_1 > \gamma_2 > \beta_2 > \cdots > \beta_{k-1} > \gamma_k > \beta_k > \cdots$. S_1 is mapped on a portion of |z| < R bounded by a simple closed curve C_1 , symmetric about the real axis and cutting the real axis in α_1 and β_1 only. S_k (k>1) is mapped on a portion of |z| < R bounded by two nonintersecting, simple, closed curves C_{k-1} and C_k , each symmetric about the real axis with C_{k-1} cutting the real axis at α_{k-1} and β_{k-1} only, and with C_k cutting the real axis at α_k and β_k only. The uncut segment of the real axis of S_1 corresponds to the segment (β_1, α_1) and the two shores of the cut from a_1 to b_1 correspond to the two symmetric halves of C_1 . The uncut segment (a_{k-1}, a_k) of S_k (k>1) corresponds to the segment (α_{k-1}, α_k) and the remaining uncut portion of the real axis of S_k corresponds to the segment (β_{k-1}, β_k) . The shores of the cut (a_{k-1}, b_{k-1}) correspond to the two symmetric halves of C_{k-1} and the shores of the cut (a_k, b_k) correspond to the two symmetric halves of C_k . The curves C_k and the real axis are the paths on which w = f(z) is real.

Consider the elliptic surface \mathcal{F}_n which consists of the first n+1 sheets of \mathcal{F} with the cut from a_{n+1} to b_{n+1} healed. \mathcal{F}_n is a simply-connected closed surface with 2n first order branch points over $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ and with n+1 points over $w=\infty$. Hence \mathcal{F}_n is the Riemann surface of the inverse of a rational function $w=R_n(z)$ which can be normalized so that $R_n(0)=0\in S_1$, $R_n'(0)=1$, $R_n(\infty)=\infty\in S_{n+1}$. $R_n(z)$ has n+1 simple poles, n of them at the images $\gamma_{1,n}, \gamma_{2,n}, \gamma_{2,n}, \dots, \gamma_{n,n}$ of the points over $w=\infty$ in the sheets S_1, \dots, S_n and one at $z=\infty$, and $R_n'(z)$ must have 2n first order zeros at the images $\alpha_{1,n}, \alpha_{2,n}, \dots, \alpha_{n,n}, \beta_{1,n}, \beta_{2,n}, \dots, \beta_{n,n}$ of $a_1, \dots, a_n, b_1, \dots, b_n$ and no other zeros, where $\beta_{n,n} < \gamma_{n,n} < \beta_{n-1,n} < \dots < \beta_{1,n} < \gamma_{1,n} < 0 < \alpha_{1,n} < \alpha_{2,n} < \dots < \alpha_{n,n}$. Hence $R_n(z) = P_n(z)/Q_n(z)$ where P_n is a polynomial of degree n, and we can write $R_n(z) = \int_0^z R_n'(t) dt$,

 $R_n'(z) = \prod_{k=1}^n (1-z/\alpha_{k,n})(1-z/\beta_{k,n})/(1-z/\gamma_{k,n})^2$ where the residues of $R_n'(z)$ at the poles are zero.

Let D_n be the z-plane cut from $\alpha_{n,n}$ to ∞ along the positive real axis. D_n is mapped by $w = R_n(z)$ onto \mathcal{J}_n with the sheet S_{n+1} cut from a_n to $(-1)^n \infty$ along the real axis. But $\zeta = \phi(w)$ maps this cut surface one-to-one on the domain Δ_n of the ζ -plane bounded by the curve C_{n+1} and the segments $(\beta_{n+1}, \gamma_{n+1})$, (α_n, α_{n+1}) and containing $\zeta = 0$. So $\zeta = \phi[R_n(z)] = \psi_n(z)$ provides a schlicht mapping of D_n onto Δ_n with $\psi_n(0) = 0$ and $\psi_n'(0) = 1$. The following is an immediate corollary of Koebe's distortion theorem: Let w = f(z) be holomorphic in the z-plane slit from z = R > 0 to $+\infty$ along the real axis and map this schlitzbereich on a plane domain Δ of the w-plane subject to the conditions f(0) = 0, f'(0) = 1. Then the distance from w = 0 to the boundary of Δ is greater than or equal to R. Applying this, we have that the distance from $\zeta = 0$ to the curve C_{n+1} is greater than $\alpha_{n,n}$.

For $0 < z < \alpha_{1,n}$, $\prod_{k=1}^{n} (1-z/\beta_{k,n})/(1-z/\gamma_{k,n}) < 1$, $\prod_{k=1}^{n} (1-z/\gamma_{k,n}) > 1$, $\prod_{k=1}^{n} (1-z/\alpha_{k,n}) > 0$, $0 < R'_n(z) < \prod_{k=1}^{n} (1-z/\alpha_{k,n})$, and if $1/\bar{\alpha}_n = (1/n) \sum_{k=1}^{n} 1/\alpha_{k,n}$, $R'_n(z) < [(1/n) \sum_{k=1}^{n} (1-z/\alpha_{k,n})]^n = (1-z/\bar{\alpha}_n)^n$. So $a_1 = \int_{0}^{\alpha_{1,n}} R'_n(z) dz < \int_{0}^{\alpha_{1,n}} (1-z/\bar{\alpha}_n)^n dz < \int_{0}^{\bar{\alpha}_n} (1-z/\bar{\alpha}_n)^n dz = \bar{\alpha}_n/(n+1)$, and since $\sum_{k=1}^{n} 1/\alpha_{k,n} < n/(n+1)a_1 < 1/a_1$ we have for any ν , $1 \le \nu \le n$, $\nu/\alpha_{\nu,n} < \sum_{k=1}^{n} 1/\alpha_{k,n} < 1/a_1$, or $\alpha_{\nu,n} > a_1\nu$ for $\nu = 1, 2, \cdots, n$; $n = 1, 2, \cdots$. Therefore the distance from the origin to C_{n+1} is greater than a_1n for all n, and f is parabolic.

5. Structure of the mapping function for surfaces of the first class. We have shown above that D_n converges to $|z| < \infty$ and Δ_n converges to $|\zeta| < \infty$, and using the form of Carathéodory's theorem [2, pp. 118-126] on families of schlicht mappings which is stated in Bieberbach [1, p. 13], we conclude: $\phi[R_n(z)] \to z$ uniformly in $|z| \le r$ for any finite r and $R_n(z) \to \phi^{-1}(z) = f(z)$ uniformly in $|z| \le r$. By Hurwitz' theorem [5, p. 249], $\lim_{n\to\infty} \alpha_{k,n} = \alpha_k$, $\lim_{n\to\infty} \beta_{k,n} = \beta_k$, $\lim_{n\to\infty} \gamma_{k,n} = \gamma_k$.

There exists a $\delta > 0$ and an integer n_0 such that for $0 \le |z| < \delta$ and $n > n_0$, f'(z) and $R'_n(z)$ differ from zero and $\log R'_n(z) \rightarrow \log f'(z)$, where we take the determination of the logarithm which is zero for z = 0. Now

$$\log R'_n(z) = z \sum_{k=1}^n (2/\gamma_{k,n} - 1/\alpha_{k,n} - 1/\beta_{k,n}) + (z^2/2) \sum_{k=1}^n (2/(\gamma_{k,n})^2 - 1/(\alpha_{k,n})^2 - 1/(\beta_{k,n})^2) + \cdots$$

Hence $\lim_{n\to\infty} \left| \sum_{k=1}^n \left(2/\gamma_{k,n} - 1/\alpha_{k,n} - 1/\beta_{k,n} \right) \right|$ exists and is finite.

Since $\beta_{k,n} < \gamma_{k,n} < 0$, we have $-\infty < \lim_{n \to \infty} \sum_{k=1}^{n} (-2/|\gamma_{k,n}| - 1/\alpha_{k,n} + 1/|\beta_{k,n}|) < -\lim \sup_{n \to \infty} \sum_{k=1}^{n} (1/|\beta_{k,n}| + 1/\alpha_{k,n}) < 0$. So

(2)
$$\limsup_{n\to\infty} \sum_{k=1}^{n} 1/\alpha_{k,n} < \infty, \qquad \limsup_{n\to\infty} \sum_{k=1}^{n} 1/\left|\beta_{k,n}\right| < \infty,$$

$$\limsup_{n\to\infty} \sum_{k=1}^{n} 1/\left|\gamma_{k,n}\right| < \infty,$$

and hence

(3)
$$\sum_{k=1}^{\infty} 1/\alpha_k, \qquad \sum_{k=1}^{\infty} 1/\left|\beta_k\right|, \qquad \sum_{k=1}^{\infty} 1/\left|\gamma_k\right| \quad \text{all converge.}$$

Because of (3) the product $\pi(z) = \prod_{k=1}^{\infty} (1-z/\alpha_k)(1-z/\beta_k)/(1-z/\gamma_k)^2$ converges, and for $|z| < \delta$, $\lim_{n\to\infty} \log R_n'(z)/\pi(z) = \log f'(z)/\pi(z)$.

$$\log R_n'(z)/\pi(z) = \sum_{m=1}^{\infty} (z^m/m) \left\{ \left(\sum_{k=1}^n 2/(\gamma_{k,n})^m - \sum_{k=1}^{\infty} 2/(\gamma_k)^m \right) - \left(\sum_{k=1}^n 1/(\alpha_{k,n})^m - \sum_{k=1}^{\infty} 1/(\alpha_k)^m \right) - \left(\sum_{k=1}^n 1/(\beta_{k,n})^m - \sum_{k=1}^{\infty} 1/(\beta_k)^m \right) \right\}.$$

Since $\lim_{n\to\infty} \gamma_{k,n} = \gamma_k$, $\left|\limsup_{n\to\infty} \left(\sum_{k=1}^n 1/(\gamma_{k,n})^m - \sum_{k=1}^\infty 1/(\gamma_k)^m\right)\right|$ = $\left|\limsup_{n\to\infty} \left(\sum_{k=n_0}^n 1/(\gamma_{k,n})^m - \sum_{k=n_0}^\infty 1/(\gamma_k)^m\right)\right|$, and using (2) and (3), we have $\left|\limsup_{n\to\infty} \left(\sum_{k=n_0}^\infty 1/(\gamma_{k,n})^m - \sum_{k=n_0}^\infty 1/(\gamma_k)^m\right)\right|$ $\leq 2\sum_{k=n_0}^n 1/k^m$ for all n_0 sufficiently large. So

$$\lim_{n\to\infty}\left(\sum_{k=1}^n 1/(\gamma_{k,n})^m - \sum_{k=1}^\infty 1/(\gamma_k)^m\right) = 0, \qquad m\geq 2.$$

Similarly we have

$$\lim_{n\to\infty} \left(\sum_{k=1}^n 1/(\alpha_{k,n})^m - \sum_{k=1}^\infty 1/(\alpha_k)^m \right) = 0$$

and

$$\lim_{n\to\infty}\left(\sum_{k=1}^n 1/(\beta_{k,n})^m - \sum_{k=1}^\infty 1/(\beta_k)^m\right) = 0 \qquad \text{for } m \ge 2.$$

Therefore $\log f'(z)/\pi(z) = \delta z$, δ real and $f'(z) = e^{\delta z}\pi(z)$. $\pi(z)$ is a canonical product of genus zero, and for

$$0 < \xi_1 \le \arg z \le \eta_1 < \pi, \qquad \pi < \xi_2 \le \arg z \le \eta_2 < 2\pi,$$

it can be proved [9, chap. VIII] that $|\pi(z)| = O[\exp(\epsilon |z|)]$ and $1/|\pi(z)| = O[\exp(\epsilon |z|)]$ for any $\epsilon > 0$. Hence

$$\exp \left(\delta \Re(z) - \epsilon \mid z \mid\right) \le |f'(z)| \le \exp \left(\delta \Re(z) + \epsilon \mid z \mid\right).$$

Suppose $\delta > 0$ and let $z \to \infty$ with $\pi/6 \le \arg z \le \pi/3$; we can find $\epsilon > 0$ such that exp $(\delta \Re(z) - \epsilon |z|) \to \infty$. If $z \to \infty$ with $2\pi/3 \le \arg z \le 5\pi/6$, we can find $\epsilon > 0$ such that $\exp(\delta \Re(z) + \epsilon |z|) \rightarrow 0$. Now $f(z) = \int_0^z f'(t) dt$ so that there will exist a curve Γ_1 in $2\pi/3 \le \arg z \le 5\pi/6$ extending to ∞ along which $|f(z)| \to a$ finite value c, and there will exist a curve Γ_2 in $\pi/6 \le \arg z \le \pi/3$ extending to ∞ along which $|f(z)| \to \infty$. Consider the upper part of the path of reality C_{2j} and let z move along this path starting at α_{2j} . If $\delta > 0$, as z moves along C_{2j} for j sufficiently large |f(z)| will attain an arbitrarily large value and then decrease to a finite value c_1 (arbitrarily near c). But the image w = f(z) will move on the real axis starting at a_{2j} and moving monotonically to the left to b_{2j} , which is a contradiction and hence δ cannot be positive. If $\delta < 0$ we are not led to a contradiction, for in this case $|f(z)| \rightarrow c$ as z moves along the curve Γ_2 to ∞ and $|f(z)| \to \infty$ as z moves to ∞ along Γ_1 . So that as z moves counterclockwise on C_{2j} or C_{2j+1} , |f(z)|will increase from c_1 to an arbitrarily large value, and the image w = f(z) will move either to the left on the real axis from a_{2k} or to the right on the real axis from a_{2k+1} . We have proved the following

THEOREM I. Any Riemann surface belonging to the class described in §2 is parabolic and the mapping function is given by

$$f(z) = \int_0^z f'(t)dt, \quad f'(z) = e^{\delta z} \prod_{k=1}^{\infty} (1 - z/\alpha_k)(1 - z/\beta_k)/(1 - z/\gamma_k)^2$$

where δ is a nonpositive real number, $\sum_{k=1}^{\infty} 1/\alpha_k < \infty$, $\sum_{k=1}^{\infty} 1/\left|\beta_k\right| < \infty$, $\sum_{k=1}^{\infty} 1/\left|\gamma_k\right| < \infty$, \cdots , $\beta_k < \gamma_k < \beta_{k-1} < \cdots < \beta_1 < \gamma_1 < 0 < \alpha_1 < \alpha_2 < \cdots < \alpha_k < \alpha_{k+1} < \cdots$, and the residues of f'(z) at the poles γ_k are all zero.

- 6. Proof that the members of the class of doubly-connected surfaces are images of the entire plane less two points. Let \mathcal{I} , a member of the class of doubly-connected surfaces, be mapped onto the annulus $0 \le r < |z| < R \le \infty$ by the function $z = \phi(w)$, w = f(z). This mapping will be unique if we require $f(1) = 0 \in S_1$ and f'(1) > 0. By the methods mentioned in §4 the following can be obtained.
 - (1) f(z) is real for z real.
- (2) The image of the branch point over b_j is β_j , the image of the branch point over a_j is α_j , the image of the point of \mathcal{F} on S_j over

$$w = \infty$$
 is $z = \gamma_j$, $j = \pm 1$, ± 2 , ± 3 , \cdots , with $\cdots \beta_k < \gamma_k < \beta_{k-1} < \cdots < \beta_1 < \gamma_1 < \beta_{-1} < \gamma_{-1} < \cdots < \beta_{-k} < \gamma_{-k} < \beta_{-k-1} < \cdots < -r < 0 < r < \cdots < \alpha_{-k} < \alpha_{-k+1} < \cdots < \alpha_{-1} < 1 < \alpha_k < \alpha_{k+1}$, $k = 1, 2, 3, \cdots$

(3) S_1 is mapped on a portion of the annulus bounded by two non-intersecting, simple, closed curves C_1 and C_{-1} , symmetric about the real axis with C_1 cutting the real axis in α_1 and β_1 only, and C_{-1} cutting the real axis in α_{-1} and β_{-1} only. S_j , $j \neq 1$, is mapped on a portion of $0 \leq r < |z| < R \leq \infty$ bounded by two nonintersecting, simple, closed curves C_j and C_{j-1} , symmetric about the real axis with C_j cutting the real axis in α_j and β_j only, and C_{j-1} cutting the real axis in α_{j-1} and β_{j-1} only.

That r=0 and $R=\infty$ follows from the parabolicity of the surfaces of the simply-connected class. Consider \mathcal{J} as made up of two surfaces \mathcal{J}_1 and \mathcal{J}_2 : \mathcal{J}_1 consisting of sheets S_1 , S_2 , S_3 , \cdots , \mathcal{J}_2 consisting of sheets S_{-1} , S_{-2} , S_{-3} , \cdots , with \mathcal{J}_1 and \mathcal{J}_2 joined along the cut from a_{-1} to b_{-1} . Then \mathcal{J}_1 is mapped on a domain Δ_1 of the z-plane bounded by the curve C_{-1} and |z|=R. But by the results of §4, \mathcal{J}_1 can be mapped onto the plane $|\zeta|<\infty$ with the cut over (a_{-1}, b_{-1}) being mapped into a portion of the real axis (a, b). Hence the punched ζ -plane cut along the real axis from a to b can be mapped onto Δ_1 by a regular function with the cut (a, b) corresponding to C_{-1} . But then R must be infinite, for otherwise the circle $|z|=R<\infty$ would be the image of the point $\zeta=\infty$ by a regular function, which is impossible. By a similar argument we can show r=0. Therefore \mathcal{J} can be mapped on the z-plane less the two points z=0, $z=\infty$.

7. Structure of the mapping function for surfaces of the second class. We have the portion of the z-plane exterior to the curve C_{-1} mapped one-to-one on \mathcal{J}_1 by w=f(z). But from the results of §4 we have the ζ -plane less the point $\zeta = \infty$ and the segment C' of the real axis from $\phi(a_{-1})$ to $\phi(b_{-1})$ mapped one-to-one on \mathcal{I}_1 by $w = G_1(\zeta)$. Hence, the punched ζ -plane cut along C' can be mapped schlichtly by $z = h(\zeta)$ onto the portion of the z-plane exterior to C_{-1} in such a way that $\zeta = 0$ corresponds to z = 1, C' corresponds to C_{-1} , and $\zeta = \infty$ corresponds to $z = \infty$, i.e., $h(\zeta)$ must have a simple pole at $\zeta = \infty$. So $h(\zeta) = \zeta \psi(\zeta)$ where $\psi(\zeta)$ is regular at $\zeta = \infty$ and $\psi(\infty) \neq 0$, or $h(\zeta)$ $=c\zeta+q(\zeta)$ where $q(\zeta)$ is regular at $\zeta=\infty$ and hence bounded in the neighborhood of $\zeta = \infty$. So we can write $h(\zeta) = \zeta + O(1)$ $(\zeta \to \infty)$. So $G_1(\zeta) = f[h(\zeta)], G'_1(\zeta) = f'(z)h'(\zeta), h'(\zeta) \neq 0$ for ζ sufficiently large. From the results of §5 we know that if the zeros of $G_1'(\zeta)$ are denoted by ζ_k , then $\sum_{k=1}^{\infty} 1/|\zeta_k| < \infty$. Since $z \sim c\zeta$ as $\zeta \to \infty$, the zeros α_k and β_k of f'(z) are such that

(4)
$$\sum_{k=1}^{\infty} 1/\left|\alpha_{k}\right| < \infty, \qquad \sum_{k=1}^{\infty} 1/\left|\beta_{k}\right| < \infty.$$

In a similar manner we have the ζ -plane cut along a segment C'' of the real axis mapped one-to-one by $z=g(\zeta)$ onto the portion of the z-plane interior to C_1 in such a way that as $\zeta \to \infty$, $g(\zeta) \to 0$, i.e., $g(\zeta)$ must have a simple zero at $\zeta = \infty$. So $g(\zeta) = \psi(\zeta)/\zeta$ where $\psi(\infty) \neq 0$ and $\psi(\zeta)$ is regular at $\zeta = \infty$, or $g(\zeta) = c/\zeta + p(\zeta)$ where $p(\zeta)$ is $O(1/|\zeta|^2)$ as $\zeta \to \infty$. Then if w=f(z) is the function mapping the interior of C_1 onto the surface \mathcal{J}_2 and $w=G_2(\zeta)$ is the function mapping the ζ -plane less the point $\zeta = \infty$ and the cut C'' onto \mathcal{J}_2 , $G_2(\zeta) = f[g(\zeta)]$, $G'_2(\zeta) = f'(z)g'(\zeta)$, $g'(\zeta) \neq 0$ for ζ sufficiently large. Again from the results of §5 we know that if the zeros of $G'_2(\zeta)$ are ζ_k , then $\sum_{k=1}^{\infty} 1/|\zeta_k| < \infty$ so that, since $z \sim c/\zeta$ as $\zeta \to \infty$, the zeros of f'(z), α_{-k} , β_{-k} , are such that $\sum_{k=1}^{\infty} |\alpha_{-k}| < \infty$, $\sum_{k=1}^{\infty} |\beta_{-k}| < \infty$.

Consider the surface \mathcal{J} as the limit of a sequence of surfaces $\{\mathcal{J}_n\}$, where \mathcal{J}_n consists of the 2n+1 sheets S_{-n} , S_{-n+1} , \cdots , S_{-1} , S_1 , \cdots , S_{n+1} with the cuts (a_{-n-1}, b_{-n-1}) and (a_{n+1}, b_{n+1}) healed. \mathcal{J}_n is the Riemann surface of the inverse of a rational function $w = R_n(z)$, $R_n(z) = P_n(z)/Q_n(z)$, $R_n(1) = 0 \in S_1$, $R'_n(1) > 0$, $R_n(\infty) = \infty \in S_{n+1}$, $R_n(0) = \infty \in S_{-n}$, where $P_n(z)$ is a polynomial of degree 2n+1 and $Q_n(z)$ is a polynomial of degree 2n.

$$R'_{n}(z) = K_{n} \frac{\prod_{k=1}^{n} (1 - z/\alpha_{k,n})(1 - z/\beta_{k,n})(1 - \alpha_{-k,n}/z)(1 - \beta_{-k,n}/z)}{\prod_{k=1}^{n} (1 - z/\gamma_{k,n})^{2} \prod_{k=1}^{n-1} (1 - \gamma_{-k,n}/z)^{2}},$$

 $K_n>0$, where $\alpha_{j,n}$, $\beta_{j,n}$ are the images of the points in the surface over a_j , b_j , and $\gamma_{j,n}$ is the image of the point over ∞ in sheet S_j , and the residues of $R_n'(z)$ at the poles are zero. $R_n(z)=\int_1^z R_n'(t)dt$. Now $\zeta=\phi[R_n(z)]$ maps the z-plane cut from $z=\alpha_{n,n}$ to ∞ and from $z=\alpha_{-n,n}$ to zero along the real axis schlichtly onto a domain bounded by C_{n+1} , C_{-n-1} cut along the segments

$$(\alpha_n, \alpha_{n+1}), (\alpha_{-n-1}, \alpha_{-n}), (\beta_{n+1}, \gamma_{n+1}), \text{ and } (\gamma_{-n}, \beta_{-n-1}).$$

So using the fact that r=0 and $R=\infty$, and applying the theorem of Carathéodory mentioned in §5, we have

$$\lim_{n\to\infty} R_n(z) = f(z) \quad \text{and} \quad \lim_{n\to\infty} R'_n(z) = f'(z) \text{ uniformly.}$$

Hence $\lim_{n\to\infty} \alpha_{j,n} = \alpha_j$, $\lim_{n\to\infty} \beta_{j,n} = \beta_j$, $\lim_{n\to\infty} \gamma_{j,n} = \gamma_j$, $j = \pm 1$, ± 2 , ± 3 , \cdots , and we know

$$\sum_{k=1}^{\infty} \frac{1}{|\alpha_k|}; \qquad \sum_{k=1}^{\infty} \frac{1}{|\beta_k|}; \qquad \sum_{k=1}^{\infty} \frac{1}{|\gamma_k|};$$

$$\sum_{k=1}^{\infty} |\alpha_{-k}|; \qquad \sum_{k=1}^{\infty} |\beta_{-k}|; \qquad \sum_{k=1}^{\infty} |\gamma_{-k}|$$

all converge. For $|z-1| < \rho$ and $n > n_0$ we have $f'(z) \neq 0$ and $R'_n(z) \neq 0$, so for these values of z, $\lim_{n\to\infty} \log R'_n(z) = \log f'(z)$, taking the determination of the logarithm which is real for z=1. If we choose k_0 so that, for $|z-1| < \rho$ and $n > n_0$, max $\left[|z/\beta_{k_0}| ; |\beta_{-k_0}, n/z| \right] < 1$ we can write

$$\log R'_{n}(z) = \log \prod_{k=1}^{k_{0}} \frac{(1 - z/\alpha_{k,n})(1 - z/\beta_{k,n})(1 - \alpha_{-k,n}/z)(1 - \beta_{-k,n}/z)}{(1 - z/\gamma_{k,n})^{2}(1 - \gamma_{-k,n}/z)^{2}}$$

$$+ z \sum_{k=k_{0}}^{n} (2/\gamma_{k,n} - 1/\alpha_{k,n} - 1/\beta_{k,n})$$

$$+ \frac{z^{2}}{2} \sum_{k=k_{0}}^{n} \left[2/(\gamma_{k,n})^{2} - 1/(\alpha_{k,n})^{2} - 1/(\beta_{k,n})^{2} \right] + \cdots$$

$$+ \frac{1}{z} \sum_{k=k_{0}}^{n-1} (2\gamma_{-k,n} - \alpha_{-k,n} - \beta_{-k,n})$$

$$+ \frac{1}{2z^{2}} \sum_{k=k_{0}}^{n-1} \left[2(\gamma_{-k,n})^{2} - (\alpha_{-k,n})^{2} - (\beta_{-k,n})^{2} \right] + \cdots$$

$$- \left[\frac{\alpha_{-n,n}}{z} + \frac{(\alpha_{-n,n})^{2}}{2z^{2}} + \cdots \right]$$

$$+ \log K_{n}.$$

Hence $\lim_{n\to\infty} \left| \sum_{k=k_0}^n (2/\gamma_{k,n}-1/\alpha_{k,n}-1/\beta_{k,n}) \right|$ and

$$\lim_{n\to\infty} \left| \sum_{k=k+1}^{n} (2\gamma_{-k+1,n} - \alpha_{-k,n} - \beta_{-k,n}) - \alpha_{k_0,n} - \beta_{k_0,n} \right|$$

exist and are finite. We have $0 > \gamma_{k,n} > \beta_{k,n}$ or $-1/|\gamma_{k,n}| < -1/|\beta_{k,n}|$. Thus we have $-\infty < \lim_{n\to\infty} \sum_{k=k_0}^{n} (-2/|\gamma_{k,n}| - 1/\alpha_{k,n} + 1/|\beta_{k,n}|) < \lim \sup_{n\to\infty} [-\sum_{k=k_0}^{n} (1/\alpha_{k,n} + 1/|\beta_{k,n}|)] < 0$. Therefore

$$\limsup_{n\to\infty} \sum_{k=k_0}^n 1/\left|\beta_{k,n}\right| < \infty, \qquad \limsup_{n\to\infty} \sum_{k=k_0}^n 1/\alpha_{k,n} < \infty,$$

$$\limsup_{n\to\infty} \sum_{k=k_0}^n 1/|\gamma_{k,n}| < \infty.$$

Also $0 > \beta_{-k,n} > \gamma_{-k+1,n}$ or $-|\gamma_{-k+1,n}| < -|\beta_{-k,n}|$, hence

$$- \infty < \lim_{n \to \infty} \left[\sum_{k=k_{0}+1}^{n} \left(-2 \left| \gamma_{-k+1,n} \right| - \alpha_{-k,n} + \left| \beta_{-k,n} \right| \right) - \alpha_{-k_{0},n} + \left| \beta_{-k_{0},n} \right| \right]$$

$$< \lim_{n \to \infty} \sup - \left[\sum_{k=k_{0}+1}^{n} \left(\alpha_{-k,n} + \left| \beta_{-k,n} \right| \right) + \alpha_{-k_{0},n} - \left| \beta_{-k_{0},n} \right| \right].$$

Therefore $\limsup_{n\to\infty} \sum_{k=k_0}^n \alpha_{-k,n} < \infty$, $\limsup_{n\to\infty} \sum_{k=k_0}^n \left|\beta_{-k,n}\right| < \infty$, $\limsup_{n\to\infty} \sum_{k=k_0}^n \left|\gamma_{-k,n}\right| < \infty$. Let

$$\pi(z) = \frac{\prod_{k=1}^{\infty} (1 - z/\alpha_k)(1 - z/\beta_k)(1 - \alpha_{-k}/z)(1 - \beta_{-k}/z)}{\prod_{k=1}^{\infty} (1 - z/\gamma_k)^2(1 - \gamma_{-k}/z)^2}$$

Then

$$\log \left[R_n'(z)/\pi(z) \right]$$

$$= \sum_{m=1}^{\infty} \left\{ \frac{z^{m}}{m} \left[\left(\sum_{k=k_{0}}^{n} \frac{2}{(\gamma_{k,n})^{m}} - \sum_{k=k_{0}}^{\infty} \frac{2}{(\gamma_{k})^{m}} \right) \right. \right. \\ \left. - \left(\sum_{k=k_{0}}^{n} \frac{1}{(\alpha_{k,n})^{m}} - \sum_{k=k_{0}}^{\infty} \frac{1}{(\alpha_{k})^{m}} \right) \right. \\ \left. - \left(\sum_{k=k_{0}}^{n} \frac{1}{(\beta_{k,n})^{m}} - \sum_{k=k_{0}}^{\infty} \frac{1}{(\beta_{k})^{m}} \right) \right] \right\} \\ \left. + \sum_{m=1}^{\infty} \left\{ \frac{1}{mz^{m}} \left[\left(\sum_{k=k_{0}}^{n-1} 2(\gamma_{-k,n})^{m} - \sum_{k=k_{0}}^{\infty} 2(\gamma_{-k})^{m} \right) - \left(\sum_{k=k_{0}}^{n-1} (\alpha_{-k,n})^{m} - \sum_{k=k_{0}}^{\infty} (\alpha_{-k})^{m} \right) - \left(\sum_{k=k_{0}}^{n-1} (\beta_{-k,n})^{m} - \sum_{k=k_{0}}^{\infty} (\beta_{-k})^{m} \right) \right] \right\} \\ \left. + \log K_{n} + T_{n}(z), \right\}$$

where $T_n(z) = o(1)$ as $n \to \infty$.

As in §5 it can be shown that, for $m \ge 2$,

$$\lim_{n\to\infty} \left(\sum_{k=k_0}^{n} 1/(\gamma_{k,n})^m - \sum_{k=k_0}^{\infty} 1/(\gamma_k)^m \right), \quad \lim_{n\to\infty} \left(\sum_{k=k_0}^{n-1} (\gamma_{-k,n})^m - \sum_{k=k_0}^{\infty} (\gamma_{-k})^m \right),$$

$$\lim_{n\to\infty} \left(\sum_{k=k_0}^{n} 1/(\alpha_{k,n})^m - \sum_{k=k_0}^{\infty} 1/(\alpha_k)^m \right), \quad \lim_{n\to\infty} \left(\sum_{k=k_0}^{n} (\alpha_{-k,n})^m - \sum_{k=k_0}^{\infty} (\alpha_{-k})^m \right),$$

$$\lim_{n\to\infty} \left(\sum_{k=k_0}^{n} 1/(\beta_{k,n})^m - \sum_{k=k_0}^{\infty} 1/(\beta_k)^m \right), \quad \lim_{n\to\infty} \left(\sum_{k=k_0}^{n} (\beta_{-k,n})^m - \sum_{k=k_0}^{\infty} (\beta_{-k})^m \right)$$

all exist and are zero, and we have

$$\log f'(z)/\pi(z) = \lim_{n \to \infty} \log R_n(z)/\pi(z)$$

$$= z \lim_{n \to \infty} \left\{ \left(\sum_{k=k_0}^n 2/\gamma_{k,n} - \sum_{k=k_0}^\infty 2/\gamma_k \right) - \left(\sum_{k=k_0}^n 1/\alpha_{k,n} - \sum_{k=k}^\infty 1/\alpha_k \right) - \left(\sum_{k=k_0}^n 1/\beta_{k,n} - \sum_{k=k_0}^\infty 1/\beta_k \right) \right\}$$

$$+ (1/z) \lim_{n \to \infty} \left\{ \left(\sum_{k=k_0}^{n-1} 2\gamma_{-k,n} - \sum_{k=k_0}^\infty 2\gamma_{-k} \right) - \left(\sum_{k=k_0}^n \alpha_{-k,n} - \sum_{k=k_0}^\infty \alpha_{-k} \right) - \left(\sum_{k=k_0}^n \beta_{-k,n} - \sum_{k=k_0}^\infty \beta_{-k} \right) \right\}$$

$$+ \log K,$$

log $f'(z)/\pi(z) = \sigma_1 z + \sigma_2/z + \log K$ where K and σ_1 , σ_2 are real. So $f'(z) = K \left[\exp \left(\sigma_1 z + \sigma_2/z \right) \right] \pi(z)$.

With an argument similar to the one used in §5 it may be shown that σ_1 and σ_2 cannot be positive, so we have

THEOREM II. Any Riemann surface belonging to the class described in §3 is the image of the z-plane less the two points $z = \infty$ and z = 0 by a function w = f(z) where

$$f(z) = \int_{1}^{z} f'(t)dt,$$

$$f'(z) = K \exp \left(\sigma_{1}z + \sigma_{2}/z\right) \prod_{k=1}^{\infty} \frac{(1 - z/\alpha_{k})(1 - z/\beta_{k})(1 - \alpha_{-k}/z)(1 - \beta_{-k}/z)}{(1 - z/\gamma_{k})^{2}(1 - \gamma_{-k}/z)^{2}},$$

where K > 0, σ_1 , σ_2 , α_j , β_j , γ_j $(j = 1, \pm 1, \pm 2, \pm 3, \cdots)$ are real with $\cdots \beta_k < \gamma_k < \beta_{+k-1} < \cdots < \beta_1 < \gamma_1 < \beta_{-1} < \gamma_{-1} < \cdots < \beta_{-k} < \gamma_{-k} < \cdots < 0 < \cdots < \alpha_{-k-1} < \alpha_{-k} < \cdots < \alpha_{-1} < \alpha_1 \cdots < \alpha_k < \cdots$,

$$\sum_{k=1}^{\infty} 1/\alpha_k < \infty; \qquad \sum_{k=1}^{\infty} 1/\left|\beta_k\right| < \infty; \qquad \sum_{k=1}^{\infty} 1/\left|\gamma_k\right| < \infty;$$

$$\sum_{k=1}^{n} \alpha_{-k} < \infty; \qquad \sum_{k=1}^{\infty} \left|\beta_{-k}\right| < \infty; \qquad \sum_{k=1}^{\infty} \left|\gamma_{-k}\right| < \infty,$$

and the residues of f'(z) at the poles are all zero, and σ_1 , σ_2 are nonpositive.

8. Partial converse of Theorem I.

THEOREM III. Let w=f(z) be meromorphic in $|z| < \infty$ with f(0)=0, f'(0)=1. If f(z) has the form $f(z)=ze^{\delta z}\prod_{k=1}^{\infty} (1-z/c_k)/(1-z/\gamma_k)$ where c_k , γ_k , δ are real, $\delta \leq 0$, $\gamma_{k+1} < \gamma_k < 0 < c_k < c_{k+1}$ $(k=1, 2, \cdots)$ with $\sum_{k=1}^{\infty} 1/c_k < \infty$, $\sum_{k=1}^{\infty} 1/|\gamma_k| < \infty$, then the Riemann surface of the inverse of f(z) is a surface of the class described in §2.

Note that if in §2 the sequence $\{a_k\}$ is required to satisfy $a_{2k} < 0 < a_{2k\pm 1}$, the function of Theorem I would satisfy the hypotheses of the above. The proof of Theorem III rests on the construction of a sequence of rational functions $\{R_n(z)\}$ which converges uniformly to f(z) and whose members have derivatives of the same form as the $R_n'(z)$ in §2. The author has been unable to show that such a construction is possible without restricting the location of the zeros of f(z) and so has been unable to give a proof of the complete converse of Theorem I although he conjectures its validity.

We distinguish two cases.

Case I: $\delta=0$. We may construct a sequence of rational functions $\{R_n(z)\}$ which converges uniformly to f(z) by setting $R_n(z)$ = $z\prod_{k=1}^n (1-z/c_k)/(1-z/\gamma_k)$. $R_n(z)$ has simple poles at $z=\gamma_k$, $k=1, 2, 3, \cdots, n$, and at $z=\infty$, and the residues at adjacent poles will differ in sign. Therefore there are at least n points $z=\beta_{k,n}$, $k=1, 2, 3, \cdots, n$, on the negative real axis such that $R_n'(\beta_{k,n})=0$ and the points will be distributed as follows: $-\infty < \beta_{n,n} < \gamma_n < \beta_{n-1,n} < \cdots < \gamma_{k+1} < \beta_{k,n} < \gamma_k < \cdots < \beta_{1,n}$. There will also be at least n points $z=\alpha_{k,n}$, $k=1, 2, 3, \cdots, n$, on the positive real axis such that $R_n'(\alpha_{k,n})=0$ and these points will be distributed as follows: $0<\alpha_{1,n} < c_1 < \alpha_{2,n} < \cdots < c_{k-1} < \alpha_{k,n} < c_k < \cdots < \alpha_{n,n} < c_n$. Hence

$$R'_n(z) = \prod_{k=1}^n (1 - z/\alpha_{k,n})(1 - z/\beta_{k,n})/(1 - z/\gamma_k)^2$$

and $R'_n(z) \rightarrow f'(z)$ uniformly.

It is obvious that the paths of reality consist of n simple, closed curves, symmetric about the real axis and intersecting the real axis

at the points $z = \alpha_{k,n}$, $z = \beta_{k,n}$, $k = 1, 2, 3, \dots, n$. We assert that $\beta_{j,n}$, $\beta_{k,n}$, $k \neq j$, cannot lie on the same path of reality. For suppose that $\beta_{j,n}$, $\beta_{k,n}$ are both on the same path of reality C, then:

(1) If k, j are both odd or both even there will be an odd number of branch points between $\beta_{j,n}$, and $\beta_{k,n}$ and hence at least one path of reality would have to cross C at some point not on the real axis, which is impossible.

Fig. 1

(2) If k and j are not both odd or both even, as z traverses the path of reality around the domain D interior to the path, $R_n(z)$ would take on all real values twice (see Fig. 1), which is impossible. It is now apparent that the path of reality C_j through $\beta_{j,n}$ will intersect the real axis in the point $\alpha_{j,n}$, $j=1, 2, 3, \cdots, n$.

 $R_n(z) = P_n(z)/Q_n(z)$ where $P_n(z)$ is a polynomial of degree n+1 and $Q_n(z)$ is a polynomial of degree n. Since $\overline{R_n(z)} = R_n(\overline{z})$ and $\overline{Q_n(z)} = Q_n(\overline{z})$ the equation of the paths of reality is given by

$$2i\Im[R_n(z)] = P_n(z)/Q_n(z) - P_n(\bar{z})/Q_n(\bar{z}) = 0$$

or

$$F(x, y) = P_n(x + iy)Q_n(x - iy) - P_n(x - iy)Q_n(x + iy) = 0.$$

From considerations of degree we see that any line arg $z = \theta_0$, $\theta_0 \neq 0$, π ,

will intersect the upper part of the paths of reality *only* once and the lower part of each of the paths of reality *only* once.

Collecting the foregoing we have: For any n, $R_n(z)$ is real for z on the real axis and for z on the noninteresecting, simple, closed curves $C_{1,n}$, $C_{2,n}$, \cdots , $C_{n,n}$ symmetric about the real axis with $C_{k,n}$ intersecting the real axis in the points $z = \alpha_{k,n}$, $z = \beta_{k,n}$. Furthermore, the curves $C_{k,n}$ are star-shaped (any ray from the origin intersects each curve only once).

If we denote by α_k and β_k the zeros of f'(z), then $\alpha_{k,n} \rightarrow \alpha_k$ and $\beta_{k,n} \rightarrow \beta_k$ as $n \rightarrow \infty$, and $C_{k,n}$ will tend to a limiting curve C_k which is star-shaped, symmetric about the real axis, and passes through the points $z = \alpha_k$ and $z = \beta_k$. We wish to show that the curve C_k has no points at $z = \infty$. Consider the domain $D_{k,n}$ which contains $C_{k,n}$ and is bounded by $C_{k+1,n}$ and $C_{k-1,n}$. $D_{k,n}$ is mapped by $R_n(z)$ one-to-one onto a two-sheeted surface $\Sigma_{k,n}$ consisting of two slit copies of the w sphere S' and S''. S' is slit between $R_n(\alpha_{k-1,n}) = a_{k-1,n}$ and $R_n(\beta_{k-1,n}) = b_{k-1,n}$ and between $R_n(\alpha_{k,n}) = a_{k,n}$ and $R_n(\beta_{k,n}) = b_{k,n}$. S'' is slit between $a_{k,n}$ and $b_{k,n}$ and between $R_n(\alpha_{k+1,n}) = a_{k+1,n}$ and $R_n(\beta_{k+1,n}) = b_{k+1,n}$. The sheets are joined along their cuts from $a_{k,n}$ to $b_{k,n}$, and

$$R_n\left(\frac{\alpha_k + \alpha_{k+1}}{2}\right) = a \in S'', \qquad R'_n\left(\frac{\alpha_k + \alpha_{k+1}}{2}\right) = K.$$

 $\Sigma_{k,n}$ can in turn be mapped by $\zeta = G(w)$ onto the domain $\Delta_{k,n}$ which is the ζ -plane slit from $G(a_{k-1,n})$ to $G(b_{k-1,n})$ and from $G(a_{k+1,n})$ to $G(b_{k+1,n})$. The segment $(a_{k,n}, b_{k,n})$ is mapped onto a closed curve $\Gamma_{k,n}$ and $G(a \in S'') = 0$, $G'(a \in S'') = 1$. The sequence of domains $\Delta_{k,n}$ converges to its kernel Δ_k which is the ζ -plane cut from $G(a_{k-1})$ to $G(b_{k-1})$ and from $G(a_{k+1})$ to $G(b_{k+1})$ where $a_j = \lim_{n \to \infty} R_n(\alpha_j)$, $b_j = \lim_{n \to \infty} R_n(\beta_j)$. Since the sequence of functions $\{G[R_n(z)]\}$ is schlicht and converges, and since $C_{k,n}$ converges to C, we may apply the variation of Carathéodory's theorem mentioned in §5 and find that f(z) is regular at every point of C_k and hence C_k cannot have any ends at $z = \infty$. So the paths of reality of f(z) are the real axis and the star-shaped curves C_k , symmetric about the real axis, intersecting the real axis in $z = \alpha_k$ and $z = \beta_k$ with C_k having no points at $z = \infty$. Consider the domain D bounded by the upper halves of C_i and C_{i+1} and the segments (α_j, α_{j+1}) and (β_j, β_{j+1}) . In this domain $\Im(w)$ has the constant sign $(-1)^{i}$ and hence in $D[w] \neq (-1)^{i+1}i$. The real part of w varies monotonically from $(-1)^{j+1} \infty$ to $(-1)^{j} \infty$ as z traverses the boundary of D in the positive direction starting from $z = \gamma_{j+1}$. Applying the theorem of Darboux we have: D is mapped schlichtly by w = f(z) onto the half-plane $(-1)^{i}\Im(w) > 0$. Therefore, if $\delta = 0$, the surface of the inverse of w = f(z) is a surface of the first class.

Case II: $\delta < 0$. We may construct a sequence of rational functions $\{R_n(z)\}$ which converges uniformly to f(z) in any closed bounded region by setting $R_n(z) = z(1+\delta z/\lambda_n)^{\lambda_n} \prod_{k=1}^n (1-z/c_k)/(1-z/\gamma_k)$ where $\{\lambda_n\}$ is a sequence of positive integers increasing to infinity and chosen so that $|\lambda_n/\delta| > c_n$. Then $R'_n(z) = (1+\delta z/\lambda_n)^{\lambda_n-1}M_n(z)/N_n(z)$ where $N_n(z) = \prod_{k=1}^n (1-z/\gamma_k)^2$ and $M_n(z)$ is a polynomial of degree 2n+1. By the same argument used in the preceding paragraph we find that $R'_n(z)$ has at least 2n zeros at points $\alpha_{k,n}, \beta_{k,n}, k=1, 2, 3, \cdots, n$, with $\beta_{n,n} < \gamma_n < \cdots < \beta_{k,n} < \gamma_k < \cdots < \beta_{1,n} < \gamma_1 < 0 < \alpha_{1,n} < c_1 < \alpha_{2,n} < \cdots < \alpha_{n,n} < c_n$. Since $R_n(z)$ is zero when $z = -\lambda_n/\delta$, there is at least one zero of $R'_n(z)$ at a point $z = \epsilon_n$ where $c_n < \epsilon_n < -\lambda_n/\delta$. Since the degree of $M_n(z)$ is 2n+1 we can write

$$R'_n(z) = (1 + \delta z/\lambda_n)^{\lambda_n - 1} (1 - z/\epsilon_n) \prod_{k=1}^n (1 - z/\alpha_{k,n}) (1 - z/\beta_{k,n}) / (1 - z/\gamma_n)^2.$$

Concerning the paths of reality for $R_n(z)$ we have:

- (1) The real axis is a path of reality.
- (2) The only points at which two paths of reality can intersect are $z = \alpha_{j,n}$, $z = \beta_{j,n}$ $(j = 1, 2, \dots, n)$, $z = \epsilon_n$, $z = -\lambda_n/\delta$, $z = \infty$.
- (3) There is one path of reality intersecting the real axis at each of $z = \alpha_{j,n}$, $z = \beta_{j,n}$, $z = \epsilon_n$ since each of these points is a branch point of order one.
- (4) There are $\lambda_n 1$ paths of reality intersecting the real axis at $z = -\lambda_n/\delta$.
- (5) There are λ_n paths of reality besides the real axis through $z = \infty$.
 - (6) As in case 1, no two $\beta_{j,n}$ can lie on the same path of reality.
- (7) No path of reality can pass through any $\beta_{j,n}$, and $z = \epsilon_n$ for this would result in the intersection of two paths of reality at some point not included in (2).
- (8) $\alpha_{n,n}$ and ϵ_n cannot lie on the same path of reality since the real part of $R_n(z)$ is a monotone function as z traces a path from ϵ_n to $\alpha_{n,n}$ along the real axis and from $\alpha_{n,n}$ to ϵ_n along a curve in the upper half-plane.
- (9) No $\alpha_{j,n}$, $j \neq n$, can lie on the same path of reality as ϵ_n for the same reason as in (7).
- (10) No $\beta_{j,n}$ or $\alpha_{j,n}$ can lie on the same path of reality as $-\lambda_n/\delta$ for the same reason.
 - (11) As in (8) no path of reality can pass through ϵ_n and $-\lambda_n/\delta$.
 - (12) No path of reality through any $\alpha_{j,n}$ or $\beta_{j,n}$ can pass through

 $z = \infty$, for this would require more than $\lambda_n + 1$ paths of reality through $z = \infty$ or would contradict one of the statements (1)-(11).

Therefore the paths of reality must consist of n curves $C_{k,n}$, $k=1, 2, \cdots, n$, and λ_n curves $D_{k,n}$, $k=1, 2, \cdots, \lambda_n$. The curves $C_{k,n}$ are simple closed curves, nonintersecting and symmetric about the real axis with $C_{j,n}$ intersecting the real axis in $z=\alpha_{j,n}$, $\beta_{j,n}$. The curves $D_{k,n}$ are simple, nonintersecting, and symmetric about the real axis with $D_{1,n}$ passing through $z=\epsilon_n$ and $z=\infty$, and $D_{k,n}$, k=2, $3, \cdots, \lambda_n$, passing through $z=-\lambda_n/\delta$ and $z=\infty$.

As $n\to\infty$ the point $z=\epsilon_n$ and the curves $D_{k,n}$ disappear from consideration, for if $D_{k,n}$ had points interior to $|z| < R < \infty$ for infinitely many n, there would be points of $C_{j,n}$ interior to |z| < R for all $j \le n$. None of these intersect and in the limit there would be some point $z=z_0$, $|z_0| < R$, $|z_0-\gamma_k| \ge \rho > 0$ for all k, such that in the neighborhood of z_0 there would be segments of infinitely many nonintersecting paths of reality of f(z), which is impossible since f(z) is meromorphic in $|z| < \infty$ and hence holomorphic at $z=z_0$. So the paths of reality of f(z) in case II are the same as in case I, and by the same argument we conclude that if $\delta < 0$, the surface of the inverse of w=f(z) is a surface of the first class, which completes the proof of Theorem III.

9. Partial converse of Theorem II. By obvious extensions of the methods used in paragraph 8 we can prove

THEOREM IV. Let w = f(z) be meromorphic in $0 < |z| < \infty$ with f(1) = 0 and f'(1) > 0. If w = f(z) has the form

$$f(z) = K(z-1) \exp (\sigma_1 z + \sigma_2/z)$$

$$\prod_{k=1}^{\infty} (1 - z/c_k)(1 - c_{-k}/z)/(1 - z/\gamma_k)(1 - \gamma_{-k}/z)$$

where K is real, σ_1 , σ_2 are real and nonpositive, and

$$- \infty < \gamma_{k+1} < \gamma_k < \gamma_{-k} < \gamma_{-k-1} < 0 < c_{-k-1} < c_{-k} < 1 < c_k < c_{k+1}$$

$$(k = 1, 2, 3, \cdots),$$

$$\sum_{k=1}^{\infty} 1/c_k < \infty, \qquad \sum_{k=1}^{\infty} c_{-k} < \infty,$$

$$\sum_{k=1}^{\infty} 1/|\gamma_k| < \infty, \qquad \sum_{k=1}^{\infty} |\gamma_{-k}| < \infty,$$

then the Riemann surface of the inverse of w=f(z) is a surface of the class described in §3.

REFERENCES

- 1. L. Bieberbach, Lehrbuch der Funktionentheorie, 2d ed., vol. 2, Leipzig, 1931
- 2. C. Carathéodory, Untersuchen über die konformen Abbildungen von festen und veranderlichen Gebieten, Math. Ann. vol. 72 (1912).
 - 3. ——, Conformal representation, Cambridge Tracts, no. 28, 1932.
 - 4. L. R. Ford, Automorphic functions, New York, 1929.
- 5. A. Hurwitz, Über die Nullstellen der Bessel'schen Funktion, Math. Ann. vol. 33 (1889).
 - 6. W. A. Hurwitz and R. Courant, Funktionentheorie, Berlin, 1929.
- 7. F. Iversen, Recherches sur les fonctions inverses des fonctions meromorphes, Thesis, Helsingfors, 1914.
- 8. G. R. MacLane, Concerning the uniformization of certain Riemann surfaces allied to the inverse cosine and inverse gamma surfaces, Trans. Amer. Math. Soc. vol. 62 (1947).
 - 9. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
- 10. B. L. van der Waerden, Topologie und Uniformisierung der Riemann'schen Flachen, Berichte der Sachsischen Akademie zu Leipzig, Math-Phys. Klasse, vol. 93, 8.XII, 1941.

RICE INSTITUTE AND
FLORIDA STATE UNIVERSITY