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1. Introduction. If the real differential system S : dx/dt=f(x, y),

dy/dt=g(x, y), with/(a;, y), g(x, y) in class C(1) in an open plane set

R, is exact, df/dx+dg/dy = 0, then by Liouville's theorem the flow

along the trajectories preserves Lebesgue measure. If S is not exact

but possesses an integrating factor u(x, y)EC(1) in R such that

d(pf)/dx+d(p.g)/dy = 0, then using the relation

(!)        -ffrtx,y)dm=  if   \di,if)   1   3(Mg)1   d(X'y)   dm
dt J J %t J J Xo L   dx dy  J d(xo, yo)

where xt is the /-translate of xo£«C> the <r-ring of Lebesgue measur-

able sets with Lebesgue measure m, Poincaré [8]2 defined an in-

variant measure p, on £ by

(2) p(x) = jj P(x, y)dm for x E £

If p(x, y)>0 in R, then /x-measure and »i-measure are each ab-

absolutely continuous with respect to the other, that is, they have

the same null sets. The relation (2) is the Radon-Nikodym theorem

greatly strengthened in that p(x, y) is not only measurable but con-

tinuously differentiable. This improvement is possible, of course, only

because of the special differential origin of the measure p..

The invariant measures of Kryloff and Bogoliouboff [6] for flows

on compact metric spaces and those of Ulam and Oxtoby [9] and

later of Halmos [l] for discrete groups on locally compact metric

spaces are not absolutely continuous with respect to Lebesgue meas-

ure and no attention is paid in these results to special differential

properties.

In the neighborhood of a noncritical point (J*+gi>0) there exists

a local integral function \p(x, y) for S and a corresponding local inte-

grating factor

(3) P(x,y)= [(*!+ *,*)/(/+ /)]1".
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However, in the large there generally does not exist a global

integral \p(x, y)ÇzCll) with nonvanishing gradient, even if S is C(oo)

and noncritical in R. But by piecing together local integrals one can

construct [4; 7], for a large class of important differential systems, a

principal global integral, that is, d/(x, y)EC(1), which is constant

along each trajectory of S but not constant on any open set. In fact

if S is of class CM, a = l, 2, ■ ■ ■ , «>, then one can choose ¿¿(x, y)

£C(o°. The gradient of a principal integral of S has a set of zeros

which is closed and nowhere dense in R and these properties are

sufficient to complete the usual theory [5, p. 312] of functional de-

pendence of the integrals of S •

In this note we show that even if S is C(M) and noncritical in the

plane, with a principal global integral \p(x, y)GC(oo), the resulting

it-measure may vanish on sets of positive Lebesgue measure. In this

case /¿-measure and «i-measure are not equivalent and, in fact, p. is

not complete on .£. However if both S and \p(x, y) are in C(A) (an-

alytic in two real variables), then u(x) =0 if and only if m(x) =0 for

X G.£ and the measures are equivalent.

2. Invariant measures of C(M) and CU) differential systems. Let

z be a compact, nowhere dense (and thus with null interior) linear

point set with positive Lebesgue measure. One such set [3, pp. 119,

164], similar to the Cantor discontinuum, consists of the closure of

the end points of a countable number of disjoint open subintervals

i»C[0, 1]. Now define

p(x, y) = 0   if   x G z,

m(#> y) = exp [— or2]    if    x < 0,

p(x, y) = exp [— (x — I)-2]    if    x > 1,

ß(x, y) = exp - [A*n/4 - (AB/2 - d(x))*]-1   if    x G /»,

where A„ is the length of /„ and d(x) is the distance from x to the

compact set z. A routine calculation shows that p(x, y)=0 is of

class C(oo) everywhere in the plane and the set Z on which u(x, y)=0

has infinite Lebesgue measure, and is invariant under the flow of S.

Example. Let S : x=p,(x, y), y = — 2uxy+l, where p(x, y) is the

function constructed above. Here S is of class Ctc0) in the plane and

has no critical points since p(x, y)=0 implies —2pxy + l = l. There

is a principal global integral¿-(x, y)GC(oo), ^(x, y) = yp2—foP(£, y)¿£>

with a corresponding integrating factor p(x, y). The it-measure is

not complete on „£ since p(Z) =0 even though m(Z) = » and thus

there exists [2, p. 70] a subset WQZ but WG-G
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Theorem. Let S : x =f(x, y), y=g(x, y) be a noncritical analytic dif-

ferential system in the plane and therein possess an analytic principal

integral \p(x, y). Then the p-measure defined by (2) and (3) is equivalent

to Lebesgue measure.

Proof. A necessary and sufficient condition that the it-measure cor-

responding to a principal integral be equivalent to m-measure is

that the variety Z of zeros of the integrating factor p(x, y) be a

Lebesgue null set. But since V^ is analytic and Z is closed and

nowhere dense in the plane, one can easily show that, with countably

many exceptions, the lines y=constant intersect Z in a countable

point set. Thus m(Z) =0 by Fubini's theorem and p(x, y)(E.CU) a.e.
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