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Let f(z) be analytic in the interior of a rectifiable Jordan curve C

and continuous in the corresponding closed region C. The relation

between continuity properties of f(z) on C and degree of approxima-

rion to f(z) by polynomials irn(z) in z of respective degrees n, n

= 1, 2, • • • , has been extensively studied. In the present paper we

study the relation between continuity properties of f(z) on C and

degree of approximation to f(z) on C by rational functions rn(z) in z

of respective degrees n whose poles lie exterior to C. We thus deal

with what is frequently referred to in the theory as Problem a.

1. Definitions. By a rational function in z of degree n we shall mean

a function rn(z) of the form r„(z) = ( Z"-o a¡zj)/( Z*-o bjZ'), where the

denominator is not identically zero. None of the a¡ is assumed to be

different from zero. The degree of a rational function will always be

indicated by its subscript.

The continuity properties of a function f(z) to which we approxi-

mate will be described in terms of the modulus of continuity of f(z)

or one of its derivatives. Let £ be a closed bounded set in the z-plane

which consists of the mutually disjoint Jordan arcs, Jordan curves,

and closed Jordan regions E,-, j = l, • • • , p. Let f(z) be a real or

complex function that is continuous on each E¡. The modulus of

continuity (¿j(8) of f(z) on E¡ shall be defined as the maximum of

\f(zi)—f(zi)\ for all Zi and z2 in E¡ such that |zi —z2| £8. The

modulus of continuity w(5) of f(z) on E shall be defined as the maxi-

mum of (0j(8), 1 ̂ j^p. For properties of the modulus of continuity,

the reader is referred to [l, §2].

Let E with boundary C be a closed limited point set in the z-plane

whose complement K is connected and regular in the sense that K

possesses a Green's function G(x, y), z=x+iy, with pole at infinity.

We shall denote by Cr the locus G(x, y) =log P>0 which lies in K.

If C is any set of closed curves, we denote the sum of their closed

interiors by C.

The letter k will be reserved for.positive integers and zero. The let-

ters L and M with or without subscripts denote positive constants

which may vary from one theorem and its proof to another and may
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depend on the point sets involved, but which are independent of

w, z, 8, m, and n. For any function f(z),fm=f(z).

2. Degree of approximation. In this section from given continuity

properties of a function we shall derive the existence and degree of

convergence of a sequence of approximating rational functions hav-

ing specified poles.

When we refer to a function f(z) as being analytic in several mu-

tually exterior regions, we do not imply that there is any relationship

between the values of f(z) for z in different regions. Here and through-

out we write "there exist polynomials (rational functions)" rather

than "for each n, n — l, 2, • ■ ■ , there exists a polynomial (a rational

function) of degree n."

Theorem 2.1. Let C consist of a finite number of mutually exterior

analytic Jordan curves. Let f(z) be analytic in the interior of C and

continuous on C. Suppose /(t)(z) exists and is continuous on C with

modulus of continuity u(8), u(8)^0. Let points an¡, j = l, • • • , n;

« = 1, 2, • • • , be given on or exterior to Ca, A>1. Then there exist

rational functions rn(z),

,    _ , . a»oZB 4- «niz"-1 + ■ ■ • + ann
(2.1) rn(z) =

(z — a„i)(z — a„2) ■ • • (z — a„n)

such that

| f(z) - rn(z) | ^ Mu(l/n)/nk, z on C.

The a„,- need not all be distinct or finite. We make the convention*-nj

that if an a„y is infinite, then the factor (z—«„,-) is to be replaced by

unity. It will appear from the proof of Theorem 2.1 that

the approximating rational functions r„(z) can be chosen so that

Z"-o anjOÎi",^0, / —1, • • • , ». It is sufficient to assume the exist-

ence of f{k) (z) on the boundary merely in the one-dimensional sense.

Theorem 2.1 for the case that C is a single analytic Jordan curve

and f{k)(z) satisfies a Lipschitz condition has been stated by Sewell

[2, Theorem 4.3]; his proof, however, contains an error. It is im-

possible to choose the quantities involved so that inequality (4.13)

in Sewell's paper is satisfied.

We proceed to prove Theorem 2.1. It is known [l, Theorem 3.3]

that there exist polynomials 7rm(z) in z such that

(2.2) | f(z) - r.(i) | g Miw(l/m)/mk, z in C.

Letßnj, J = l, •••,»4-1, be »4-1 points on C suchthat the maxi-

mum of the absolute value of
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Vn(Zl, Z2,  ■  ■  ■   , Zn+l)

[n+1 -1      J ri~n+l.i"n "1

n («<-«>)/   n (ßt-a^i »è2,
•.i-i.«» J     L    i.j'-i J

for the Zj, j = l, ■ ■ • , n+1, on C is taken on for zj=ßnj. If any anj

is at infinity, the »4-1 factors (z<—a„y) are to be replaced by unity.

The /3„y are the Fekete-Shen points.

Let z lie on C; for t exterior to C it is easily verified that

Vn(ßnl,  '  '  "   , ßn.j-1, Z, ßn.j+1,  '  ' '   l ßn,n+l)

Vn(ßnl,  ■  ■ ■   , ßn,n+l)

is a function of form (2.1) which interpolates to l/(t — z) in the points

ß„j. Choose R, 1<R<A. It is a consequence of (2.3) and the choice

of the ßnj that |rn(t, z) | ^(n+l)/d for z on C and / on Cr, d denoting

the minimum distance from C to Cr. Furthermore [3, p. 185]

n+l J

(2.3)   rn(t,z) = Z -~
j-l   t — ßn

1

t- Z

where w„(z) = (z-j3Bl)

- rn(t, z)
1 »»(«)

t — z   w„(i)

(z-ßn,n+i)/(z-ani) • ■ ■ (z-ann). Hence

1      o)n(z)

t - z   w„(0

«4-2
z on C, / on Cr.

Let C7(z, a„y) denote Green's function for the exterior of Cr with

pole at z=any. Then w=d>(z, a„/) =exp [G(z, anj)+ill(z, aBy)], where

fí" is conjugate to G in the exterior of Cr, maps the exterior of Cr

onto | w\ > 1 so that the point z=any goes into the point at infinity in

the w-plane. On Cr, \<p(z, anj)\ — 1. Hence

(2.4)

,v n m«./)
Wn(z)       y_i

wn(¿)

w+2
z on C, í on Cr.

The functions [Iï"=i ^(*> «»,)]/[(' —z)w„(t)], considered as func-

tions of i, for / exterior to Cr and z on C, are analytic and their

moduli are single-valued. Thus (2.4) is valid for z on C and t exterior

to Cr.

There exist constants Ly such that \d>(t, a„y)| ^Ly>l for t on Ca.

Set L = miniSyg„ Ly. Then

(2.5)
Wn(z) 1

«„(<)     / - Z

« + 2

¿LB
z on C, / on Ca-
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If Rn,m(z) is the rational function of form (2.1) which interpolates

to 7Tm(z) at the points ßnj,j = l, • • ■ , n+1, we have [3, p. 186]

(2.6) Tm(z) - RnAz) =—f    ^~ -^ dt, z on C.
2ttÍJca      lín(í)     t —  Z

From (2.2) it follows that the 17rOT(z) [ are uniformly bounded for

z on C and hence [3, p. 77] for z on Ca we have 17rm(z) j ^MiAm.

Thus from (2.5), (2.6) we obtain

j irro(z) - P„.m(z) | Ú MznAn/L", z on C.

Let q be an integer such that A/Lq=r, r<l. Then for j = 0, 1, •• •,

q—1 ; m — 1, 2, • • • , it follows that

| TTm(z) — Rqm+j,m(z) | á M¿nrm, z on C.

Wehaver-^ilV^+'and [l, Theorem 3.1] l/mk+2úM&¡(l/m)/mk+\

Hence with the aid of (2.2) we obtain

| f(z) - Rqm+i.m(z) | á Mw(l/m)/mk, z on C.

Since [l, Theorem 3.1] there exists a constant M% such that

u)(l/m)/mk<MzCä(i/(qm+j))/(qm+j)k, the theorem follows if we de-

fine r„(z) = l/(z—o!ni) • • • (z—an„) lor » —1, 2, • • • , g —1 and

>'4m+y(z)=ic(im+y,m(z) for j = 0, 1, ■ ■ ■ , q-1; m = l, 2, • • • .

In the case that C is a single analytic Jordan curve, the above proof

can be somewhat simplified by using a known lemma [3, p. 250].

3. Degree of approximation; inverse problem. We turn now to the

converse question : given a sequence of rational functions which con-

verge to a function in a certain manner, what can be said about the

continuity properties of the function? We establish our results

for a single closed Jordan region, but they clearly hold for a finite

number of such regions which are mutually exterior.

Definition 3.1. A curve C is said to be of Type D if (i) C is a recti-

fiable Jordan curve such that for every arc of C the ratio of the length of

that arc to the length of its corresponding chord is less than a constant A 0;

and (ii) there exists a number So > 0 such that through any point P of C

there is a circle of radius S0 whose closed interior lies in C.

To establish our results, we approximate by polynomials the ra-

tional functions which are assumed to converge to f(z) in a certain

manner; a known theorem on polynomial approximation then enables

us to draw the desired conclusions.

We henceforth assume $l(x) to be a real, non-negative function which

is  nonincreasing for  x  sufficiently  large  and  which  is  such  that
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f°°[Q(x)/x]dx exists.
The following known result on polynomial approximation [l,

Theorem 5.3] will be utilized:

Theorem 3.1. Letf(z) be defined in C, where C is a curve of Type D;

let polynomials wn(z) in z exist such that

(3.1) | f(z) - t,(«) | Ú Q(n)/n>, s in C.

Then f(z) is analytic in the interior of C and continuous on C; f-k)(z)

exists and is continuous on C with modulus of continuity co(ô) which

satisfies the condition

r   cal1 C° ü(x)    1
(3.2) co(5) ̂  L\8 j       ü(x)dx+\     -dx\, 0 < 8 g 1/a,

where a > 1 is a constant independent of 8.

For the case k = 0, Theorem 3.1 is formulated somewhat differently

in [l], but the method of proof employed there can be used to estab-

lish the theorem as it is stated above. Inequalities (5.4) and (5.6) in

[l, Theorem 5.3] hold as before. The restriction that ?n(f)=»(f) oí

[l, Theorem 5.3] is not necessary for the case k = 0. Under the hy-

pothesis of the present Theorem 3.1, an inequality corresponding to

(5.7) of [l, Theorem 5.3], where pn(z) is replaced byir„(z), is imme-

diately established, and the theorem follows as before.

It is a consequence of the proof of Theorem 3.1 given in [l] that

the only restriction on the constant a is that ß(;e) be nonincreasing

for x>a. The method used to prove Theorem 3.1 is a modification

of one employed by de la Vallée Poussin to establish results on

trigonometric approximation.

We prove now

Theorem 3.2. Letf(z) be defined in C, where C is a curve of Type D;

let rational functions rn(z) all of whose poles lie on or exterior to Ca,

A > 1, exist such that

(3.3) | f(z) - rn(z) | ^ ß(»)/»\ z in C.

Then the conclusion of Theorem 3.1 is valid.

Theorem 3.2 has been established by Sewell [2, Theorem 4.2] for

the special case that C is an analytic Jordan curve and O(ra) = Ln~",

0<agl.

Choose Pi and P2 such that 1 <i?i<i?s<^4. Let Pm.n(z) be a poly-

nomial in z of degree m which interpolates to rH(z) in m+1 equally-
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distributed points zy on C«,. (The "m + 1 equally-distributed points

on Cr" are the images of the (wi+l)st roots of unity under the con-

formal map of |w| >1 onto the exterior of Crx by the function

w=<p(z)/Ri.) The Lagrange-Hermite interpolation formula yields

rn(z) - Pm.n(z) = — I      — dt, z on CRv
2irt Jc¡ti um(t)(t — z)

where um(z) = (z—Zi) • • • (z—z„+i). For z on Cb, and / on Cr,

= (Crí)rí/r1 we have [4, Theorem 4.7] that \am(s)/am(t)\

£M(Ri/Ri)m. It is a consequence of the uniform boundedness of

|r„(z)|  and a known result [3, p. 250] that

| rn(z) | g Mi[(ARi - 1)/(A - P2)]B

for z on Cr,. Hence

. /Ri\m/ARi - 1\B
(3.4) | rn(z) - Pm,n(z) I ^ M*\j)  ( A_ R   ) > zonC-

Let q be an integer such that [(ARi-l)/(A-Rt)](Ri/Ri)*=r<l.

It then follows from (3.3) and (3.4) that for j=0, 1, • • ■ , q — 1;
« = 1, 2, • • -,

| f(z) - PiB+y.n(z) | á «(»)/»* + Mit«, z on C.

Since rn<M3/nk+î and fl(») aß((g»+j)/2g) for » sufficiently

large, we have

I /(z) - PÎB+y,»(z) | ^ MM(qn + j)/2q) + l/(qn + j)2]/(qn + j)\

z on C.

If we define the polynomials 7r„(z) of Theorem 3.1 as ir„(z)s0 for

« = 1, • • • , j-1; irqh+1{z)=Pqk+j,h(z) for j = 0, 1, • ■ ■ , q-1; h

= 1, 2, • • • , we obtain (3.1) where the ß(x) of (3.1) is in terms of the

present ß(ie), Mi[Q(x/2q)+xr2]. Hence it follows from Theorem 3.1

that f(z) is analytic interior to C, continuous on C, and /(i) (z) exists

and is continuous on C with modulus of continuity w(8) which satisfies

the condition

*>(8) Ú LU f     [Q(x/2q) + x~2]dx+ f   [Q(x/2q)/x + x~*]dx\

for 0<5^1/a, where a is such that a>2g and Q(x) is increasing for

x>a/2q. On suitable change of variable and simplification we ob-

tain an inequality of form (3.2).
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A CONVEX METRIC WITH UNIQUE SEGMENTS

R. H. BING

1. Introduction. If D(x,y) is a convex metric for a continuous

curve M (compact, locally connected, metric continuum), then for

each pair of points p, q of M there is an arc pq in M from p to q such

that pq is isometric to a straight line interval. We shall call it a seg-

ment.

Each continuous curve has a convex metric [l;3;5;6;2]. However,

if D(x, y) is a convex metric for M, there may be two segments from

p to q. If M = Si is the surface of a sphere, D(x, y) is the size of the

central angle subtended by x and y, and p, q are diametrically opposite

points, then there are many segments from p to q. In fact, we show

in §4 that if D(x, y) is any convex metric whatsoever for Si, each

point of 52 belongs to a pair of points which are not joined by a

unique segment.

There is a dense subset W of 5» such that no two points of W are

diametrically opposite. If D(x, y) is the previously mentioned convex

metric for 52, then each pair of points of W are joined by one and

only one segment. We shall show that for any continuous curve there

is such a dense subset and such a convex metric.

Theorem. Each continuous curve M has a dense subset W and a con-

vex metric D(x, y) such that each pair of points of W belongs to a unique

segment.

We shall prove this result in much the same manner that it was

shown that any continuous curve can be convexified. The metric is
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