
ON THE CONVERGENCE-ABSCISSAS OF THE
GENERALIZED FACTORIAL SERIES

CHUJI TANAKA

1. Introduction. We consider the generalized factorial series

CO

M   „ H') = Z «»M* • • • X»][(i + Xi)(* + xs) • • • (s + Xn)]"1,
(1.1) n-1

s = 0-+ it,\n = rne{*' (n = 1, 2, • • • ),

where

(1.2) limrB = + », | 4,n| = <¡> <t/2 (n = 1, 2, • • • ).
n-»«>

In his classical note [l, §6], E. Landau has studied (1.1) in the case

in which Zn-i lAn= + °°, 4>n = 0 (n = l, 2, • ■ • )■ Under additional

conditions, he has determined convergence-abscissas of (1.1) in terms

of coefficients aB (»—1, 2, • • • )• S. Pincherle [2], G. Belardinelli

[3], and T. Fort [4, 5] have studied (1.1) with complex X„

(« = 1, 2, • • • ) satisfying (1.2) and some other conditions. In this

note, without any additional conditions, we shall determine the con-

vergence-abscissas of (1.1) with real X„ (n = l, 2, • • • ) in terms of

coefficients a„ (» = 1, 2, • • • ). In the case in which the Xn

are complex, the convergence-domains of (1.1) are not generally half-

planes, and so the convergence-abscissas of (1.1) have no meaning.

The main theorems are:

Theorem I. In the case d>n = 0 (w = l, 2, • • • ), (1.1) has three con-

vergence-abscissas, i.e. a simple convergence-abscissa <r„ a uniform con-

vergence-abscissa ffu, and an absolute convergence-abscissa <ra such that

a, = au^<Ta.

Remark. (1) In the convergence-problem of (1.1), the sequence

of points — X„ (n = l, 2, • • • ) is excluded from the s-plane by small

circles with centres at —X„ (« = 1,2, • • • ) and radii e, e being a small

positive constant.

(2) The divergence of Zn-i l/»n is not necessary for the validity

of Theorem 1.

Theorem II. // Z»-i lAn< + «>, the necessary and sufficient

condition for (1.1) to be simply (absolutely) convergent at s = So distinct

from —X„ (n = l, 2, • • •) isthat Z»-i a» (Zn-i \an\) converges. If
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furthermore <£n = 0 (n = l, 2, • • ■ ), then three possibilities now present

themselves:

Case

II

III

Zla»

< + oo

= + =0

n=l

convergent

convergent

= + «;       divergent = + 00

<r„

- + «

= + «

Theorem III. // Zn=i 1A„ = + oo, </»„=0 (n = l, 2, • • • ),thenthe

three convergence-abscissas of (1.1) are determined respectively by

(a) a, = <ru = lim sup 1/Vlog    Z a> exp (<t>(l,) - 4>(ln))   ,

(b) <ra = lim sup l//„log < Z I a> I exp (<.(/,) - <t>(l„))> ,
»-*« 1 »-i /

where

(c) /B = Z l/rt (0 < /i < l2< ■■■ <ln-> + 00),
i-i

(d) <¡>(x) is the positive and differentiate function defined for x>0

such that

(i) <p(x) Î + oo, <p'(x)—>+ oo as x—*+ oo.

(ii) for any given 6>0, /+c0 exp ( — ex)\d>'(x)\dx< + oo.

Corollary I (Equiconvergence Theorem) (T. Fort [4, p. 239]).

Under the same conditions as in Theorem III, (1.1) has the same

abscissa of simple convergence and the same abscissa of absolute con-

vergence as the Dirichlet series

(1.3) C(s) = Z a» exP (—*»*)•

Corollary II. Under the same conditions as in Theorem III, we have

(a) a, = au = lim sup l/slog Z    °«  »
*-»» I   [x]ûln<x

aa = lim sup I/*-log {   Z   kl},
\lx]átn<* '
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where [x] denotes the greatest integer contained in x.

(b) 0 ^ ffa — o-, ̂  lim sup 1/ln • log n.
n-»">

2. Proof of Theorem I. We first prove some necessary lemmas,

which are analogues of theorems concerning ordinary factorial series

[6, pp. 171-174].

Lemma I. // (1.1) is simply convergent at s = so, then (1.1) is uni-

formly convergent in the angular domain D(so,&, <p): |arg (s—So)\ =■#

< (ir/2 —d>), where â is an arbitrary but fixed constant.

As a special case of Lemma I, we have

Lemma V. If (1.1) with real Xn (n = l, 2, • • • ) is simply convergent

at 5 = So, then (1.1) is uniformly convergent in the angular domain

D(so,&, 0): |arg (s — s0)\ =«?<7r/2, whereû is an arbitrary but fixed

constant.

Under the assumptions that lim„,„ <j>n = 0, and Z»-i 1/»»= + °°,

T. Fort [4, p. 237, Theorem IV] has proved that (1.1) converges

uniformly in the angular domain D(s0, #, 0), provided that it con-

verges simply at s = s0. Since we can put 0 = e in Lemma I, e being

any small positive constant, this theorem is evidently contained in

Lemma I.

Proof of Lemma I. We first establish the inequality

(2.1) I s + X» I > I so + Xn I + r sin (17/2) for n è »1,

where

(i) sGD(so,r}, <p),r=\s-So\,d=ir/2-(<p+v) (V>0),
(ii) «1 is a sufficiently large integer.

In fact, putting 0 = arg (s — s0)—arg (s0+X„), where s(ElD(s0, ê, <j>),

we have easily

x/2 +v/2 Ú d < 3ir/2 - T//2 for n è «1,

so that

\ s + K\2 = r2 + \ so + Xn\2 - 2r\ so + K\ cos 6

= { I So + X„ I + r sin (r¡/2)}2 for n è »1,

which proves (2.1). Let us put

bn = fl„[Xi • • • X„][(s„ + Xi)(so + X,) • • • (so + X,)]-1,

(2.2) cn(s) = [(so + \x)(so + X,) • • • (s„ + X„)][(s + Xi)(s + X2) • • •

(s + X„)]-i.
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Equation (2.1) yields

,„ ,.        I (*» + *")/(* + K)\< Pn [Pn + r sin (,/2) ]~\
(2.3)      . r , forn ^ «i,

| (s - So)/(s + Xn+1) | < r [pn+i + r sin (n/2) ]-»,

where s£Z>(s0, #, #), r = ]s—s0|, and p»=|So+X„|. Hence

I cn(s) - c„+i(s) I = I cn(s)(s - So)(s + Xn+i)-11

< I K(s) | -dn-r^n+x + r sin (v/2)]~\

where

^(s) = [(so+X1)(s0+X2) • • • (so+X„1_i)][(s+X1)(s+X2) • • • (s+XB1_i)]-\

and

n

dn= IlPniPn + rsinO^)]-1.
t-n!

In Do, which we get by excluding from D(s0, t?, <p) the sequence of

circles with centres at —X„ (» = 1, 2, • • • ) and radii e, e being a

small positive constant, we have evidently

(2.5) \K(s)\<K,

where K is a suitable constant. Since

dn-r- [pn+i + r sin (ij/2)]-1 = cosec (r¡/2)(dn — dn+x),

taking account of (2.4) and (2.5), we have for any large N

Z   I Cn(s)  - Cn+l(s) |   < K COSeC (lj/2) Z   (dn - ¿n+l)
\¿. Ö) n—ni n=nt

< K cosec (t¡/2)dni

uniformly in Do.

Since Zn°-i bn is convergent by the hypothesis, on account of (2.6)

and du Bois-Reymond's Theorem [7, p. 315], F(s)= Z"-i bncn(s) is

uniformly convergent in Do. q.e.d.

Lemma II. // (1.1) is absolutely convergent at s = so, then

Z»-i | «»| I (Ms • • ' Xn)[(s+Xi)(i+Xi) • • • (s-l-Xn)]-1! is uniformly
convergent in the angular domain D(s0, &,d>), where D(s0,&, d>) has the

same meaning as in Lemma I.

As a corollary, we get

Lemma II'. // (1.1) with real X„ (n = 1, 2, • • • ) is absolutely conver-

gent at s = So, then (1.1) is absolutely and uniformly convergent in the
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angular domain D(s0, t?, 0).

Proof of Lemma n. Using the same notation as in Lemma I, (2.1)

and (2.3) are also valid. Since

| | Cn(s) |   - | Cn+l(s) \\=\ Cn(s) |   •  | 1  - | (s0 + \n+l)(s + Xn+l)"1 | |

S|k(*)| •|(s-so)(s + X„+1)-1|,

on account of (2.4) and (2.5), we obtain for any large N

N

(2-7) Z 11 cn(s) | - | cn+i(s) \\<K cosec (l,/2) • dni
n—ni

uniformly in D0. Since Z*-i \bn\ 1S convergent by the hypothesis,

it results by virtue of (2.7) and du Bois-Reymond's theorem that

Zn°= i | bn ■ cn(s) | is uniformly convergent in Do. q.e.d.

Lemma III. // (1.1) is simply convergent at s = so, and furthermore

there exists a point sx contained tn the angular domain D(so, ir/2—d>):

| arg (s —So)| úir/2—d>, such that for a sufficiently large integer «i, we

have

| arg (si + X„) | g <t> for « è »i,

then (1.1) t's uniformly convergent in the angular domain D(si, ir/2 —d>),

where s2 = si+€ sec <f>, e being any small positive constant.

As an immediate consequence of Lemma III, we get

Lemma III'. If (1.1) with real\n (n = l, 2, • ■ • ) is simply convergent

at s = s0, then (1.1) is uniformly convergent in the half-plane D: dt(s)

=9î(so)+€, e being any small positive constant.

In fact, we can put# = 0, Si=9î(so), andss=9i(so)+€in Lemma III.

Proof of Lemma IH. We first prove

(2.8) | s + Xn | è | S3 + Xn | + i/2 for M è »1,

where s(EZ>(s2, ir/2—<p), and st = Si+e/2sec <p. In fact, putting

an = arg (s3+X„), we have evidently

(2.9) \an\ ú<t> for« ^ nt.

Projecting the vector (s+X„) perpendicularly on the vector (sj+Xn),

we get easily

| s + X„ | ^ | s3 + X„ | + e/2-sec <7>cos a„,

so that, by (2.9),

| s + X„ | è | s, + X„ | + i/2,
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which proves (2.8).

Let us put

bn = an[\i ■ ■ • X„][(s3 + Xx)(s3 + X2) • • • (s3 + Xn)]"1,

(2.10) cn(s) = [(s3 + X0(s8 + X2) • • • (s, + X„)]

• [(s + Xx)(s + X2) ••• (s + Xn)]-1.

By (2.8) and arguments similar to those employed in the proof of

Lemma I, we have

I c„(s) - c„+i(s) I = I cn(s) I • I (s - sz)(s + Xn+i)-11

<\K(S)\   -dn-(pn + i/2)-\

where

K(s) =(s- sz) [(s3 + Xi) • • • (s3 + \ni-i)]

•[(s + XO-'-is + Xn,^)]-1,

n

Pn = | Sz + Xn | , dn =   II   PAP' + «/2)_1.
i—ni

Since dn(p„+e/2)_1 = 2/6-(d„—dn+i), and K(s)=0(l) in the domain

Do, as is easily seen by excluding from D(si, ir/2—<p) the sequence

of small circles with centres at —X» (n = l, 2, • ■ •) and radii e'>0,

by virtue of (2.11) we have

| cn(s) — cn+i(s) | < 2K/i(dn — dn+i) for « è »i,

uniformly in Do, where K is a suitable constant. Hence

N

(2.12)       Z I cn(s) - Cn+i(s) | < 2K/i-(dni - dN+i) < 2K/i-dni
n—n\

uniformly in Z>0 for any given N.

Since (1.1) is simply convergent at s = So by virtue of Lemma I,

it follows from (2.12) and du Bois-Reymond's theorem that F(s)

= Zn-i bncn(s) is uniformly convergent in Do- q.e.d.

Now we are in a position to prove Theorem I.

Proof of Theorem I. If (1.1) is simply (absolutely) convergent at

s = So, then (1.1) is also simply (absolutely) convergent at s = Si with

9î(so) <9î(si) by virtue of Lemma I' (Lemma II"). Hence there exists

a simple (absolute) convergence-abscissa <r,(o-a) of (1.1), and we have

evidently a,èo-a-

For any given e>0, (1.1) is simply convergent at s=<r,+e/2, so

that by Lemma III', (1.1) is uniformly convergent for 9?(s)^o-,+e.

But since (1.1) is not simply convergent on s=a,—e, (1.1) is not uni-
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formly convergent for $R(s) ̂ cr,—e. Hence <r„ coincides with <r,. Thus

we have a,=o-u^aa. q.e.d.

3. Proof of TheoremH. Since Z«-i l/rn< + tx>, the infinite

product g(s) = H"_! (1+s/X») converges, so that we have

(3.1) 0<|g(s)| < + oo fors* -X„(«= 1, 2, • • • )•

Let us put

Cn(s)   =    [\l ■   •  •  X„][(S + Xx)(s + X2)   •  •  •   (S + Xn)]"1   =    [gn(s)]~\

where g„(s) = IJ"-i (1+sA.)- Since

Cn(s)   -  CB+l(s)   =   [gn^-Xn+l]-1-*^  + s/K+l)"1,

by (3.1) we get

| c„(s) — cn+i(s) | < Kx | g(s) I"1 • l/r,1+i for n = »i,

where (i) Ki is a suitable constant, (ii) «i is a sufficiently large integer.

Hence

00 00

(3.2) Z   I Cn(s) - Cn+l(s) \<Kx\ g(s) I"1 ■  Z   l/'n+l <   +   * .
n-=ni n«=ni

If Zn=i an converges, then by (3.2) and du Bois-Reymond's theorem,

P(s)=Zn=i ancn(s) also converges for s different from —X„

(« = 1,2, • • •)•
Next suppose that F(so)= Zn-i bn(so) converges for s = sot^— X„

(» = 1, 2, • • • ), where

6n(So)   =  On[Xl • • • XB][(So + Xx)(s0 + X2)  • • •   (s0 + X»)]"1.

Since gn+i(so)-g„(so)=g„(so)-s0An+i, by (3.1) we get

| gn+i(so) - gn(so) I < I g(so) I -Ki/rn+x for n ^ n%,

where (i) K2 is a suitable constant, (ii) nt is a sufficiently large integer,

so that

OO 00

(3.3) Z   I gn+l(So)  - gn(So) |   < | g(So) |   'Ki-  Z   lAn+1 <   +   «.
n—ni n—n¡

Since Zn-i b„(s0) converges, by (3.3) and du Bois-Reymond's

theorem,  Zñ-i an = ZiT-i bn(s0)gn(so) is also convergent.

By entirely similar arguments, we can prove that the necessary-

sufficient condition for (1.1) to converge absolutely at s = s0 different

from —X„ (n = l, 2, ■ • ■ ) is that Zn°=i |a«| < +°°-

If Zn°-i lAn< + o° and<?in = 0 (n = l, 2, ■ • ■), then the second part
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of Theorem II immediately follows from Theorem I and what is

proved above.

4. Proof of Theorem HI. Let us put

(4.1) k = lim sup 1/ln■ log Z <*» exp (<t>(l,) — <t>(h))

We shall first establish the inequality

(4.2) * = <r..

Since (1.1) is simply convergent for s=a>a„ there exists a constant

K such that

(4.3) \Sn\<K («=1, 2, •••),

where

5„ = Z 0.'i*i • • • Xi][(«r + Xi)(» + X,) • • • (a + X,)]-1.
i-l

Putting 50 = 0 and applying Abel's transformation, we have

(4.4) Z * exp (<t>(k)) = Z Si(f(i) - f(i + 1)) + Snf(n),

where/(«■) =exp (<p(/,)) • üi-i (l+<rA*)- On the other hand,

(4.5)       f(i) =Q(a)- exp {<t>(U) + li(<x + u(<r))} for i > m,

where

(i) Q(°) = ft (1 + *A«) exp (-cr/Xn),
n-l

(ii) lim ii(o) = 0,

(iii) »i is a sufiiciently large integer.

In fact, since

(1 + x) = exp (x + x2-p(x)), | p(x) | g 1 for | x\ á 1/2,

we can easily obtain the relation

f(i) = n(l + 'A»)exp(-a/Xn)

(4.6)

X exp L(li) + eh + o-2d(c) I Z 1/X»)} ,
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where (i) |<rA»| ¿1/2 for n>nx, (ii)  |#(<r)| =1.  Since lim¿^, 1/U
■ Z„-i 1A» = 0, (4.6) gives (4.5).

Taking account of the hypothesis (d) part (i), we can easily prove

that

g(i) Î oo for i > ni,

where

(i) g(«)=exp (<p(/,)+/,(«r+€,(<r))),

(ii) n2 is a sufficiently large integer.

Therefore, putting N = Max (nlt ni), by (4.4) and (4.3) we have

Z a,- exp (*(/,•)) I = K- I Z f(i) - /(*' + 1)   + * | Çto |
i-l I   1=1

-AT+1

so that for sufficiently large n,

n

Z fl< exp (<t>(k))

{   Z g(¿ + 1) - g(i) + «(»)} ,
V t-AT+l /

<3K-\Q(o-)\ -g(n).

Hence £áo'+limn_00 e„((r)=<r. Letting <r—»<r„ we have k£<r„ which

proves (4.2).

Next we shall prove

(4.7) o, è k.

By the definition of k, for any given 5>0, there exists a constant

N such that

(4.8) | P„ | < Un = exp {<t>(ln) + h(k + 8/2)} for n ^ N,

where Tn = Zt-i a< exP (<p(¿<))- Taking account of an=(Tn— PB-i)

exp (—<p(ln)), by Abel's transformation we get

Af

Z ai[\i ■ ■ ■ \i][(k+8+\i)(k+8+\i) ■ ■ ■ (k+8+Xi)]-1
(4.9) <-Ar+1

v        ' M-l

-  Z Pi(A(«)-Â(i+l))-PiVÂ(iV+l) + PvAW,
i-iV+1

where A(«)=exp (-*(/«))• [Iß_i (l + (k+8)/\k)]~1. By arguments

similar to those employed before we may write

(4.10) h(i) = Kg(i) for i > ni,

where
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(i) * = [ ft (1 + (* + «)A.) • exp (-(* + 5)A»)]   ,

(ii)        g(i) = exp { - (<t>(li) + U(k + 8 + a))},

(iii) lim e, = 0,

(iv)       «! is a sufficiently large integer.

Accordingly, by (4.8), (4.9), and (4.10) we obtain

Z «<[Xi • • • X,][(*+*+X0(*+«+Xi) • • ■ (¿4-i+Xi)]-1!
(4.11)   '-N+l M_t '

= I K | {   Z Ui | g(i)-g(i+l) | +Uug(N+l)+UMg(M)} .
\ i-N+l J

On the other hand, for sufficiently large «', we get easily

(I  c '<+i d I \
J       - exp (-(*(*) + *(* + 8)))dx   )

= o(l/Ur f    ' exp (-8/2-x) | <*>'(*) | áx).

Hence, by (4.9), (4.10) and the hypothesis (d) part (ii), we get for

sufficiently large N

I    u
Z *[Xi • • • \i][(k + 8 + \i)(k + S + \i) - • • (k + 8 + X,)]->

' i-N+l

- o( f " exp (-8/2- x) | *'(*) | ¿x) + 0(exp (-lN+i(b/2 + iJV+1)))

+ 0(exp (-/j.r(a/2 4- ej,))) = o(l),

so that (1.1) is simply convergent at s = k+8. Therefore

a. < k + 8

for any given 5>0, which proves (4.6).

Thus, by (4.3), (4.7), and Theorem 1, we have

k =   <T,  =   <TU,

which proves (a) of Theorem III. By the slight modification of the

above arguments, we can also prove (b) of Theorem III.

5. Proof of corollaries. By M. Fujiwara's theorem [8], the simple

convergence-abscissa a.(G) and the absolute convergence-abscissa
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ffa(G) of G(s) are given respectively by

In I
Z a» exp (/, - /„*) ,
t—i

(5.1)

a-a(G) = lim sup l//„-log \ Z | a' | exp (£ - ll) V .

Since <p(x)=x2 evidently satisfies the conditions of Theorem III,

taking account of Theorem III and (5.1) we get

a-, = o-,(G),       aa = <ra(G),

which proves Corollary I.

By T. Kojima's theorem [9], we may write

a,(G) = lim sup 1/x-log       Z    a»  ,

aa(G) = lim sup 1/z-log {   Z   kl},

so that the first part of Corollary II follows immediately from Corol-

lary I. On the other hand, by a well known theorem [10, p. 49], we

have

0 ^ o-a(G) — a,(G) ^ lim sup l/ln-log n,
n-»°°

which proves the second part of corollary II.
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