
ON SIMPLE QUADRATURES

PHILIP DAVIS

The trapezoidal rule and the parabolic rule so frequently employed

in computational work hold without error for the classes of linear

and quadratic functions respectively. More generally, if n+1 distinct

points Xo, Xi, • • • , X» are given, then it is possible to find an integra-

tion formula

(1) f f(x)dx = ¿ atf(\i)
J 0 i=0

which will be exact for the class P„ of polynomials of degree at most «,

and where, furthermore, the weights a¿ depend merely on the

abscissas Xf and not on the particular function of the class P„ which

has been selected. To find such a formula, we need only to construct

the Lagrange interpolation polynomial for the abscissas X<, and then

integrate. More precisely, we have

(2)    /(*) = tf(\i) t   ^^      ;    A(x) - n (* - U
<_o (x — \i)A'(\i) <=0

/(*) G P»,

and therefore

(3) f f(x)dx = ¿ aif(\i);    a,- =  f  A(x)dx/(x - \i)A'(\i),
J 0 i—0 J 0

/(*) G P..

It is clear that the coefficients a,-, generally known as the Cotes num-

bers, depend merely on the X,-.

The existence of exact quadrature formulas of the type (3) sug-

gests the following problem. Suppose that there is given a more or

less extensive class S oí functions which are Riemann integrable over

[0, l]. Does there exist a quadrature of the form

(4) f1f(x)dx = £laif(\i)
Jo i-0

which is valid for all functions of the class 5? The abscissas X,- are

assumed to be distinct and fixed, while the weights a,- are to be inde-

pendent of the particular/G5 chosen. If a formula (4) exists, valid
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for all /£S, then we shall say that the class S possesses a simple

quadrature. This terminology will serve to distinguish the scheme (4)

from the more general and frequently investigated1 quadrature

scheme

(5) f f(x)dx = lim  ¿ ankf(\nk).
J o n-»«o   ju.0

If, in addition, there is a quadrature (4) for which

(6) ¿|a.|<co,
t=0

then we shall say that the class S possesses an absolutely convergent

simple quadrature.

In the present note, we investigate this possibility for a number of

familiar classes of functions and under a number of assumptions as

to the distribution of the abscissas. We shall find that the following

general situation prevails: a simple quadrature exists if the class 5

contains "relatively few" functions, while there can be no simple

quadrature if 5 contains "too many" functions. Thus, for example, a

quadrature exists for each of the classes P„ and, as we shall see,

for the class P of all polynomials, but not for the class of Riemann

integrable functions or for the class of functions merely continuous

in [0, 1].
In dealing with the classes of Riemann integrable or of continuous

functions on [O, l], if we are to have any success in finding a simple

quadrature, then the abscissas must be chosen so as to be everywhere

dense in [0, l]. For if this is not the case, then starting with a func-

tion / for which (4) holds, we may alter its values interior to an in-

terval which is free of X's thereby altering the value of the integral

without altering the value of the right-hand sum. But even with this

precaution, these classes are too large to admit a simple quadrature.

In dealing with classes of polynomials or of analytic functions we are

free to relax this condition on the abscissas.

Theorem 1. The class of functions which are Riemann integrable over

[0, l] does not possess a simple quadrature.

Proof. Suppose the contrary. Not all the weights a,- can equal

zero as can be seen by choosing/(#) = 1. Suppose, then, that a* 5^0

for some k. Define a function f(x) as follows:

(7) /(*) = 0, x * \k, f(x) = 1, x = X*.

1 Cf., e.g., Pólya [4], Szegö [6], Feldheim [2].
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It is clear that f(x) is integrable to the value 0, whereas the right-

hand side of (4) reduces to a*^0. Thus we arrive at a contradiction.

The same conclusion holds for the more restricted class of continu-

ous functions. The proof is based upon a refinement of the simple

argument given above. The construction used in Theorem 3 is a

modification of one due to Lebesgue [3]. (Cf. also Pólya [4] and Feld-

heim [2].) We shall find it convenient to establish a preliminary

theorem.

Theorem 2. The class of functions continuous on [O, l] does not

possess an absolutely convergent simple quadrature.

Proof. Assume the contrary. As above, let a^O for some k. We

may suppose, in addition, that 0 <X*<1. Designate by It the interval

X*—e^*^X*-t-í. For e sufficiently small, the abscissas X¿ lying in I,

will form a subset of the set of all abscissas, and of the former, X* will

possess the minimum subscript. In the order of increasing subscripts

we shall have, say, X*=XI,l(i), X„l((,, • ■ • , where, moreover,

lim.^o n2(e) = 00. For each e construct the following continuous tri-

angular shaped function

/.(*) = 0, 0 á * á X* - «,

f,(x) = linear, X* — e ^ x á X*,

(8) /.(X*) = 1,

/«(*) = linear, X* ̂  x ^ X* + e,

/.(*) =0, X» + < á * ¿ 1.

In particular, we have f01f,(x)dx=e and \fe(x) | £1. Thus by (4) and

(8), we have

00 «

« = Z 0;/<(X/) = «*/«(X*) + X) a»,W«PS(o)-

Whence,

(9) h-«*|áEKc.)|.

Now as €—»0, the left side of (9) approaches \ak\ 9^0, whereas the

right side approaches zero. Thus we have a contradiction.

Theorem 3. The class of all functions continuous on [O, l] does not

possess a simple quadrature.

Proof. Assume the contrary. Let An = 2~L*-o I aj\. If lim„_oo An < °°,
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then the class of functions continuous on [0, l] would possess an

absolutely convergent simple quadrature, and this is not possible by

the previous theorem. We may therefore assume that limn,«, An= ».

We may further suppose that no a¡ vanishes, for if it does, we need

merely suppress that Xy.

For each integer k (k = 0, 1, 2, • • • ), define a continuous function

fk(x) by the following requirements

fk(\j) = a}/ \a¡\= sgn a¡ (j = 0, 1, 2, ■ • • , k),

(10)   fk(x) is to vary linearly in the intervals between the abscissas

Xo, Xi, • • • , Xt and to be constant over the end intervals.

It is clear that for each k we have

(Ha) |/*(*)|ál, 0¡S*ál,

(lib) ¿ OifuÇXj) = Ak (k = 0,í,2,... ).

We next define a sequence of integers k¡ (j= 1, 2, • • • ) by an in-

ductive process. Let kx = l. Having defined kx, kit • • • , kn-i, we de-

fine kn as follows. We consider the function

(12) hn-i(x) = fk¡(x)/3 + fkl(x)/32 +■■■+ fk,J.%)/S-\

The function hn-i(x) is continuous on [0, l] and therefore, by our

quadrature hypothesis, 2~lT-o »;'*n-i(X'í) converges, and its partial

sums are therefore bounded:

(13) J2 ajhn-iÇhj)
i-o

^ Mn-i       (p = 0,l,2,..- ).

Now select kn so large that

(14a) kn >   kn-i,

(14b) Akn>2.3"(Mn-i + n).

Condition (14b) can be satisfied inasmuch as limBJ.M An= oo. Having

thus defined the sequence of integers kn, we consider the function

(15) h(x) = lim hn(x) = jlfk(x)/3\
n->« n—1

Because of (11a), this series converges uniformly and absolutely in

[0, l], and hence h(x) is continuous over that interval. Now,
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£ «;A(Xy) = Ê «A-i(Xy) + - £ «//».(Xy)
j-0 j-0 O     j-0

+ 2-,*A
j-0 \

SkM   , A.«(*i)
3n+l

+ '
3«+2

+
)

so that by (13), (lib), and (11a),

Ak.kn

T, lyA(Xy)̂    -   Mn-l + k'\3»+* 3B+2
+

Akn
= —— - Jf„_i > «,

2-3n

the last inequality following from (14b). If we now let »—»», we see

that the quadrature scheme does not even converge when applied to

the continuous function h(x). This contradicts our assumption.

From the fairly wide class of continuous functions we turn now to

the fairly restricted class P of all polynomials. This class cannot be

treated by the device (2), yet it possesses an absolutely convergent

simple quadrature. We shall prove this by using a theorem on infinite

systems of linear equations due to Pólya [S], which we now state for

convenience of reference.

Theorem (Pólya). Let there be given an infinite system of linear

equations in infinitely many unknowns *,•:

(16)

000*0 + «01*1 + 002*2 +  • • •   = bo,

aioxo + aiiXi + a12a;2 + • • • = fa,

Let the coefficients ay* be subjected to the following conditions

(17) lim ay-i,t/ay.t = 0 (j - 1,2,lim aj-i,k/aj,k = 0
t—+00

and suppose that

(18) Dnk =

Ook ao k+n-X

0„-i k ' ■ ■ «n-l k+n-1

*0

(n = 1, 2, • • • ; k = 0, 1, 2, • • • ).

The constants bt may be completely arbitrary. Then there exists a solution

Xi of the system (16) which is such that all the series in (16) converge

absolutely.
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Conditions (17) and (18) may be relaxed. In particular, (17) may be

replaced by

(19)       lim inf [ | ao i | + | «i * | + • • • + | <*y-i * | ]/ | Oy * | = 0

(j = 1, 2, • ■ • ).

The solution to (16) is not unique under these conditions, and in-

finitely many such solutions may be found by a step by step process.

Let us now apply this theorem to the problem at hand.

Theorem 4. The class P of all polynomials possesses absolutely con-

vergent simple quadratures.

Proof. Select X0<Xi<X2< ■ • • and lim,^«, X„= ». It is clearly

sufficient to show that the functions xn (n = 0, 1, ■ ■ ■ ) can be inte-

grated by a quadrature (4) with these abscissas. We must therefore

have

/»   1 00

(20) l/(» + 1) = xndx = }~2 oyXy (n = 0, 1, 2, • • • ).
J o y=o

Regarding (20) as a system of linear equations in the unknowns ay,

and comparing (20) with (16), we have aj4 = Xi. Therefore,

linu^oo ay_i */ay* = limjb,oo 1/X* = 0. Furthermore,

Dk

1

X*

1      •

X*+i •

Xjt      Xi+i

1

Xfc+n-1

Ai+n_l

II (Xt+i - Xi+y) =1 0

(i, j = 0, 1, • • • , n - 1).

The conditions of the previous theorem are therefore satisfied, so

that there is a solution a¿ of (20) for which each series converges

absolutely.

Theorem 5. The class P of all polynomials possesses an absolutely

convergent simple quadrature with abscissas X* if and only if

(21) lim sup j Xjb I = ».

Proof. Suppose first that (21) holds. Then for some subsequence

Xi„ we have lim,,^, |X*„| = ». Referring now to (20) and to the

weaker condition (19), let us consider

(22) Rki = {1 + | \k | + | X, |2 + • • • + | X* I'"1}/ | X* I''.
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For n sufficiently large, we have [Xi,1! > |Xt,|p (p = 0, 1, ■ ■ ■ , j — 2)

so that P^áeOlXn/lMl -i/|**.J. Thus. for i=1- 2, • • • , we
have lim,,..«, P*ny = 0, and from this it follows that lim inf*..« P*y = 0

(j= 1, 2, • • • ). There therefore exist absolutely convergent solutions

of (20), and hence the class P possesses an absolutely convergent

simple quadrature with the abscissas X».

Conversely, we shall show that the existence of an absolutely con-

vergent quadrature for the set P with abscissas X* for which

lim supfc^oo |Xjb| < » leads to a contradiction. Under this hypothesis,

let <r! = g.l.b. X*, <r2 = l.u.b. X*. Then — » <ai<a2< ». We now dis-

tinguish two cases depending upon the relative position of the two

intervals /: [0, l] and S: [ai, <r2].

We consider first the case where the interval / is not contained in

5. We shall show that this leads us to a simple quadrature for the set

of functions continuous over 5. This will contradict Theorem 3 inas-

much as this theorem can be stated for an arbitrary interval. Since /

is not contained in S, the set I—S is not empty and consists of one or

two intervals. Denote by I' the interval min (0, ax) ^ï^max (1, a2).

Letf(x) be continuous on 5. Then we may surely find a function/*^)

which is continuous on I' and has the following properties

(23a) f*(x) = /(*), * G S,

(23h) f f*(x)dx =  f'*f*(x)dx = f f(x)dx.
Jo J m J »i

Let now e>0 be given. Then by Weierstrass' theorem, we may find

a polynomial P(x) such that [f*(x)—P(x)\ <e, *GP. Consider now

f(X)dx - 22 «»/(Xn)  =    I     f*(x)dx -    j      P(X)dx
r, n-0 •'0 Jo»1

+ Z a»P(X») - Z anf(K).
n—0 n—0

Thus,

I ("/(*)«** - ¿ anf(\n) I g  fl | /*(*) - P(x) I dx
I J »j n-0 I •' 0

+  ¿|«-||i>(Xn)-/(X„)

á«(l + ¿|«.|).
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By letting «->0 we have fl\f(x)dx= Z»-o ««/(*») holding for all /
continuous on S.

We next consider the case where the interval / is contained in S.

In this case we can show that there is a simple quadrature for the

class of functions continuous on [0,1 ]. This will again be a contradic-

tion. More precisely, let Nx designate the set of subscripts n for which

XnG-f. We shall show that flf(x)dx= Z»e^i aifÇhi) for all/continu-
ous on [0, l]. Inasmuch as it has been assumed that Z<"o Ia«! < °°>

the convergence of the former series is absolute, and the order of

the terms is immaterial. Let f(x) be continuous on /. For each suffi-

ciently small €>0, define a continuous functionft(x) as follows:

(24a) /«(*) = f(x), x El,

(24b) /«(*) =0 for ai g x ^ - t and for 1 + e ^ * á <n,

(24c) f,(x) linear in -«Í iSO and in 1 ¡Ê * á 1 + «•

Designate by Nt the set of subscripts n for which XB lies in ffi ̂ x ^ — e

or in l+e<x^o-i, and by Nt the set for which X„ lies in —í^jc<0

or in Kx^l+e. Note that if », = min„eir, », then lim.^o »«= ».

Now let

P(x)=P(x, c)

be a polynomial which approximates/«(*) uniformly on 5 to within e:

(25) |/.(*)-P(»)|<€, xGS.

We have

(26) f P(x)dx = ¿ anP(\n) = Z   +  Z   +  Z  *»P(X.)
Jo n-0 nStfi        nGATj        nEíT,

inasmuch as we have assumed the existence of an absolutely con-

vergent quadrature for the class P. But

f f(x)dx - Z <*n/(X„) =  f f(x)dx - f f((x)dx + f ft(x)dx
J 0 nEíTi •'O Jo •'O

- f  P(x)dx + Z a„P(X„)
•Jo nEtf.

+ Z aJ'CK) + Z  «nP(X»)
nSAT, nSiV

- Z    <*»/(Xn)

and therefore
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I   f   f(*)dx -   Z   «n/(X„)
I ̂ O nEiVi

á f' \f.(x) - P(x) I ¿x + Z  I «»I I /»(X.) - /(X„) |
Jo nEA^

+  Z   |a„||P(X„)|+   Z   Un||P(Xn)|.
nEAT! nEtf|

Now for n£.Ni, |P(X„)| a«, while for all x£lS and for e sufficiently

small \P(x)\ ^M, M=l+maxx& \f(x)\, so that

i i

f f(x)dx - Z «»/(>0
Jo nEtf,

<.* + Ai + Ai + M £
I "»I'

n—n.

(27)

A=  Z\an
n-0

By letting e—»0, it follows that f¿f(x)dx= Zn^A^ a„/(X„) which is a
contradiction.

With regard to classes of functions which lie between the class P

of all polynomials and the class of continuous functions, we can indi-

cate only several partial results. On the one hand it is clear, from

Pólya's theorem, that there are classes of functions very much wider

than P which admit an absolutely convergent simple quadrature.

For instance, let {pn} be a sequence of exponents for which p0<pi

< • • -and limn,«, Pn=<*>. Then a^i,k/aj,k = (Kk)">-i~'i> so that if

Xt—►», condition (17) will be fulfilled, and the class of all finite

combinations of powers jc» will possess an absolutely convergent

simple quadrature. On the other hand, it seems unlikely that a class

as large as the class E oí all entire functions of exponential type can

possess a simple quadrature. This is surely the case with absolutely

convergent quadratures. For suppose that E possessed an absolutely

convergent quadrature, then we should have

/> 1 00

ei,xdx = Z a„ea*', s > 0.
0 n-0

It follows2 from Zn-o \an\ < » that (e** — l)/«'s is an almost periodic

function. But this is clearly impossible inasmuch as lim,_oo (e" — l)/is
= 0.

A similar argument shows that the class E, of entire functions of

exponential type at most <r, a>0, cannot possess a simple quadrature

» Cf. Bohr [l, p. 52].

(28)
xs
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with abscissas X„ for which 0<X0<Xi< • • • , lim„<0O X„= ». For

suppose otherwise, the functions e~"-Q.E, provided |s| ^o\ Therefore

we should have

(29) ""*""* = £ a*<rKt,
S n=0

the Dirichlet series converging for Re (s) > — a. If we now set

(30) a(t) =  Z «*, «(0 - — {«(<+) + «(<-)}
\tá« 2

then we may write

(31) ~ *~   =  f  e-"da(t), Re (s) > - c.
s Jo

But if a function ß(t) is defined by

ß(t) = t for 0 ^ t ^ 1,
(32) '

/3(t) = 1 for 1 g /,

then

i - g-    r"
(33) -=  I    er"dß(t)

s Jo

so that by the uniqueness theorems for Laplace transforms a(t) =ß(t)

and hence a* must vanish for k ^ some ko. This is clearly impossible.
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