ON THE TOTAL VARIATION OF SOLUTIONS OF THE
BOUNDED VARIATION MOMENT PROBLEM!

MELVIN BLOOM

1. Introduction. In this paper we consider functions ¢(f) which
satisfy for a given real sequence {u.} the equations

(u, a) ln = f t*do(t), n=012---,

where the integrals converge absolutely. Any such function ¢(¢) is
called a solution of the moment problem (u, @) or simply a solution of
(4, @).

Boas [1]? first pointed out that for an arbitrary sequence {un}
there exist infinitely many solutions of (u, 0); in fact, he showed
that any such sequence can be decomposed in infinitely many ways
into the difference of two (Stieltjes) sequences {\.} and {v,} where
both (A, 0) and (v, 0) have nondecreasing solutions. In this theorem
the choice of Ao and », is subject only to the conditions

N > 0, vo > 0, No — Vo = Mo.

For arbitrary €>0 we can choose No=po+¢€/2, vo=¢€/2, or \o=¢/2,
vo= —o+€/2, according as ue=0 or ue<0, and it follows that there
exists a solution ¢(¢) of (u, 0) having total variation less than Iuo| +e.

If Y(¢) is a solution of (A, 0), Ap= D ¢ (—1)iCn,a'us, a arbitrary,
such that the total variation of ¢(¢) is less than |)\o| +¢, then ¢(2)
=y(t—a) is a solution of (i, @) with total variation less than |p0| +e.
The proof of the following theorem is now easy.

THEOREM 1.1. Let Y(t)be a solution of (\, — ) and {p.} be a se-
quence with po=X\o. Then for arbitrary a and €>0 there exists a ¢(t)
satisfying

i = f dp()) + f Trdw() + 0()),  m=0,1,2---,

—o0

f°°|d¢(t)|<e.

-—00
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1 The material in this paper constitutes a part of a thesis submitted to Northwest-
ern University and prepared under the direction of Professor Walter T. Scott.

2 Numbers in brackets refer to references at the end of this paper.
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Pélya [2] has shown that there are infinitely many entire trans-
cendental solutions of (4, — ©) and [3] that there are infinitely many
step function solutions with discontinuities restricted to an arbitrarily
preassigned set of points with no finite limit points. In §2, using the
method of Pélya, we show that there exists an entire transcendental
solution of (u, 0) with total variation on the whole real axis arbi-
trarily near |uo|, and in §3, using Pélya’s method, we do the same
for the step functions. In §4 we give a method for constructing such
a step function with discontinuities restricted to the points a,
a4 ad, - --;a22.

2. Entire transcendental solutions.

THEOREM 2.1. For €>0 there exists an entire transcendental solution

&(t) of (u, 0) such that [=.|dd(t)| <|po| +e.
We shall use the following lemma.

LEMMA 2.1. For any positive integer n, any real A’ #0, and any ¢ >0,
there exists an entire transcendental function g(2) satisfying the following
three conditions:

w. 0) j=0,1’...’n_1,
2.1 tis(Ddt =
(2.1 [ moa= ), o
ftilg(t)ldt<e', i=0,1,-++,n—1,
le@ | <¢, |z| < n.

We remark that this lemma is the same as Pélya’s [2] except for
the interval of integration in (2.1). He uses e as the basis for the
construction of the function of his theorem. We now prove the
lemma.

For fixed real A0, 1 define

(= g
& = o= 1)
Then |f(s)| <M< =, |2| =1,

(e — N9,

© 0, j=0,1,"°,”—1,
fuf(z)dz={ .

0 1, J=mn
f Iti||f(t)ldt<L<°O, j=0vl""9n_l-

Choose >0 so that |4’| La<n, |A’'| Mar*1<¢, and na<1. Then
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for B =A'ar+!, Bf(az) satisfies the three conditions of the lemma.

To prove the theorem let go(s) = [2Auo/m2(A—1)](e*"— ")
and for indices #=1, 2, 3, - - - use the lemma with 4’ and ¢ replaced
by A, and 2" to choose recursively the functions g.(s) satisfying

© 0) .=011’°'°1 "'11
f tiga()dt = {A ! *
[} ny ] = n,

Ap = pn — fo”"‘(go(t) + - 4 gaa(?))at.

where

It is readily verified that any ¢(¢) for which ¢'(¢) = D¢ gi(t) satisfies
the conditions of the theorem.

3. Step function solutions. Here we neglect w. This is no loss,

since a solution for the sequence mo, p1, p2, + - - becomes a solution
for the sequence ud, p1, M2, - - - by the addition at the origin of a

discontinuity with saltus (ud — o).

THEOREM 3.1. If the sequence 0 <by<by< - - - has limit point in-
finity, then for >0 and any sequence {p,.} there exists a solution of the
infinite system

ed n
Ebs’ui=l‘m ”=112)31"'t
foml
satisfying the following two conditions:
0| wi| < w, n=1,223"---,
teml
0
EI u;l <e
(20

This theorem is a corollary of

THEOREM 3.2. Let the matrix A = (aj) with complex elements satisfy
the following three conditions:

Every segment of the form

C1,0+1y Q1,042 * * °
(3.1) e ,

Cn,g+ly Ong+2y * ° °

is of rank n, n=2234---,
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a;—
(3.2) lim jl'k=0' j=213)4y°"t
oo Qjk
(3.3) lim sup lalkl = o,

k—

Then for arbitrary €>0 and arbitrary p= (u1, pe, ps, - - - ) there
exists @ u= (w1, us, us, - - + ) satisfying the following three conditions:

(3.4) Au = p,
(3.5) Zlajkukl<w, j=1;2’3,"')
ka1
(3.6) 2| m| <e
k=1

Condition (3.3) is necessary for condition (3.6).
The following lemma will be used in the proof of the theorem.

LeMMA 3.1. Let the matrix (a;x) satisfy conditions (3.1), (3.2), and
(3.3). Then for arbitrary € >0, arbitrary positive integers n and q, and
arbitrary number ', there exists an integer ¢'>q+n and numbers
Ugil, Ugya, * * * , Uy Satisfying the following three conditions:

01 j=112"°'1"“1v

(3.7 Gjarthgrr + -+ + + Gjpthy = {
"

(3.8) | iortthenr| + -+ | asoue| <, =12, ,m-1,
(3.9 | #grr]| + -+ - 4+ | ue | < €.

We remark that Pélya [3] proves Theorem 3.2 with conditions
(3.3) and (3.6) deleted. His proof depends upon a lemma which is
Lemma 3.1 with conditions (3.3) and (3.9) deleted.

We now prove the lemma.

Condition (3.1) implies the existence of a set of indices &, ks, - - -
ka, g<k1<k;< - - - <k, for which the determinant of the system

’ s
] .1_”’

(3'10) ik Uk, + - =+ Ajk Uk, = %Xjy j = 1’ 2) MR ()

does not vanish and hence there exists a §>0 such that

. (e’ Me')
<min{—,
2 2n

for Ix,l <4,j=1,2,---,n, where M is the smallest of the absolute
values of the nonzero elements in the coefficient matrix of the system
(3.10). The number 6 is now fixed.

(3.11) I ajklukll + -+ l M,
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Condition (3.3) implies the existence of an infinite sequence of
indices , <ly<lsi< - - - for which |@y;,| 21. Condition (3.2) gives the
existence of an index K such that for 2> K,

Iy’a,-kl ( ¢ Mé
- < i 61— - D j = y Ly "0y .
[oms] min 5’ Zn) ji=12 n—1

Let ¢’ =/; for some Il;>Max (K, k.) so that

|l"| < Il"ai«'l

’ =12:---,n—1
I Ong’ | l anc'l
With 6§ and ¢’ now fixed put x,=0 and
Kajy
xi=—_i’ i=4,2---,n—-1,
Qg
#I
Uy = )
Qpg’

“k=0, q<k<q"k¢kl)k29"‘)kﬂ'

It is readily verified that the numbers %41, %44, * -+, %4 s0 de-
termined satisfy conditions (3.7), (3.8), and (3.9).

We turn to the proof of the theorem and consider first the necessity
of condition (3.3) for condition (3.6). If lim supg,..lau, < o the se-
quence { | au| } has an upper bound B. The sequence {p;} is arbitrary
and, for u; 0, there exists an n for which | > auu;,—pllA<|p1| /2.
Then 3., |u;,| > [p;l /2B and condition (3.6) cannot be satisfied.

To complete the proof of the theorem we note that condition (3.3)
implies the existence of an-index g for which |a1,,| >2|m|/e. Let

{2, k=1'2’...,ql_l’
U =
* l/alcv k=q1°

Then
q1
Z QixUy = M1,
k1

and

q
Yl‘|uk| < 6/2‘
k=1

This completes the first step.
At the nth step, n>1, we let u/, €, %, ¢, and ¢’ of the lemma be
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Bn— 203 Gauj, 2", 1, gny, and g, respectively and we have

&, 0’ .=192,"‘) —19
Z Gjx¥hi = {»” ] ”
1) ] = n,

kemgy—1+1
an
E Ia;,,ug|<2"'e,j=1,2,---,n—l,
ke=gp —1+1
an
2 |wm]| <2
kemgy 141
Combining the results of the first # steps we have
an
Zaikuk=ﬂiv j=1o2:°"v”t
k=1
ji<m,

an (4]
ZI d,‘ﬂtt' < Zl ajkuk' +e
k1 k=1

In
Zlu;" <e

fem=1
These conditions hold for all #, and this completes the proof of the

theorem.
We now prove a theorem to be used in §4.

THEOREM 3.3. If for the points by, by, bs, - - - we have biy; —b;25>0,
1=1,2,3, - - -, then every solution u,, us, us - - - of the equations

> bises = pny n=1223"---,

has absolutely convergent sums in the left member.
Suppose for some integer m
2| wi| = .
i1
Then for an infinite sequence of indices Lh<lg<l< - - -,

n 1
bi | wy | > ——m— i=314)""9
] e i(log &)

22
I
i=34,--,

bt | > ———
Wl i(log 9%

b’;:+z' uls' > b’)
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Hence the sums diverge for n=m -2, contradicting the hypothesis.
For the example u;=(—1)%/4(log 1)*/?, b;=log 7, the sums converge
conditionally, although > &, | u,-l converges.

4. An example. For (u, 0), uo=0, and for arbitrary €>0, e=2,
we here construct a step function solution ¢(f) whose discontinuities
are all at the points g, a?, @3, - - - , and whose total variation is less
than e.

Consider, for any fixed integer 7, the infinite system

0r0 = %
0= %+ u;
81 = 1+ ouz + a’u;
4.1) 0= s+ usg -+ ug
0= e+ aus + a’us

8,2 = 1 + 02 + a*us + @®us + aPus + aOus

where, if o =k(k—1)/2, the (o141)th equation is
ok+1

(4.2) 5,,);_1 = Z G(Fl)(k_nui = Pr.b—l; k= 1: 21 3: MR
t=1

and the (o341+72)th equation is

k+1
(4.3) 0= atDUDy, .= 0y 1=1,2,--+,k

Tl

THEOREM 4.1. For any integer r and any a1 the system (4.1) has a
unique solution wy, %, us, - - - . For Ial >1 this solution satisfies the
system

(4.4) > oDy, = 5, h=0,1,2---,

n=1
the sums converging absolutely.

Let the determinant A.;Ela.-,], k2n—1, where a;j=aDG-D,
i=1,2,-+-,n—1, and a;,m=a**D, Let AY) be the cofactor of
a*-V in A4 .. It is readily verified that

1
A,(.,:;-l (—1)n+t
Apoy @D G-DG — 1) .. (P — D@ —1) - - - (@™ — 1)
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A.k _ (ab—n+2 —_— 1) e (a" — 1)
Auns  (@—1) -+ (a1 —1)

For any r define S;=3§, 51, j<r+1, and Sj= — D 3 at~DG-Dy, for
j>r+1. Applying the above determinant formulas to system (4.1)
we have for j=1,2,3,.--., and 1=1, 2, - - -, j,

(—1)#iS;
(4-5) Ugjti =" . — T ’
a’;(z—l)"-(l—t)(i—l)’*'ﬂs'—l(a—1) [P (a' 1—-1)(41-—.1) c e (ar"— 1)

-1 i~ o« —1__
4.6) S=— 5 guop @D @D
It (e—1)--- (¢'-1)
These equations give the solution of the system (4.1) for a1.
Using the factthat the fraction in the coefficientof S; in (4.6) reduces
to a polynomial of degree (j—17)(I—1) with the sum of its coefficients
Cj1,11, we can establish the inequality

(4.7) | ;] < | alomann[(j — 1)1, iz4 |e|>1

This, with (4.5), shows that the sums in (4.4) converge absolutely
for |a| >1. We have, for any 7, using (4.2) and (4.3),

© L]
DoatDhy = P4 D> gt

ne=1 =2

= Osn,

since a subsequence of the partial sums converges to §,4. This com-
pletes the proof of the theorem.

In constructing the function ¢(f) we observe, using (4.5) and (4.7),
that for a 22, |u.| <27, n27, so that D |u.| = 2% |ua| + 27| ual
<9/8 for r=1. Put

0, 0=st<a,
() = L
'Il() {Euiy ak—lét<akrk=11213:""

fum]
and then [Pt"dY,(t) =ba, n=1,2,3, - - -, and [5|dy.(t)] <9/8.
Now for arbitrary u;, us, s, + - +, a2, €>0, and for each index
r=1, 2, 3, .-, let I, be the smallest positive integer for which
ar+>(9/8)-27| .| €1, and for ¢, () =pa—"",(a—"t) we have

f t*dp.(t) = bpmptry nr=123-..-,
0

and
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fo "1 dont)| < 2"

Then ¢(t) = D_r'¢,(t) satisfies

[ a0 = hm1,2,3-
0

and

RECIRE

Moreover the points of change of ¢(¢) are all included among the
points a, a?, @, - - -, and by Theorem 3.3 the integrals converge
absolutely.
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