
ON THE TOTAL VARIATION OF SOLUTIONS OF THE
BOUNDED VARIATION MOMENT PROBLEM1

MELVIN BLOOM

1. Introduction. In this paper we consider functions <p(t) which

satisfy for a given real sequence {pn} the equations

0», a) /*» =   I    tndW), n = 0,1,2, ■■■ ,
J a

where the integrals converge absolutely. Any such function d>(t) is

called a solution of the moment problem (p., a) or simply a solution of

(ß, a).

Boas [l]2 first pointed out that for an arbitrary sequence {pn}

there exist infinitely many solutions of (p, 0); in fact, he showed

that any such sequence can be decomposed in infinitely many ways

into the difference of two (Stieltjes) sequences {XB} and {vn} where

both (X, 0) and (v, 0) have nondecreasing solutions. In this theorem

the choice of X0 and va is subject only to the conditions

Xo > 0,        vo > 0,        Ao — vo = Mo-

For arbitrary e>0 we can choose \o=po+e/2, v0 = e/2, or X0 = e/2,

Vo = — po+e/2, according as pozíO or p0<0, and it follows that there

exists a solution (¡>(t) of (p, 0) having total variation less than \p0\ +e.

If d>(t) is a solution of (X, 0), X„= ]Co"(— lYCn.iß'p», a arbitrary,

such that the total variation of \¡/(t) is less than |X0| +e, then <p(t)

=\[/(t — a) is a solution of (p, a) with total variation less than \po\ +e.

The proof of the following theorem is now easy.

Theorem 1.1. Let d/(t)be a solution of (X, — °o) and {pn} be a se-

quence with po = Xo- Then for arbitrary a and e>0 there exists a <j>(t)

satisfying

/a p ta

t»dt(t) + )    <"<*(*(/) + 0(<)), n = 0, 1, 2, • • • ,
-oo J a

d<b(t) I < É.
/

Received by the editors April 14, 1952.
1 The material in this paper constitutes a part of a thesis submitted to Northwest-

ern University and prepared under the direction of Professor Walter T. Scott.

* Numbers in brackets refer to references at the end of this paper.
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Pólya [2] has shown that there are infinitely many entire trans-

cendental solutions of (p, — 00 ) and [3 ] that there are infinitely many

step function solutions with discontinuities restricted to an arbitrarily

preassigned set of points with no finite limit points. In §2, using the

method of Pólya, we show that there exists an entire transcendental

solution of (p, 0) with total variation on the whole real axis arbi-

trarily near |Mo|, and in §3, using Pólya's method, we do the same

for the step functions. In §4 we give a method for constructing such

a step function with discontinuities restricted to the points a,

a2, a*, • ■ ■ ; a^2.

2. Entire transcendental solutions.

Theorem 2.1. For e>0 there exists an entire transcendental solution

<t>(t) of (ju, 0) such that f2„\d<p(t)\ <|mo| +«•

We shall use the following lemma.

Lemma 2.1. For any positive integer n, any real A'^O, and any e' >0,

there exists an entire transcendental function g(z) satisfying the following

three conditions:

j = 0, 1, • • • , n - 1,

j = n,(2.D        /;w - f;,

f   t>\g(t)\dt<i', i = 0, 1, •••,»- 1,
J -co

I «(*)!<«', \z\^n.

We remark that this lemma is the same as Pólya's [2] except for

the interval of integration in (2.1). He uses e~? as the basis for the

construction of the function of his theorem. We now prove the

lemma.

For fixed real Xy^O, 1 define

(-1)"2X       d»
f(z) = —- -(e-' - ir*1-1).

^2n\(\- 1)  dz"

Then \f(z)\ <M< «., |«| £1,

10, j = 0, 1, • • • , n - 1,

J = n,

f   Ml f(l) I dt < L < », j = 0, 1, • • • , « - 1.
J -a,

Choose a>0 so that \A'\La<n, \A'\ Man+l<e', and na<l. Then
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for ß=A'an+l, ßf(cez) satisfies the three conditions of the lemma.

To prove the theorem let go(z) = [2XMoAr1/2(X-l)](e-**-irxV)

and for indices « = 1,2,3, • • ■ use the lemma with A' and e' replaced

by An and 2_ne to choose recursively the functions gn(z) satisfying

f?'u¡)i> - c.
j = o, 1, ■•-,«- 1,

j = n,

where

f% CO

ln = Pn-    I       /"(go(0  +  •  •  •   + gn-1
J 0

(0)*.

It is readily verified that any <p(t) for which <£'(i) = Ylô «?»(0 satisfies

the conditions of the theorem.

3. Step function solutions. Here we neglect p0. This is no loss,

since a solution for the sequence po, Pi, Pi, • • • becomes a solution

for the sequence p¿, pi, pi, • • ■ by the addition at the origin of a

discontinuity with saltus (pó —po).

Theorem 3.1. If the sequence 0<bi<bi< • ■ ■ has limit point in-

finity, then for e>0 and any sequence {pn} there exists a solution of the

infinite system

00

23 biUi = pn, n = 1,2, 3, ■ • • ,
•-i

satisfying the following two conditions :

OO

2^,b"\u{\ < ce, m = 1, 2, 3, ••• ,
¿-i

00

21 M¡ I < <•
1=1

This theorem is a corollary of

Theorem 3.2. Let the matrix A = («;•*) with complex elements satisfy

the following three conditions :

Every segment of the form

ai,q+i, öi.a+2» • • • .

(3.1)

an,q+l,  an,t+i,   •   ■  •

is of rank n, n = 2, 3, 4,
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(3.2) lim-^ = 0, j = 2, 3, 4, •••,
t—.oo   ajtk

(3.3) lim sup | alk \ = oo.
Í-.00

Then for arbitrary e > 0 and arbitrary p = (pit pit pt, ■ ■ • ) there

exists a u = (ui, u2, u¡, ■ ■ • ) satisfying the following three conditions:

(3.4) Au = p,
oo

(3.5) 2Z I ajkuk I < 00, i-1, 2, 3, •••,
t-i

»

(3.6) E|«*|<«.
k—l

Condition (3.3) is necessary for condition (3.6).

The following lemma will be used in the proof of the theorem.

Lemma 3.1. Let the matrix (a¡k) satisfy conditions (3.1), (3.2), and

(3.3). Then for arbitrary e'>0, arbitrary positive integers n and q, and

arbitrary number p', there exists an integer q'>q+n and numbers

Uq+i, uq+i, • • ■ , uq> satisfying the following three conditions:

10,     j = 1,2, ■ ■ • , n — 1,
(3.7) aj,q+1uq+x + ■ ■ ■ + ajt,ut, =  <

\P,    3 = n,

(3.8) I ajtq+iuq+i I + • • • + I aiq,uq, | < «', j = 1,2, • • ■ , n - 1,

(3.9) \uq+i\ + ■■■ +\uq.\<i'.

We remark that Pólya [3] proves Theorem 3.2 with conditions

(3.3) and (3.6) deleted. His proof depends upon a lemma which is

Lemma 3.1 with conditions (3.3) and (3.9) deleted.

We now prove the lemma.

Condition (3.1) implies the existence of a set of indices ki, h, • • • ,

kn, q<ki<k2< • • ■ <kn for which the determinant of the system

(3.10) 0;*!«*, + • • • + ajknUkn = Xj, j = 1,2, ■ • ■ ,n,

does not vanish and hence there exists a S>0 such that

11 1 1 /«'      Me'\
(3.11) I ajkluh I + • • • + I ajknukn \ < min ( — >   -■ )

\ 2 2» /

for \xj\ <5,j= 1, 2, • • -, n, where If is the smallest of the absolute

values of the nonzero elements in the coefficient matrix of the system

(3.10). The number S is now fixed.



122 MELVIN BLOOM [February

Condition (3.3) implies the existence of an infinite sequence of

indices li<li<k< • • • for which |anj ¿1. Condition (3.2) gives the

existence of an index K such that for k>K,

\p'ajk\ .   (    i'       Mi'\
< mm 15, —>   -), j = 1, 2, • • • , n — 1.

Let q/=li for some /,->Max (K, kn) so that

! anq-1 | anq. |

With S and q' now fixed put xn = 0 and

^1    „ I A,y 1 .
<-¡-r-'      J- 1,2, ••-,»- 1.

*, =-» j = 1, 2, •••,»- 1,

m'
«„. =-

«no'

«t = 0,       ç < k < q', k t¿ h, k2, • • • , kn.

It is readily verified that the numbers uq+x, «a+2, •••,«,' so de-

termined satisfy conditions (3.7), (3.8), and (3.9).

We turn to the proof of the theorem and consider first the necessity

of condition (3.3) for condition (3.6). If lim supi<M|au[ < oo the se-

quence {| au| } has an upper bound B. The sequence {/«<} is arbitrary

and, for piJ&O, there exists an n for which | 2^,1 ßi*«*_Pi\.< \pi\ /2.

Then J^t-i |M*I >|/*i|/2S and condition (3.6) cannot be satisfied.
To complete the proof of the theorem we note that condition (3.3)

implies the existence of an index qi for which |aiei| >2|/*i|/e. Let

0, k=l,2,.-.,qi-l,
uk -cxi/ai„„ k = qx.

Then

«i
2~L aikUk = pi,
k—X

and

V | Uk | < e/2.
k-l

This completes the first step.

At the «th step, »>1, we let p', «', n, q, and q1 of the lemma be
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Pn— S'-i1 anjUj, 2-Be, n, qn-i, and qn respectively and we have

Ä (0
2-,      aikUk =    <

■Ï.-1+1 V*

0, j = 1, 2, •••,»- 1,

*-i»-l+l ^n, J  =  »,

X)     I ajkUk | < 2-»e, ; = 1, 2, •••,»- 1,
fc=5„_i+i

£     | «* | < 2-»e.
*-ï„-i+i

Combining the results of the first n steps we have

Qn

2~2 aikUk = Pj, j = 1, 2, • • • , n,
k-l

in «

2~11 <*>*«* | <  2 I a>*M* I + «» / < »,
k-X k-l

fa

X) I m* I < «•
¿_1

These conditions hold for all n, and this completes the proof of the

theorem.

We now prove a theorem to be used in §4.

Theorem 3.3. If for the points bi, fa, b3, • • • we have 6,+i — ¿>,^¿>>0,

i=l, 2, 3, • • • , then every solution «i, w2, u» • • • of the equations

2^2 b*Ui = un, n = 1, 2, 3, • • • ,

has absolutely convergent sums in the left member.

Suppose for some integer m

00

J^b7\ Ui\ = oo.
>-i

Then for an infinite sequence of indices U<lt<h< ' ' ' •

m i . I-

bl<  M'«   >_^-^i' »-3.4, ••*,
t(log i)n'2

°'<     «H  >"=-r^-' t = 3, 4, •••,
i(log i)tn

ô"+2\uu\> b\ i - 3, 4, • • • .
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Hence the sums diverge for n^m+2, contradicting the hypothesis.

For the example «< = ( — 1) '/«'(log t')3/2, 2>, = log i, the sums converge

conditionally, although ^"-i lM«l converges.

4. An example. For (p., 0), jtto = 0, and for arbitrary e>0, a^2,

we here construct a step function solution <p(t) whose discontinuities

are all at the points a, a2, a3, • • • , and whose total variation is less

than e.

Consider, for any fixed integer r, the infinite system

5r0  =   Ml

0  = M2 +       «3

Sri = «i +  aui + a2Ui

(4.1) 0= uk +    m. +     «s

0 = Ut+  au$ +  a2ut

&ri = «i + a2«2 + a*U3 + a*u\ + a*ui + a10uo

where, if ak = k(k — l)/2, the (a*+i)th equation is

o-H-l

(4.2) «,.*_! = £ a^«-»Ui - Pr,t_i, * = 1, 2, 3, • • • ,
i—l

and the (ok+i+l)th equation is

*+i
(4.3) 0=2Z «(i-1){!-1)«.i+.+i ■ Qrki, 1=1,2,-.. ,k.

i—X

Theorem 4.1. For any integer r and any a ¿¿I the system (4.1) has a

unique solution Ki, «2, Uz, • ■ • . For \a\ >1 this solution satisfies the

system

(4.4) ¿ a*-»*». = Ôrh, h = 0, 1, 2, - • • ,
«—i

/fee sMws converging absolutely.

Let the determinant .4B*= |ajj|, &^» — 1, where «,-,• = a('-1)(i-1),

* —1, 2, • • • ,n — 1, and a,n=a*(B_1). Let A(J& be the cofactor of

at(¡-i) m ^4nJfc it ¡s readily verified that

An.l-l   _  _(-!)"+'___

A«.«-i "" a"-'+('-i)(»-0(a - 1) . . . (a»-i - i)(a - l) . . . (a—i _ i)'
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Ank (g*-"+2 - 1) ... (g* - 1)

An.n-i '      (a-1)-.. (a»-1 - 1)

For any r define Sj=or,j-i,júr+l, and S¡= - ¿ZV •<*-»«-»•< for

j>r+l. Applying the above determinant formulas to system (4.1)

we have for j = l, 2, 3, • • • ,  and »'—1, 2, • • • , j,

(-l)i+tfy
(4.5) «,y+< =

a»i(r-i)+(3-i)(i-i)-hrM(a_i) . .. (d<-i-1)(a-1) . . .(ar-i-1)

i-i (ai-'+i-l) • •• (a'~l-l)
(4.6) 5y=-   £   a"«"»---Si.

Ä, (a_i)...(a/-i_l)

These equations give the solution of the system (4.1) for a^l.

Using the fact that the fraction in the coefficient of S¡ in (4.6) reduces

to a polynomial of degree (j — l)(l—l) with the sum of its coefficients

Cj-i,i-i, we can establish the inequality

(4.7) | S¡\ <\a |'i-i<fW/»[(j - l)!]3/2, j £ 4, | a | > 1.

This, with (4.5), shows that the sums in (4.4) converge absolutely

for |a| >1. We have, for any r, using (4.2) and (4.3),

oo oo

£ a(n-1)A«n = Pr* + £ a'*+<hQr.h+i-ilh+i

n-l i-i

= 5r*,

since a subsequence of the partial sums converges to ôrh. This com-

pletes the proof of the theorem.

In constructing the function <j>(t) we observe, using (4.5) and (4.7),

that for aè2, | un\ <2—, n = 7, so that £| «.| - Eî I «.| + H"\ «.|
<9/8forr^l. Put

{0, 0 g t < a,

k

£ «i, a*"1 á i < «*, * - 1, 2, 3, • - •,
>=i

and then /0"¿B#r(0 = 8„r, « = 1, 2, 3, • • • ,  and /0"| #r(/)| <9/8.

Now for arbitrary px, p2, pz, • • • , a^2, e>0, and for each index

r=l, 2, 3, • • • , let lr be the smallest positive integer for which

ari'>(9/8)-2*-|iUr|e-1, and for dir(t)=prarTl'ypT(a-l't) we have

/.
tnd4>r(t) = 5r„Mr, », r = 1, 2, 3,

and
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n = 1, 2, 3,

r i d*r(o i < 2-e.

Then cS(0 = £i>,(0 satisfies

f     t*d4>(t)   =  Mn,
•I 0

and

f   | ¿0(0 | < i.

Moreover the points of change of d>(t) are all included among the

points a, a2, a3, • ■ • , and by Theorem 3.3 the integrals converge

absolutely.
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