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Introduction. The location of the zeros of the derivative of a poly-

nomial has been much studied, as has the location of the zeros of the

Chebyshev polynomial. In §1 of the present note we set forth in a

direct and elementary manner the equivalence of these two problems

in a suitably specialized situation. This conclusion is mentioned (for

integral X.) with an indication of the proof by Fekete and von

Neumann [4],2 and the conclusion is related to a much deeper in-

vestigation due to Fekete [3]. We obtain (§9) some new results on

zeros of approximating polynomials and (§§2, 3, 8) on the argument

of the deviation. In §10 we consider approximation by an arbitrary

linear family. Throughout the paper we study primarily approxima-

tion on a set of « points by a polynomial of degree « —2. In §§4—7

weight functions with infinities and Chebyshev rational functions are

introduced.

1. Determination of special Chebyshev polynomials with weight

function. If £ is a closed bounded point set of the z-plane on which

the weight function p,(z) is positive and continuous, the Chebyshev

polynomial Tm(z) of degree m for E with weight function u(z) is defined

as that polynomial of the form

(1) zm + Aiz"-1 + ■ ■ ■ + Am

for which the norm

max [n(z) | Tm(z) \, z on E]

is least. It can be shown that Tm(z) exists and is unique. In the special

case about to be considered the existence and uniqueness of Tm(z)

will be established.

Theorem. Let the point set E consist of the distinct points Zx, z2, • • ■ ,

zn («>1) and let us set u>(z) = (z—z{)(z — Zi) • • ■ (z—zn). Then the

unique Chebyshev polynomial P»_i(z) of degree n — 1 for E with the

weight function ju(aj)=/ii = l/X<|w'(z,-)|, where X,->0, E"A»' = 1> i5 ^e
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polynomial

X4
(2) Tn-x(z) =- «(«) E

Zi

Note that we consider here essentially the most general positive

weight function on E, for multiplication of the weight function by a

positive constant does not alter the Chebyshev polynomial.

We observe that Tn-i(z) as defined by (2) is of form (1), and that

from the definition of co'(zî) as a limit we have rB_i(Zi) =X,-co'(z,).

The norm of Tn-i(z) on E is thus

max [pi | r„_i(z¿) | ] = 1.

The Lagrange interpolation formula represents (as may be verified

directly) an arbitrary polynomial of degree3 « — 1 in terms of its

values in the » points z,-, and in the present case becomes

A Tn-i(z<)    «(«) A      X,-
r„_i(z) - 2^ —tts-■ «(z) L,

1        to'(Zj)       Z — Zi 1      Z — Zi

which is (2).
An arbitrary polynomial of the form P(z)=zn_1-f-5iZn~2-(-

+jB«_i is expressed by Lagrange's formula

i    u'(zi)   z — Zi

inspection of the terms of highest degree in z yields

i    w(zi)

The norm of P(z) on £ is

(4) max \jii | P(*<) | ] = max [ | P(zl)/\iU'(zi) | ].

We contrast (3) with the equation 1 = E" ^<> where we have

X,->0. Either for some value of i we have | P(z,)/w'(z¿) | >X,-, in

which case the norm (4) of P(z) is greater than unity, the norm of

r„_i(z), or we have | P(zí)/cú'(zí) | =X¿ for every i, in which case all the

quotients P(zx)/u'(z¿) are real and positive and we have P(zí)/o)'(zí)

=X< for every i, whence P(z) = Tn-i(z). That is to say, we have shown

that PB_i(z) as defined by (2) is the unique polynomial of form (1)

' As is customary in the study of approximation, we define a polynomial of degree

»—1 as an arbitrary function of the form Anzn~l+AizK~*+ • • • +^4»-i.
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of least norm on E; the theorem is established.

We note that P»_i(z) is co(z) multiplied by the logarithmic deriva-

tive of

(5) n o« - *)h   Ê *. = i.i i
where of course the X< need not be commensurable. Thus the study of

the zeros of the derivative of (5) is identical with the study of the zeros of

r»_i(z). '

2. Properties of the arguments of the Chebyshev polynomial. The

equation !T„_i(z,) =X,<o'(z,) shows that for each z< the arguments of the

Tn-x(zi) are fixed independently of the choice of the X*:

arg [Tn-x(zi)] = arg [«'(*)].

By a new application of Lagrange's formula we have a representation

of the polynomial unity:

i-t   '    "w
1     u'(Zi)     Z — Zi

inspection of the terms of highest degree gives (»>1)

"       1
o = E

i
which we write in the form

<0'(Zi) '

(6) ¿T^rT = 0-i    Xico'(zi)

and by taking conjugates write this also in the form

W ¿WfrO    ,  *  „-o.
i Xi|<o(zi) |2

Equation (7) states that if the points X,ío'(z¿) are interpreted in the

to-plane, then the origin is the center of gravity of those points con-

sidered with suitably chosen positive weights, namely 1/X,|«'(z,)|2.

Consequently the origin lies in the smallest convex polygon containing

(i.e., lies in the convex hull of) the points \ju'(z¿) = Tn-i(Zi), and lies

interior to this polygon except when the polygon degenerates to a line

segment; in the latter case the origin is an interior point of the seg-

ment. This conclusion is familiar in the case that all the points z< are

real and each X< equal to 1/»; here it follows from (2) that we
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have P»_i(z) =ío'(z)/»; the values of X,-£o'(z,) =w'(z,)/« are alternately

positive and negative if Zi<z2< • • • <zB; the origin lies interior to

the smallest line segment containing the points X,<«/(z,).

Equation (6) obviously shows that the origin lies in the convex hull

of the points l/X,-w'(z<).

3. Examples. It is of interest to add some examples where /*,-, X<, and

| co'(zí) | are all independent of i ; thus X< = 1/«, and P»_i(z) =w'(z)/«.

In each example E is defined as the set of zeros of w(z).

Example 1. w(z)s2"-l, rB_i(z)=w'(z)/«=zn-1.

Example 2. u(z) = (zn-a)(zn-a), a^O, TU-i(z)=co'(z)/2n.

Example 3. co(z)=z(zn-a)(z"-ä), \a\ =1, |a-ffi| =1/«, Ttn(z) =

u'(z)/(2n+l).

4. Weight functions with infinities. Let now E no longer neces-

sarily consist of « points. It is entirely permissible not to require

that the given weight function u(z) be continuous on the given set

E; for instance u(z) may be of the form

Pi(z)
(8) Kz) =

| (z - ai) ■ ■ ■ (z - ak) |

where /xi(z) is positive and continuous on E and the points «i, a2, • • •,

ak not necessarily distinct belong to E. The norm of a polynomial

Tm(z) is as before max |ju(z) | Tm(z) \, z on E] ; even if a< is an isolated

point of E, the value /*(«,) | Tm(oii) | is to be interpreted as

lim px(a<) | Tm(z) | /1 (z — ai) ■ ■ ■ (z - ak) \

provided the limit (finite or infinite) exists. For the Chebyshev poly-

nomial Tm(z) properly to exist, the norm of Tm(z) is to be finite, we

must have m^k, and all the points a,- must be zeros of Tm(z). If we

write

Tm(z) S3 (z - ai)(z — a2) • • • (z - ak)Sm(z),

the norm of Tm(z) is max [Mi(z)|5m(z)|, z on E], where Sm(z)=zm~k

+Aizm~k~1+ • • • + Am-k is of degree m — k; the problem of studying

the Chebyshev polynomial Tm(z) of degree m(^k) with weight func-

tion u(z) is identical with the problem of studying the Chebyshev

polynomial Sm(z) of degree m — k with weight function Hx(z).

5. Chebyshev rational functions. The use of a weight function of

form (8) is related to Chebyshev rational functions with prescribed

poles. For simplicity let £ be a closed and bounded point set of the
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z-plane on which the weight function ju(z) is positive and continuous,

and let the prescribed points ax, a2, • • • , ak be disjoint from £. The

Chebyshev rational function Rm(z) is the function of form

»- + Biz"-1 + ■■■ +Bm
(9) Rn(z) S3

(z — ai)(z — a2) ■ ■ ■ (z — ak)

of least norm. Here we have precisely the problem of the Chebyshev

polynomial Tm(z) on £ with the norm function

P(z)

| (z - ai)(z — a2) • • • (z - ak) \

It is of course imperative either to require that the numerator of

Rm(z) should be of the form indicated in (9) or in some other way to

exclude as inadmissible the trivial function Rm(z) =0.

6. Fejér's theorem. We return to the general Chebyshev poly-

nomial Tm given by (1) for a set £ containing at least m points.

Beyond the case where all points of £ are collinear, the first geometric

result on the zeros of Tm(z) is due to Fejér [2]: All zeros of Tm(z)

lie in the convex hull of E. The proof is not difficult. Let the point z0

lie exterior to K, the convex hull of £, and let ß be the point of K

nearest z0. Then we have in each point z of £

(10) \z-(zo + ß)/2 | < | z - zo |.

For any polynomial Q(z)=zm~l+ ■ • • , we therefore have at each

point z of £ with Q(z)?¿0

| [z - (zo + ß)/2]Q(z) | < | (z - z0)Q(z) |.

Thus (z—Zo)Q(z) cannot be a Chebyshev polynomial for £ with posi-

tive weight function.

As Fekete and von Neumann (loc. cit.) point out, by considering

(5) there follows the theorem of Lucas, that the convex hull of the zeros

of a polynomial contains the zeros of the derived polynomial.

7. Poles of extremal rational functions. The theorem of Fejér

implies that the finite zeros of the C.r.f. Rm(z) of form (9) lie in the

convex hull of £. If we consider even a more general extremal problem

for rational functions, where now the a,- are allowed to vary in suitable

regions, it is clear that the C.r.f. for this more general problem is

also the C.r.f. for the former problem where the a,- are suitably de-

termined and considered fixed. It is still true that the finite zeros of

Rm(z) lie in the convex hull K of £; moreover the reasoning used in
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connection with (10) now applies in reverse: if a< exterior to K is a

pole of the C.r.f. and if L is the half line through a{ from the nearest

point of K, then at must be on L as far away from K as possible.

8. Approximation to an arbitrary function. The term Chebyshev

polynomial is also used in a sense different from that defined in §1.

If £ is a closed bounded point set, if ¡x(z) is a weight function positive

and continuous on £, and if f(z) is continuous on £, then the Cheby-

shev polynomial of best approximation tm(z) is the polynomial of de-

gree m such that the norm

(11) max [p(z) | f(z) - tm(z) \, z on E]

is least. It can be shown that tm(z) exists and is unique; we shall prove

this result in the special case which concerns us below.

Suppose that £ consists of precisely « distinct points. Let /i(z)

=B0zn~1+BiZn~2+ • • • +Bn-i be the unique polynomial of degree

« —1 which coincides with/(z) on £. In the case m = n — 2, the norm

(11) becomes

(12) max [p(z) | /i(z) - ln-2(z) \, z on £].

If Bo = 0, the polynomial/i(z) is itself a polynomial of degree « — 2,

admissible in the consideration of all approximating polynomials,

whence tn-2(z) =fi(z). Henceforth we suppose J50= E"/(2«)A«>'(Z») ̂ 0,

so that (12) can be written

max [\Bo\ u(z) | z""1 + Bxzn~2/Bo +-•-

+ Bn-i/Bo - tn-i(z)/Bo |, z on E].
•

The problem of minimizing (13) is precisely the problem of deter-

mining the Chebyshev polynomial 7\,_i(z) for £ with weight function

|Bo|m(z), a problem that we have already discussed. In particular it

follows that iB_2(z) exists and is unique. If we define the numbers

1 /A 1
(14) X< =-¡-r / E-i-r»

p(zí)   «'(«,) V     i   p(zí)   u'(zi)

we have by (2)

fl(z)  - tn-i(z) A X,
ss r»_i(z) = u(z) ¿_ — »

Bo i    z — Zi

from which i„_2(z) can be determined; the second factor in this last

member is the logarithmic derivative of (5).

The norm (12) can now be computed by setting 7"b_i(zj) =\t<i)'(z¿):
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p(zí) | f(zi) - tn-i(zi) \ = \Bo\ p(zi) | Tn-i(zi) |

= \Bo\/±    „,'        ,.
'     i   p(zi) I w'(z<) [

which is obviously independent of *. Again, as in §2, the value of

arg {[f(z)-tn-i(z)]/Bo} =arg [r„_i(z)] = arg [w'(z)] in each point of

E is independent of the particular choice of ¡x(z) and of f(z). The origin

lies in the convex hull of the points [/(z,)—/B_2(z,)], and lies interior

to this polygon except when the polygon degenerates to a line segment.

In the special examples given in §3 the value of arg {[/(z)

—tn-i(z)]/Bo} =arg [co'(z)] can be written down at once.

All zeros of the polynomial fi(z)—tn-i(z) lie in the convex hull of E

(ifBo^O).
Specific formulas for the norm (12) have been obtained by de la

Vallée Poussin [l]. He also proves that a necessary and sufficient

condition that given numbers 5,-, all different from zero, be deviations

of the approximating polynomial tn-2(z) from some function f(z) in

the « points z,- is that for no polynomial p»-2(z) of degree « — 2 all

the quotients /»„_2(z,)/5,- have positive real parts. Thus we may now

state: a necessary and sufficient condition that for given 5,(^0) no poly-

nomial pn-i(z) of degree « — 2 exists such that all the quotients pn-2(z<)/5,-

have positive real parts is arg 5< = arg d¡'(zi). Hence if this condition is

satisfied, the origin O lies in the convex hulls of the points pn-i(zi)/Si,

and of those points 5i//>B_2(z.) which are finite. This includes the

result of §2.
This characterization of the arguments of 5,- is an extension to the

complex domain of the alternation of signs of the 5,- in the real do-

main; compare §2. However, as de la Vallée Poussin indicates, there

is an essential difference in that approximation on an arbitrary

closed bounded set £ in the real domain by polynomials of degree

« — 2 is equivalent to approximation on a subset of « points of £,

whereas such approximation in the complex domain is equivalent

to approximation on a subset of £ containing m points, « ^ m ^ 2» — 1.

In the present paper we consider only the case m = n; for other m

the arguments of the 5< are no longer uniquely determined.

9. Location of zeros of approximating polynomials. We proceed to

devote some attention to the zeros of the polynomials that occur in

§8, with Bo^O, using the notation of §8.

The function/(z) considered on the set £: (zi, z2, • • • , zB) is en-

tirely arbitrary, so the polynomial/i(z) is an arbitrary polynomial of

degree » — 1 except for the restriction Bo^O, and nothing can be de-



'9531 CHEBYSHEV APPROXIMATION 83

duced concerning its zeros without further hypothesis. Likewise the

polynomial f„_2(z) given by

(15) tn-i(z) S3 /i(z) - 5„rB_i(z)

can be considered an arbitrary polynomial of degree « — 2, provided

f(z) is arbitrary. However, under suitable conditions we can derive

certain conclusions regarding these polynomials:

Let the zeros of the polynomial fi(z) lie in the closed interior (respec-

tively exterior) Ci of the circle \z — a\ =ri, and let the zeros of Tn~i(z)

lie in the closed interior C2 of the circle | z—ß\ =r2 (for which it is suffi-

cient that E lie in C2), where G and C2 are disjoint. Then all zeros of

t„-2(z) in (15) lie in then —2 closed regions

(16)

(17)

a- iß

1   -  6

a- iß

1 - e

ri + r2

ri — r2
>

1

respectively, where t takes all the values except unity of the (n — l)st roots

of unity. If the circles (16) are mutually exterior, they contain each one

zero of tn-2(z).

Inequalities (16) follow [6] from equation (15), since the coefficient

of zn_1 in/i(z) is Bo, and inequalities (17) can be similarly proved.

In the special case in which (15) is used to define 7\,_i(z) itself, we

set/i(z)=z—i, B0=l,a = 0,ri = 0.

It is essential to assume that G and C2 are disjoint; otherwise we

may have, e.g., i„_2(z)=0.

All the circles (16) (resp. (17)) lie [7] in the closed exterior of the

hyperbola (ellipse) C whose foci are a and ß, and whose transverse

(major) axis is ri+r2 (resp. r-i — r2); the centers of the circles are

equidistant from a and ß, and the circles are doubly tangent to C*

10. Approximation by functions of a linear family. We turn now

to best approximation on the set E: (zi, z2, • • • , z„), «>1, to the

function/(z) by functions of the form Eî-1 Cjfi(z), where the/,(z)

are arbitrary functions defined on £ and the complex constants c¡

are to be determined so that

(18) max[|/(z)- eU//z) z on E

4 If C is an ellipse, the double tangency may occur merely in the formal algebraic

sense.
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is least. We suppose the functions f¡(z) to be linearly independent on

£. Since only the values of the f¡(z) on £ concern us, we can suppose

these functions and/(z) to be polynomials of degree » —1. Then the

family of polynomials/(z) — E*1 cifAz)1S tne totality of polynomials

of degree « — 1 with precisely one linear relation between their coeffi-

cients. If this relation is homogeneous the polynomial zero will belong

to the family and/(z) can be exactly represented on £; this case is

henceforth excluded. In any case not excluded, the relation can be

written as T [<b(z) ] = 1, where d>(z) is an arbitrary polynomial of de-

gree « — 1 and r is a linear homogeneous function of the coefficients of

<p(z).

With the continued notation <a(z) = H(z—zi), we define (complex)

weights

(19) Wi =    -        -i        w,(z) s w(z)/(z - Zi),
T[wi(z)]

supposing no denominator to vanish ; we discuss later the exceptional

case. Consider the polynomials <p(z) of degree « — 1 such that

(20) 4>(zi) = Wi(zTV + dizT* + • • ■ + dn-i),

for arbitrary coefficients di, d2, • • • , dn-i- These polynomials are

again defined by a single linear relation among their coefficients since

the rows

wizi, w2z2, ■ • • , w„zn (k = 0, 1, •••,»— 2)

are linearly independent; the latter fact is a consequence of the

identical vanishing of every polynomial of degree « — 2 which

vanishes on £.

This linear relation is precisely T(<b) = l. For we have by Lagrange's

formula

»    *(*)
*(*) - L, -77-7- w<(z).

1   w (zi)

(2.)       rw*] - £ ^rb»] - ±-£L-»,
1    « (zi) 1    u (zi)Wi

the last equation is again a consequence of Lagrange's formula

n-l                n-2
"    Zi      + diZi      + • ■ ■ + dn-l      , N

zn-l + ¿l2»-2 +   .  .  .   + dn-x =   E   -7TS- "*(»)•
1 w'(zí)
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by inspection of the terms of degree « — 1 in z.

The original problem of minimizing (18) is thus reduced to the

problem of minimizing max [|#(z)|. z on E], with <p(z) defined as in

(20). The minimizing polynomial P„_i(z) is (by §1) unique and is

given by (2) with

X¿ =
1

^ii«'(z.-)iEi/i^n<o'(z.-)r
namely

Ui(z)
P»-i(z) - E

I w< 11 w,(z.) I E 1/ I Wi I I u'(Zi) I
Moreover we have the equations for every *

arg-= arg [«'(z,-) J.
Wi

Thus we have the values at Zi of the minimizing polynomials

Tn-x(z) and <b0(z)

in-l(Zi)   =

.Wi\\w'(Zi)\     E VI »<|| «'W |
(^o(zí) = Wjr„_i(z,).

Theorem. PAe minimizing polynomial <j>0(z) is unique and given by

i    I WiW{(z,-) I I

The requirement that (19) shall have a meaning, t = l, 2, • • • , «,

is essential, as we illustrate by an example. Choose « = 2, Zi = 0,

z2=l, hence coi(z)3=2—1. Choose also r(a0z+Oi)3=a0+ai, whence

T [wi(z) ] = 0. The functions <b(z) with V [d>(z) ] = 1 are the polynomials

(1 —ai)z+oi. Their values at Zi and z2 are ax and 1 respectively. Here

there is no unique polynomial <p(z) with least maximum modulus.

The least possible value for the maximum modulus is unity, and is

attained for all <j>(z) with | Oi| g 1. Note that for all d>(z) with | ai| < 1,

the maximum of the modulus is taken on but once. Thus families of

this kind behave very differently from the general type of linear

families.

A formula for the most general linear functional r[<£(z)] of the

coefficients of an arbitrary polynomial <f>(z) of degree » — 1 is readily

found as in (21):
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*)-£^U.>.     r[«,)].¿^*W,
i    w (zí) i        Wi(Zi)

which is the desired relation.

The special case treated in §§1 and 2 is that of a linear family <b(z)

defined by the relation

A    <t>(zi)     _

1      WiUi(Zi)

where the Wi are positive with sum unity. The Chebyshev polynomial

P»_i(z) is not necessarily a member of this family, but related to it by

the formula

P»-l(z¿)  = <Po(Zi)/Wi,

where 4>o(z) is the minimizing polynomial.

We turn to a special case of approximation by a linear family of

functions. Let £0: (ax, a2, ■ ■ ■ , am) be a set of points not necessarily

all distinct, and let the functional values ßi, ß2, • • • , ßm be assigned,

in the sense that at a point a¡ of multiplicity m¡ the corresponding

functional values assigned shall be interpreted as the values of

<p(oij), 4>'(ccj), - • • , <¡>ím'~1)(aj). Let £, disjoint from £o, be the point

set Zi, z2, • • • , z» of distinct points, let p,(z) be an arbitrary positive

weight function defined on £, and let/(z) be an arbitrary function

defined on £. We consider best approximation on E to f(z) by poly-

nomials p(z) of degree m+n — 2 which take the prescribed values in the

points of £o.
Let the polynomial P(z) of degree m — 1 take the values ßs in the

points aj-, it is well known that P(z) exists and is unique. We set

coo(z) = (z — cüi)(z — a2) • • .(z—am). Then any polynomial p(z) with

the required properties can be written as

p(z) S3 P(z) + <co(z)q(z),

where q(z) is a suitable polynomial of degree « — 2. Moreover, if q(z) is

an arbitrary polynomial of degree « — 2, this equation defines a poly-

nomial p(z) of the class prescribed.

The problem of best approximation is to minimize

max [p(z) | f(z) — p(z) \, z on E]

r       i          i M - P(z) 1
= max   /x(z) | w0(z) \  -—-q(z)   , z on E \;

L Cdo(z) J

thus our problem has been reduced to the problem of approximating
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on £ to the function \f(z)— P(z)]/co0(z) by an arbitrary polynomial

q(z) oí degree « — 2, with the positive weight function ¿t(z)|a>o(z)|.

All results of §§1-9 can then be applied, even without our special

discussion of general linear families of functions.

As a concluding remark we stress the possibility of extensions of

our results to approximation by very general nonlinear families. A

natural tool for the investigation of nonlinear families of functions is

the linear family obtained by differentiating, in the neighborhood of

an approximating function, with respect to the parameters of the

family. It should turn out, as directly established [5] for certain

families of functions of one real variable, that the behavior of the

minimizing function on the given set is essentially the same as in the

linear case.
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